static int exynos_usb_parse_dt(const void *blob, struct exynos_ehci *exynos) { fdt_addr_t addr; unsigned int node; int depth; node = fdtdec_next_compatible(blob, 0, COMPAT_SAMSUNG_EXYNOS_EHCI); if (node <= 0) { debug("EHCI: Can't get device node for ehci\n"); return -ENODEV; } /* * Get the base address for EHCI controller from the device node */ addr = fdtdec_get_addr(blob, node, "reg"); if (addr == FDT_ADDR_T_NONE) { debug("Can't get the EHCI register address\n"); return -ENXIO; } exynos->hcd = (struct ehci_hccr *)addr; /* Vbus gpio */ gpio_request_by_name_nodev(blob, node, "samsung,vbus-gpio", 0, &exynos->vbus_gpio, GPIOD_IS_OUT); depth = 0; node = fdtdec_next_compatible_subnode(blob, node, COMPAT_SAMSUNG_EXYNOS_USB_PHY, &depth); if (node <= 0) { debug("EHCI: Can't get device node for usb-phy controller\n"); return -ENODEV; } /* * Get the base address for usbphy from the device node */ exynos->usb = (struct exynos_usb_phy *)fdtdec_get_addr(blob, node, "reg"); if (exynos->usb == NULL) { debug("Can't get the usbphy register address\n"); return -ENXIO; } return 0; }
static int exynos_usb3_parse_dt(const void *blob, struct exynos_xhci *exynos) { fdt_addr_t addr; unsigned int node; int depth; node = fdtdec_next_compatible(blob, 0, COMPAT_SAMSUNG_EXYNOS5_XHCI); if (node <= 0) { debug("XHCI: Can't get device node for xhci\n"); return -ENODEV; } /* * Get the base address for XHCI controller from the device node */ addr = fdtdec_get_addr(blob, node, "reg"); if (addr == FDT_ADDR_T_NONE) { debug("Can't get the XHCI register base address\n"); return -ENXIO; } exynos->hcd = (struct xhci_hccr *)addr; /* Vbus gpio */ fdtdec_decode_gpio(blob, node, "samsung,vbus-gpio", &exynos->vbus_gpio); depth = 0; node = fdtdec_next_compatible_subnode(blob, node, COMPAT_SAMSUNG_EXYNOS5_USB3_PHY, &depth); if (node <= 0) { debug("XHCI: Can't get device node for usb3-phy controller\n"); return -ENODEV; } /* * Get the base address for usbphy from the device node */ exynos->usb3_phy = (struct exynos_usb3_phy *)fdtdec_get_addr(blob, node, "reg"); if (exynos->usb3_phy == NULL) { debug("Can't get the usbphy register address\n"); return -ENXIO; } return 0; }
static int xhci_usb_ofdata_to_platdata(struct udevice *dev) { struct exynos_xhci_platdata *plat = dev_get_platdata(dev); const void *blob = gd->fdt_blob; unsigned int node; int depth; /* * Get the base address for XHCI controller from the device node */ plat->hcd_base = dev_get_addr(dev); if (plat->hcd_base == FDT_ADDR_T_NONE) { debug("Can't get the XHCI register base address\n"); return -ENXIO; } depth = 0; node = fdtdec_next_compatible_subnode(blob, dev_of_offset(dev), COMPAT_SAMSUNG_EXYNOS5_USB3_PHY, &depth); if (node <= 0) { debug("XHCI: Can't get device node for usb3-phy controller\n"); return -ENODEV; } /* * Get the base address for usbphy from the device node */ plat->phy_base = fdtdec_get_addr(blob, node, "reg"); if (plat->phy_base == FDT_ADDR_T_NONE) { debug("Can't get the usbphy register address\n"); return -ENXIO; } /* Vbus gpio */ gpio_request_by_name(dev, "samsung,vbus-gpio", 0, &plat->vbus_gpio, GPIOD_IS_OUT); return 0; }
/** * Decode the EMC node of the device tree, returning a pointer to the emc * controller and the table to be used for the given rate. * * @param blob Device tree blob * @param rate Clock speed of memory controller in Hz (=2x memory bus rate) * @param emcp Returns address of EMC controller registers * @param tablep Returns pointer to table to program into EMC. There are * TEGRA_EMC_NUM_REGS entries, destined for offsets as per the * emc_reg_addr array. * @return 0 if ok, otherwise a -ve error code which will allow someone to * figure out roughly what went wrong by looking at this code. */ static int decode_emc(const void *blob, unsigned rate, struct emc_ctlr **emcp, const u32 **tablep) { struct apb_misc_pp_ctlr *pp = (struct apb_misc_pp_ctlr *)NV_PA_APB_MISC_BASE; int ram_code; int depth; int node; ram_code = (readl(&pp->strapping_opt_a) & RAM_CODE_MASK) >> RAM_CODE_SHIFT; /* * The EMC clock rate is twice the bus rate, and the bus rate is * measured in kHz */ rate = rate / 2 / 1000; node = fdtdec_next_compatible(blob, 0, COMPAT_NVIDIA_TEGRA20_EMC); if (node < 0) { debug("%s: No EMC node found in FDT\n", __func__); return ERR_NO_EMC_NODE; } *emcp = (struct emc_ctlr *)fdtdec_get_addr(blob, node, "reg"); if (*emcp == (struct emc_ctlr *)FDT_ADDR_T_NONE) { debug("%s: No EMC node reg property\n", __func__); return ERR_NO_EMC_REG; } /* Work out the parent node which contains our EMC tables */ node = find_emc_tables(blob, node, ram_code & 3); if (node < 0) return node; depth = 0; for (;;) { int node_rate; node = fdtdec_next_compatible_subnode(blob, node, COMPAT_NVIDIA_TEGRA20_EMC_TABLE, &depth); if (node < 0) break; node_rate = fdtdec_get_int(blob, node, "clock-frequency", -1); if (node_rate == -1) { debug("%s: Missing clock-frequency\n", __func__); return ERR_NO_FREQ; /* we expect this property */ } if (node_rate == rate) break; } if (node < 0) { debug("%s: No node found for clock frequency %d\n", __func__, rate); return ERR_FREQ_NOT_FOUND; } *tablep = fdtdec_locate_array(blob, node, "nvidia,emc-registers", TEGRA_EMC_NUM_REGS); if (!*tablep) { debug("%s: node '%s' array missing / wrong size\n", __func__, fdt_get_name(blob, node, NULL)); return ERR_BAD_REGS; } /* All seems well */ return 0; }