コード例 #1
0
pcl::CorrespondencesPtr CorrespondenceEstimation::estimateCorrespondences(pcl::PointCloud<PointXYZSIFT>::Ptr src_cloud_, pcl::PointCloud<PointXYZSIFT>::Ptr trg_cloud_) {
	CLOG(LTRACE) << "estimateCorrespondences(src,trg)";
	// Empty list of correspondences.
	pcl::CorrespondencesPtr correspondences(new pcl::Correspondences());

	// If pass_through - return empty list.
	if (pass_through) {
		CLOG(LDEBUG) << "Passthrough - returning no correspondences";
		return correspondences;
	}//: if passthrough

	// Create object responsible for correspondence estimation.
	pcl::registration::CorrespondenceEstimation<PointXYZSIFT, PointXYZSIFT>::Ptr correst(new pcl::registration::CorrespondenceEstimation<PointXYZSIFT, PointXYZSIFT>());
	// Set feature representation.
	SIFTFeatureRepresentation::Ptr point_representation(new SIFTFeatureRepresentation());
	correst->setPointRepresentation(point_representation);


	// Filter NaN points.
	pcl::PointCloud<PointXYZSIFT>::Ptr filtered_src_cloud(new pcl::PointCloud<PointXYZSIFT>);
	std::vector<int> src_indices;
	pcl::removeNaNFromPointCloud(*src_cloud_, *filtered_src_cloud, src_indices);
	//filtered_src_cloud->is_dense = false;

	pcl::PointCloud<PointXYZSIFT>::Ptr filtered_trg_cloud(new pcl::PointCloud<PointXYZSIFT>);
	std::vector<int> trg_indices;
	pcl::removeNaNFromPointCloud(*trg_cloud_, *filtered_trg_cloud, trg_indices);
	//filtered_trg_cloud->is_dense = false;


	// Set input clouds.
	correst->setInputSource(filtered_src_cloud);
	correst->setInputTarget(filtered_trg_cloud);


	// Find correspondences.
	correst->determineReciprocalCorrespondences(*correspondences);
	CLOG(LINFO) << "Found correspondences: " << correspondences->size();
	out_corest.write(correst);
	// Correspondence rejection.
	if (prop_reject_correspondences) {
		CLOG(LDEBUG) << "Correspondence rejection";
		if (prop_use_RanSAC) {
			CLOG(LDEBUG) << "Using RanSAC-based correspondence rejection";
			// Use RANSAC to filter correspondences.
			pcl::CorrespondencesPtr inliers(new pcl::Correspondences()) ;

			pcl::registration::CorrespondenceRejectorSampleConsensus<PointXYZSIFT> crsac ;
			crsac.setInputSource(filtered_src_cloud);
			crsac.setInputTarget(filtered_trg_cloud);
			crsac.setInlierThreshold(prop_RanSAC_inliers_threshold);
			crsac.setMaximumIterations(prop_RanSAC_max_iterations);
			crsac.setInputCorrespondences(correspondences);

			// Reject correspondences.
			crsac.getCorrespondences(*inliers);
			CLOG(LINFO) << "Correspondences remaining after RANSAC-based rejection: " << inliers->size();

			// Get computed transformation.
			Types::HomogMatrix hm = crsac.getBestTransformation() ;
			CLOG(LINFO) << "Found transformation:\n" << hm;

			// Return correspondences - inliers.
			return inliers;
		} else {
			// Use correspondence rejection distance.
			CLOG(LDEBUG) << "Using correspondence rejection based on Euclidean distance";
			// Use RANSAC to filter correspondences.
			pcl::CorrespondencesPtr inliers(new pcl::Correspondences()) ;

			pcl::registration:: CorrespondenceRejectorDistance cr ;
			cr.setInputSource<PointXYZSIFT>(filtered_src_cloud);
			cr.setInputTarget<PointXYZSIFT>(filtered_trg_cloud);
			cr.setMaximumDistance(prop_max_distance);
			cr.setInputCorrespondences(correspondences);

			// Reject correspondences.
			cr.getCorrespondences(*inliers);

			CLOG(LINFO) << "Correspondences remaining after Euclidean based rejection: " << inliers->size();
			// Return correspondences - inliers.
			return inliers;
		}//: else euclidean

	} else  {
		CLOG(LDEBUG) << "Returning all correspondences";
		// Return found correspondences.
		return correspondences;
	}//: if
}
コード例 #2
0
ファイル: convert_node.cpp プロジェクト: vsu91/mapping
	void cloud_cb(
			const typename pcl::PointCloud<pcl::PointXYZRGB>::ConstPtr& cloud) {

		iter++;
		if(iter != skip) return;
		iter = 0;

		pcl::PointCloud<pcl::PointXYZRGB> cloud_transformed,
				cloud_aligned, cloud_filtered;

		Eigen::Affine3f view_transform;
		view_transform.matrix() << 0, 0, 1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1;

		Eigen::AngleAxis<float> rot(tilt * M_PI / 180,
				Eigen::Vector3f(0, 1, 0));

		view_transform.prerotate(rot);

		pcl::transformPointCloud(*cloud, cloud_transformed, view_transform);

		pcl::ModelCoefficients::Ptr coefficients(
				new pcl::ModelCoefficients);
		pcl::PointIndices::Ptr inliers(new pcl::PointIndices);

		pcl::SACSegmentation<pcl::PointXYZRGB> seg;

		seg.setOptimizeCoefficients(true);

		seg.setModelType(pcl::SACMODEL_PLANE);
		seg.setMethodType(pcl::SAC_RANSAC);
		seg.setDistanceThreshold(0.05);
		seg.setProbability(0.99);

		seg.setInputCloud(cloud_transformed.makeShared());
		seg.segment(*inliers, *coefficients);

		pcl::ExtractIndices<pcl::PointXYZRGB> extract;

		extract.setInputCloud(cloud_transformed.makeShared());
		extract.setIndices(inliers);
		extract.setNegative(true);
		extract.filter(cloud_transformed);

		std::cout << "Z vector: " << coefficients->values[0] << " "
				<< coefficients->values[1] << " " << coefficients->values[2]
				<< " " << coefficients->values[3] << std::endl;

		Eigen::Vector3f z_current(coefficients->values[0],
				coefficients->values[1], coefficients->values[2]);
		Eigen::Vector3f y(0, 1, 0);

		Eigen::Affine3f rotation;
		rotation = pcl::getTransFromUnitVectorsZY(z_current, y);
		rotation.translate(Eigen::Vector3f(0, 0, coefficients->values[3]));

		pcl::transformPointCloud(cloud_transformed, cloud_aligned, rotation);

		Eigen::Affine3f res = (rotation * view_transform);

		cloud_aligned.sensor_origin_ = res * Eigen::Vector4f(0, 0, 0, 1);
		cloud_aligned.sensor_orientation_ = res.rotate(
				Eigen::AngleAxisf(M_PI, Eigen::Vector3f(0, 0, 1))).rotation();

		seg.setInputCloud(cloud_aligned.makeShared());
		seg.segment(*inliers, *coefficients);

		std::cout << "Z vector: " << coefficients->values[0] << " "
				<< coefficients->values[1] << " " << coefficients->values[2]
				<< " " << coefficients->values[3] << std::endl;

		pub.publish(cloud_aligned);



	}
int main (int argc, char** argv) {
	pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGBA>);
        pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZRGBA>);

	if (pcl::io::loadPCDFile<pcl::PointXYZRGBA> ("cloud_inliers.pcd", *cloud) == -1) {
                PCL_ERROR ("Failed to read file cloud_inliers.pcd \n");
                return (-1);
        }

        std::cout << "Loaded "
                  << cloud->width * cloud->height
                  << " data points from cloud_inliers.pcd."
                  << std::endl;

	pcl::SACSegmentation<pcl::PointXYZRGBA> seg;
	pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
	pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
	pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZRGBA> ());
	pcl::PCDWriter writer;

	seg.setOptimizeCoefficients (true);
	seg.setModelType (pcl::SACMODEL_PLANE);
	seg.setMethodType (pcl::SAC_RANSAC);
	seg.setMaxIterations (100);
	seg.setDistanceThreshold (0.02);

	int i = 0;
	int num_points = (int) cloud->points.size();
	
	while (cloud->points.size() > 0.3 * num_points) {
		seg.setInputCloud (cloud);
		seg.segment (*inliers, *coefficients);

		if (inliers->indices.size() == 0) {
			std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
			break;
		}

		pcl::ExtractIndices<pcl::PointXYZRGBA> extract;
		
		extract.setInputCloud (cloud);
		extract.setIndices (inliers);
		extract.setNegative (false);
		extract.filter (*cloud_plane);

		std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size() << " data points." << std::endl;

		extract.setNegative (true);
		extract.filter (*cloud_filtered);
		*cloud = *cloud_filtered;
	}

	pcl::search::KdTree<pcl::PointXYZRGBA>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZRGBA>);
	tree->setInputCloud (cloud);

	std::vector<pcl::PointIndices> cluster_indices;
	pcl::EuclideanClusterExtraction<pcl::PointXYZRGBA> ec;
	
	ec.setClusterTolerance (0.02);
	ec.setMinClusterSize (100);
	ec.setMaxClusterSize (25000);
	ec.setSearchMethod (tree);
	ec.setInputCloud (cloud);
	ec.extract (cluster_indices);
	
	int j = 0;

	for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it) {
		pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZRGBA>);

		for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
			cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*

		cloud_cluster->width = cloud_cluster->points.size ();
		cloud_cluster->height = 1;
		cloud_cluster->is_dense = true;

		std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
		std::stringstream ss;
		ss << "cloud_cluster_" << j << ".pcd";
		writer.write<pcl::PointXYZRGBA> (ss.str (), *cloud_cluster, false); //*

		j++;
	}

	return (0);
}
コード例 #4
0
ファイル: Distance.cpp プロジェクト: sagargp/minimum_distance
int  main (int argc, char** argv)
{
	// Read in the cloud data
	pcl::PCDReader reader;
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr RGBcloud (new pcl::PointCloud<pcl::PointXYZRGB>);
	reader.read (argv[1], *RGBcloud);

	std::cout << "RGBPointCloud before filtering has: " << RGBcloud->points.size () << " data points." << std::endl; //*

	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudF (new pcl::PointCloud<pcl::PointXYZRGB>);
	reader.read(argv[1], *cloudF);

	std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> clouds;
	clouds.reserve(10);
	labels.reserve(10);

	//this is only for the old data sets
	//for (size_t i=0; i < RGBcloud->points.size();++i)
	//{
	//	if (!((RGBcloud->points[i].x > -.35 && RGBcloud->points[i].x < .35) && (RGBcloud->points[i].y > -.35 && RGBcloud->points[i].y < .35)))
	//	{
	//		RGBcloud->points[i].x = 0;
	//		RGBcloud->points[i].y = 0;
	//		RGBcloud->points[i].z = 0;
	//	}
	//}

	// Create the filtering object: downsample the dataset using a leaf size of 1cm
	pcl::VoxelGrid<pcl::PointXYZRGB> vg;
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZRGB>);

	vg.setInputCloud (RGBcloud);
	vg.setLeafSize (0.001f, 0.001f, 0.001f);
	vg.filter (*cloud_filtered);

	std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size()  << " data points." << std::endl;

	//pcl::visualization::CloudViewer viewer("Cloud Viewer");
	// Create the segmentation object for the planar model and set all the parameters
	pcl::SACSegmentation<pcl::PointXYZRGB> seg;
	pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
	pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZRGB> ());
	pcl::PCDWriter writer;

	seg.setOptimizeCoefficients (true);
	seg.setModelType (pcl::SACMODEL_PLANE);
	seg.setMethodType (pcl::SAC_RANSAC);
	seg.setMaxIterations (100);
	seg.setDistanceThreshold (0.0085);//lesser the values, more points seep into the table

	// Segment the largest planar component from the remaining cloud until 30% of the points remain
	int i=0, nr_points = (int) cloud_filtered->points.size();
	while (cloud_filtered->points.size () > 0.30* nr_points)
	{
		seg.setInputCloud(cloud_filtered);
		seg.segment (*inliers, *coefficients); 

		if (inliers->indices.size () == 0)
		{
			std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
			exit(-1);	
		}

		// Extract the planar inliers from the input cloud
		pcl::ExtractIndices<pcl::PointXYZRGB> extract;
		extract.setInputCloud (cloud_filtered);
		extract.setIndices (inliers);
		extract.setNegative (false);

		// Write the planar inliers to disk
		extract.filter (*cloud_plane); //*
		std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;
		//viewer.showCloud(cloud_plane, "cloud_name");
		//std::cin.get();
		// Remove the planar inliers, extract the rest
		extract.setNegative (true);
		extract.filter (*cloud_filtered); //*
		std::cerr <<" The Coefficients are: " << coefficients->values[0]<< " "<< coefficients->values[1]<< " "<< coefficients->values[2]<< " " << coefficients->values[3]<< " "<< std::endl;
	}

	// color segmentation
	//
	// define this vector so we can operate over all colored point clouds in a loop
	std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> coloredClouds(5);

	// instantiate the colored clouds
	for (int i = 0; i < 5; i++)
		coloredClouds[i] = pcl::PointCloud<pcl::PointXYZRGB>::Ptr(new pcl::PointCloud<pcl::PointXYZRGB>);

	// alias the colored clouds with names 
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr Rcloud = coloredClouds[0];
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr Gcloud = coloredClouds[1];
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr Bcloud = coloredClouds[2];
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr Ycloud = coloredClouds[3];
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr Ocloud = coloredClouds[4];

	// color segment the cloud using min/max ranges
	//colorSegment(cloud_filtered, Rcloud, Gcloud, Bcloud, Ycloud, Ocloud);

	// color segment the cloud using a normal distrbuted color model
	normalSegment(cloud_filtered, Rcloud, Gcloud, Bcloud, Ycloud, Ocloud);

	// temp: display the colored clouds one after another
	pcl::visualization::CloudViewer viewer("Cloud Viewer");
	for (int i = 0; i < coloredClouds.size(); i++)
	{
		cout << "Showing cloud #" << i << endl;
		viewer.showCloud(coloredClouds[i]);
		cin.get();
	}

	// empty out the lists before re-filling them with colorful points 
	clouds.clear();
	labels.clear();

	// now find clusters inside each of the colored point clouds 
	int num_clusters = 0;
	for (int i = 0; i < coloredClouds.size(); i++)
	{
		if (coloredClouds[i]->size() == 0)
			continue;

		cout << "Clustering colored cloud #" << i << " which has " << coloredClouds[i]->size() << " points" << endl;
		num_clusters += clusterExtraction(coloredClouds[i], &clouds, &labels);
	}

	// display what we've found	
	std::cerr<<"Waiting 3 "<<std::endl;

	viewer.runOnVisualizationThreadOnce(label);

	char c_name[] = "Cloud No: ";
	char cloud_name [20];
	std::cerr << "Total Clusters: " << num_clusters << std::endl;

	for (size_t k = 0; k < num_clusters; k++)
	{	
		std::sprintf(cloud_name,"%s%d",c_name,k);
		viewer.showCloud(clouds[k], cloud_name);
	}

	std::cin.get();
	int xx, yy;
	while(1)
	{
		cout << "Enter the label of the first cloud: ";
		cin >> xx;

		cout << "Enter the label of the second cloud: ";
		cin >> yy;

		cout << "Finding distance...";
		cout << findDistance(clouds[xx], clouds[yy]) << endl;

		viewer.runOnVisualizationThreadOnce(drawArrow);

		cout << "Enter the number of the cloud you want to see alone: ";
		cin >> xx;
	}

	while (!viewer.wasStopped ());

	return 0;
}
コード例 #5
0
TEX_NAMESPACE_BEGIN

/**
 * Dampens the quality of all views in which the face's projection
 * has a much different color than in the majority of views.
 * Returns whether the outlier removal was successfull.
 *
 * @param infos contains information about one face seen from several views
 * @param settings runtime configuration.
 */
bool
photometric_outlier_detection(std::vector<FaceProjectionInfo> * infos, Settings const & settings) {
    if (infos->size() == 0) return true;

    /* Configuration variables. */

    double const gauss_rejection_threshold = 6e-3;

    /* If all covariances drop below this we stop outlier detection. */
    double const minimal_covariance = 5e-4;

    int const outlier_detection_iterations = 10;
    int const minimal_num_inliers = 4;

    float outlier_removal_factor = std::numeric_limits<float>::signaling_NaN();
    switch (settings.outlier_removal) {
        case OUTLIER_REMOVAL_NONE: return true;
        case OUTLIER_REMOVAL_GAUSS_CLAMPING:
            outlier_removal_factor = 1.0f;
        break;
        case OUTLIER_REMOVAL_GAUSS_DAMPING:
            outlier_removal_factor = 0.2f;
        break;
    }

    Eigen::MatrixX3d inliers(infos->size(), 3);
    std::vector<std::uint32_t> is_inlier(infos->size(), 1);
    for (std::size_t row = 0; row < infos->size(); ++row) {
        inliers.row(row) = mve_to_eigen(infos->at(row).mean_color).cast<double>();
    }

    Eigen::RowVector3d var_mean;
    Eigen::Matrix3d covariance;
    Eigen::Matrix3d covariance_inv;

    for (int i = 0; i < outlier_detection_iterations; ++i) {

        if (inliers.rows() < minimal_num_inliers) {
            return false;
        }

        /* Calculate the inliers' mean color and color covariance. */
        var_mean = inliers.colwise().mean();
        Eigen::MatrixX3d centered = inliers.rowwise() - var_mean;
        covariance = (centered.adjoint() * centered) / double(inliers.rows() - 1);

        /* If all covariances are very small we stop outlier detection
         * and only keep the inliers (set quality of outliers to zero). */
        if (covariance.array().abs().maxCoeff() < minimal_covariance) {
            for (std::size_t row = 0; row < infos->size(); ++row) {
                if (!is_inlier[row]) infos->at(row).quality = 0.0f;
            }
            return true;
        }

        /* Invert the covariance. FullPivLU is not the fastest way but
         * it gives feedback about numerical stability during inversion. */
        Eigen::FullPivLU<Eigen::Matrix3d> lu(covariance);
        if (!lu.isInvertible()) {
            return false;
        }
        covariance_inv = lu.inverse();

        /* Compute new number of inliers (all views with a gauss value above a threshold). */
        for (std::size_t row = 0; row < infos->size(); ++row) {
            Eigen::RowVector3d color = mve_to_eigen(infos->at(row).mean_color).cast<double>();
            double gauss_value = multi_gauss_unnormalized(color, var_mean, covariance_inv);
            is_inlier[row] = (gauss_value >= gauss_rejection_threshold ? 1 : 0);
        }
        /* Resize Eigen matrix accordingly and fill with new inliers. */
        inliers.resize(std::accumulate(is_inlier.begin(), is_inlier.end(), 0), Eigen::NoChange);
        for (std::size_t row = 0, inlier_row = 0; row < infos->size(); ++row) {
            if (is_inlier[row]) {
                inliers.row(inlier_row++) = mve_to_eigen(infos->at(row).mean_color).cast<double>();
            }
        }
    }

    covariance_inv *= outlier_removal_factor;
    for (FaceProjectionInfo & info : *infos) {
        Eigen::RowVector3d color = mve_to_eigen(info.mean_color).cast<double>();
        double gauss_value = multi_gauss_unnormalized(color, var_mean, covariance_inv);
        assert(0.0 <= gauss_value && gauss_value <= 1.0);
        switch(settings.outlier_removal) {
            case OUTLIER_REMOVAL_NONE: return true;
            case OUTLIER_REMOVAL_GAUSS_DAMPING:
                info.quality *= gauss_value;
            break;
            case OUTLIER_REMOVAL_GAUSS_CLAMPING:
                if (gauss_value < gauss_rejection_threshold) info.quality = 0.0f;
            break;
        }
    }
    return true;
}
コード例 #6
0
  bool SnapIt::processModelPlane(jsk_pcl_ros::CallSnapIt::Request& req,
                                 jsk_pcl_ros::CallSnapIt::Response& res) {
    // first build plane model
    geometry_msgs::PolygonStamped target_plane = req.request.target_plane;
    // check the size of the points
    if (target_plane.polygon.points.size() < 3) {
      NODELET_ERROR("not enough points included in target_plane");
      return false;
    }
    pcl::PointCloud<pcl::PointXYZ>::Ptr points_inside_pole (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
    EigenVector3fVector points;
    Eigen::Vector3f n, p;
    if (!extractPointsInsidePlanePole(target_plane, inliers, points, n, p)) {
      return false;
    }

    if (inliers->indices.size() < 3) {
      NODELET_ERROR("not enough points inside of the target_plane");
      return false;
    }
    
    pcl::ExtractIndices<pcl::PointXYZ> extract;
    extract.setInputCloud(input_);
    extract.setIndices(inliers);
    extract.filter(*points_inside_pole);

    publishPointCloud(debug_candidate_points_pub_, points_inside_pole);
    
    // estimate plane
    
    pcl::ModelCoefficients::Ptr plane_coefficients (new pcl::ModelCoefficients);
    pcl::PointIndices::Ptr plane_inliers (new pcl::PointIndices);
    extractPlanePoints(points_inside_pole, plane_inliers, plane_coefficients,
                       n, req.request.eps_angle);

    if (plane_inliers->indices.size () == 0)
    {
      NODELET_ERROR ("Could not estimate a planar model for the given dataset.");
      return false;
    }

    // extract plane points
    pcl::PointCloud<pcl::PointXYZ>::Ptr plane_points (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::ProjectInliers<pcl::PointXYZ> proj;
    proj.setModelType (pcl::SACMODEL_PLANE);
    proj.setIndices (plane_inliers);
    proj.setInputCloud (points_inside_pole);
    proj.setModelCoefficients (plane_coefficients);
    proj.filter (*plane_points);
    publishPointCloud(debug_candidate_points_pub3_, plane_points);
    
    // next, compute convexhull and centroid
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_hull (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::ConcaveHull<pcl::PointXYZ> chull;
    chull.setInputCloud (plane_points);
    chull.setDimension(2);
    chull.setAlpha (0.1);
    
    chull.reconstruct (*cloud_hull);

    if (cloud_hull->points.size() < 3) {
      NODELET_ERROR("failed to estimate convex hull");
      return false;
    }
    publishConvexHullMarker(cloud_hull);
    
    Eigen::Vector4f C_new_4f;
    pcl::compute3DCentroid(*cloud_hull, C_new_4f);
    Eigen::Vector3f C_new;
    for (size_t i = 0; i < 3; i++) {
      C_new[i] = C_new_4f[i];
    }
    
    Eigen::Vector3f n_prime;
    n_prime[0] = plane_coefficients->values[0];
    n_prime[1] = plane_coefficients->values[1];
    n_prime[2] = plane_coefficients->values[2];
    plane_coefficients->values[3] = plane_coefficients->values[3] / n_prime.norm();
    n_prime.normalize();
    
    if (n_prime.dot(n) < 0) {
      n_prime = - n_prime;
      plane_coefficients->values[3] = - plane_coefficients->values[3];
    }
    
    Eigen::Vector3f n_cross = n.cross(n_prime);
    double theta = asin(n_cross.norm());

    Eigen::Quaternionf trans (Eigen::AngleAxisf(theta, n_cross.normalized()));
    
    // compute C
    Eigen::Vector3f C_orig(0, 0, 0);
    for (size_t i = 0; i < points.size(); i++) {
      C_orig = C_orig + points[i];
    }
    C_orig = C_orig / points.size();
    // compute C
    Eigen::Vector3f C = trans * C_orig;
    

    Eigen::Affine3f A = Eigen::Translation3f(C) * Eigen::Translation3f(C_new - C) * trans * Eigen::Translation3f(C_orig).inverse();
    tf::poseEigenToMsg((Eigen::Affine3d)A, res.transformation);

    geometry_msgs::PointStamped centroid;
    centroid.point.x = C_orig[0];
    centroid.point.y = C_orig[1];
    centroid.point.z = C_orig[2];
    centroid.header = target_plane.header;
    debug_centroid_pub_.publish(centroid);

    geometry_msgs::PointStamped centroid_transformed;
    centroid_transformed.point.x = C_new[0];
    centroid_transformed.point.y = C_new[1];
    centroid_transformed.point.z = C_new[2];
    centroid_transformed.header = target_plane.header;
    debug_centroid_after_trans_pub_.publish(centroid_transformed);
    
    return true;
  }
コード例 #7
0
int
 main (int argc, char** argv)
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);

  // Fill in the cloud data
  cloud->width  = 15;
  cloud->height = 1;
  cloud->points.resize (cloud->width * cloud->height);

  // Generate the data
  for (size_t i = 0; i < cloud->points.size (); ++i)
  {
    cloud->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].z = 1.0;
  }

  // Set a few outliers
  cloud->points[0].z = 2.0;
  cloud->points[3].z = -2.0;
  cloud->points[6].z = 4.0;

  std::cerr << "Point cloud data: " << cloud->points.size () << " points" << std::endl;
  for (size_t i = 0; i < cloud->points.size (); ++i)
    std::cerr << "    " << cloud->points[i].x << " "
                        << cloud->points[i].y << " "
                        << cloud->points[i].z << std::endl;

  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  // Create the segmentation object
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  // Optional
  seg.setOptimizeCoefficients (true);
  // Mandatory
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setDistanceThreshold (0.01);

  seg.setInputCloud (cloud);
  seg.segment (*inliers, *coefficients);

  if (inliers->indices.size () == 0)
  {
    PCL_ERROR ("Could not estimate a planar model for the given dataset.");
    return (-1);
  }

  std::cerr << "Model coefficients: " << coefficients->values[0] << " " 
                                      << coefficients->values[1] << " "
                                      << coefficients->values[2] << " " 
                                      << coefficients->values[3] << std::endl;

  std::cerr << "Model inliers: " << inliers->indices.size () << std::endl;
  for (size_t i = 0; i < inliers->indices.size (); ++i)
    std::cerr << inliers->indices[i] << "    " << cloud->points[inliers->indices[i]].x << " "
                                               << cloud->points[inliers->indices[i]].y << " "
                                               << cloud->points[inliers->indices[i]].z << std::endl;

  return (0);
}
コード例 #8
0
void ClusterExtractor::computeClusters()
{

    pcl::PointCloud<pcl::PointXYZ>::Ptr scenePCLPointCloudXYZ(new pcl::PointCloud<pcl::PointXYZ>());
    pcl::fromPCLPointCloud2(*sceneCloud, *scenePCLPointCloudXYZ);

    pcl::PointCloud<pcl::PointXYZ>::Ptr  cloud_f (new pcl::PointCloud<pcl::PointXYZ>);

    // Create the filtering object: downsample the dataset using a leaf size of 1cm
    pcl::VoxelGrid<pcl::PointXYZ> vg;
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
    vg.setInputCloud (scenePCLPointCloudXYZ);
    vg.setLeafSize (0.01f, 0.01f, 0.01f);
    vg.filter (*cloud_filtered);
    std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size ()  << " data points." << std::endl; //*

    // Create the segmentation object for the planar model and set all the parameters
    pcl::SACSegmentation<pcl::PointXYZ> seg;
    pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
    pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
    seg.setOptimizeCoefficients (true);
    seg.setModelType (pcl::SACMODEL_PLANE);
    seg.setMethodType (pcl::SAC_RANSAC);
    seg.setMaxIterations (100);
    seg.setDistanceThreshold (0.02);

    int i=0, nr_points = (int) cloud_filtered->points.size ();
    while (true)
    {
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
        // Segment the largest planar component from the remaining cloud
        seg.setInputCloud (cloud_filtered);
        seg.segment (*inliers, *coefficients);
        if (inliers->indices.size () == 0)
        {
            ROS_WARN("Could not estimate a planar model for the given dataset.");
            //std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
            break;
        }

        // Extract the planar inliers from the input cloud
        pcl::ExtractIndices<pcl::PointXYZ> extract;
        extract.setInputCloud (cloud_filtered);
        extract.setIndices (inliers);
        extract.setNegative (false);

        // Get the points associated with the planar surface
        extract.filter (*cloud_plane);
        ROS_INFO("%d",++i);
        std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;

        if (cloud_plane->points.size() < .2*nr_points) {
            break;
        }

        // Remove the planar inliers, extract the rest
        extract.setNegative (true);
        extract.filter (*cloud_f);
        *cloud_filtered = *cloud_f;

        // Add euclidean plane to computer clusters
        cloudClusters.push_back(cloud_plane);
    }

    // Creating the KdTree object for the search method of the extraction
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
    tree->setInputCloud (cloud_filtered);

    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    ec.setClusterTolerance (0.02); // 2cm
    ec.setMinClusterSize (100);
    ec.setMaxClusterSize (25000000);
    ec.setSearchMethod (tree);
    ec.setInputCloud (cloud_filtered);
    ec.extract (cluster_indices);

    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
    {
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
        for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
            cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*
        cloud_cluster->width = cloud_cluster->points.size ();
        cloud_cluster->height = 1;
        cloud_cluster->is_dense = true;

        cloudClusters.push_back(cloud_cluster);
    }
}
コード例 #9
0
ファイル: convert.cpp プロジェクト: aginika/mapping
int main(int argc, char** argv)
{

  if (argc < 5)
  {
    PCL17_INFO ("Usage %s -input_file /in_file -output_file /out_file [options]\n", argv[0]);
    PCL17_INFO (" * where options are:\n"
        "         -tilt <X>  : tilt. Default : 30\n"
        "");
    return -1;
  }

  int tilt = 30;
  std::string input_file;
  std::string output_file;

  pcl17::console::parse_argument(argc, argv, "-input_file", input_file);
  pcl17::console::parse_argument(argc, argv, "-output_file", output_file);
  pcl17::console::parse_argument(argc, argv, "-tilt", tilt);

  pcl17::PointCloud<pcl17::PointXYZRGB> cloud, cloud_transformed, cloud_aligned, cloud_filtered;

  pcl17::io::loadPCDFile(input_file, cloud);

  Eigen::Affine3f view_transform;
  view_transform.matrix() << 0, 0, 1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1;

  Eigen::AngleAxis<float> rot(tilt * M_PI / 180, Eigen::Vector3f(0, 1, 0));

  view_transform.prerotate(rot);

  pcl17::transformPointCloud(cloud, cloud_transformed, view_transform);

  pcl17::ModelCoefficients::Ptr coefficients(new pcl17::ModelCoefficients);
  pcl17::PointIndices::Ptr inliers(new pcl17::PointIndices);

  pcl17::SACSegmentation<pcl17::PointXYZRGB> seg;

  seg.setOptimizeCoefficients(true);

  seg.setModelType(pcl17::SACMODEL_PLANE);
  seg.setMethodType(pcl17::SAC_RANSAC);
  seg.setDistanceThreshold(0.05);
  seg.setProbability(0.99);

  seg.setInputCloud(cloud_transformed.makeShared());
  seg.segment(*inliers, *coefficients);

  pcl17::ExtractIndices<pcl17::PointXYZRGB> extract;

  extract.setInputCloud(cloud_transformed.makeShared());
  extract.setIndices(inliers);
  extract.setNegative(true);
  extract.filter(cloud_transformed);

  std::cout << "Z vector: " << coefficients->values[0] << " " << coefficients->values[1] << " "
      << coefficients->values[2] << " " << coefficients->values[3] << std::endl;

  Eigen::Vector3f z_current(coefficients->values[0], coefficients->values[1], coefficients->values[2]);
  Eigen::Vector3f y(0, 1, 0);

  Eigen::Affine3f rotation;
  rotation = pcl17::getTransFromUnitVectorsZY(z_current, y);
  rotation.translate(Eigen::Vector3f(0, 0, coefficients->values[3]));

  pcl17::transformPointCloud(cloud_transformed, cloud_aligned, rotation);

  Eigen::Affine3f res = (rotation * view_transform);

  cloud_aligned.sensor_origin_ = res * Eigen::Vector4f(0, 0, 0, 1);
  cloud_aligned.sensor_orientation_ = res.rotate(Eigen::AngleAxisf(M_PI, Eigen::Vector3f(0, 0, 1))).rotation();

  seg.setInputCloud(cloud_aligned.makeShared());
  seg.segment(*inliers, *coefficients);

  std::cout << "Z vector: " << coefficients->values[0] << " " << coefficients->values[1] << " "
      << coefficients->values[2] << " " << coefficients->values[3] << std::endl;

  pcl17::io::savePCDFile(output_file, cloud_aligned);

  return 0;
}
コード例 #10
0
  // Proccess the point clouds
  void processPointCloud( const sensor_msgs::PointCloud2ConstPtr& pointcloud_msg )
  {
    ROS_INFO_NAMED("perception","\n\n\n");
    ROS_INFO_STREAM_NAMED("perception","Processing new point cloud");

    // ---------------------------------------------------------------------------------------------
    // Start making result
    result_.blocks.poses.clear();    // Clear last block perception result
    result_.blocks.header.stamp = pointcloud_msg->header.stamp;
    result_.blocks.header.frame_id = base_link;

    // Basic point cloud conversions ---------------------------------------------------------------

    // Convert from ROS to PCL
    pcl::PointCloud<pcl::PointXYZRGB> cloud;
    pcl::fromROSMsg(*pointcloud_msg, cloud);

    // Make new point cloud that is in our working frame
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_transformed(new pcl::PointCloud<pcl::PointXYZRGB>);

    // Transform to whatever frame we're working in, probably the arm's base frame, ie "base_link"
    ROS_INFO_STREAM_NAMED("perception","Waiting for transform...");
    ros::spinOnce();
    tf_listener_.waitForTransform(base_link, cloud.header.frame_id, cloud.header.stamp, ros::Duration(2.0));

    if(!pcl_ros::transformPointCloud(base_link, cloud, *cloud_transformed, tf_listener_))
    {
      if( process_count_ > 1 ) // the first time we can ignore it
        ROS_ERROR_STREAM_NAMED("perception","Error converting to desired frame");

      // Do this to speed up the next process attempt:
      process_count_ = PROCESS_EVERY_NTH;

      return;
    }


    // Limit to things we think are roughly at the table height ------------------------------------
    //    pcl::PointIndices::Ptr filtered_indices(new pcl::PointIndices); // hold things at table height
    //    std::vector<int>
    boost::shared_ptr<std::vector<int> > filtered_indices(new std::vector<int>);
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZRGB>);
    pcl::PassThrough<pcl::PointXYZRGB> pass;
    pass.setInputCloud(cloud_transformed);
    pass.setFilterFieldName("z");
    pass.setFilterLimits(table_height - 0.05, table_height + block_size + 0.05);
    //pass.setFilterLimits(table_height - 0.01, table_height + block_size + 0.02); // DTC
    pass.filter(*filtered_indices);

    /*
    // Limit to things in front of the robot ---------------------------------------------------
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZRGB>);
    //pass.setInputCloud(cloud_filteredZ);
    pass.setIndices(filtered_indices);
    pass.setFilterFieldName("x");
    pass.setFilterLimits(.1,.5);
    pass.filter(*cloud_filtered);
    */

    /*
    // Check if any points remain
    if( cloud_filtered->points.size() == 0 )
    {
    ROS_ERROR_STREAM_NAMED("perception","0 points left");
    return;
    }
    else
    {
    ROS_INFO_STREAM_NAMED("perception","Filtered, %d points left", (int) cloud_filtered->points.size());
    }
    */

    // Segment components --------------------------------------------------------------------------


    // Create the segmentation object for the planar model and set all the parameters
    pcl::SACSegmentation<pcl::PointXYZRGB> seg;
    seg.setOptimizeCoefficients(true);
    seg.setModelType(pcl::SACMODEL_PLANE);
    seg.setMethodType(pcl::SAC_RANSAC); // robustness estimator - RANSAC is simple
    seg.setMaxIterations(200); // the maximum number of iterations the sample consensus method will run
    seg.setDistanceThreshold(0.005); // determines how close a point must be to the model in order to be considered an inlier


    pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
    pcl::ModelCoefficients::Ptr model_coefficients(new pcl::ModelCoefficients);
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_plane(new pcl::PointCloud<pcl::PointXYZRGB>());

    /*
      int nr_points = cloud_filtered->points.size();

      // Segment cloud until there are less than 30% of points left? not sure why this is necessary
      while(cloud_filtered->points.size() > 0.3 * nr_points)
      {

      // Segment the largest planar component from the remaining cloud (find the table)
      seg.setInputCloud(cloud_filtered);
      //      seg.setIndices();
      seg.segment(*inliers, *model_coefficients);

      if(inliers->indices.size() == 0)
      {
      ROS_ERROR_STREAM_NAMED("perception","Could not estimate a planar model for the given dataset.");
      return;
      }

      //std::cout << "Inliers: " << (inliers->indices.size()) << std::endl;

      // Extract the planar inliers from the input cloud
      pcl::ExtractIndices<pcl::PointXYZRGB> extract;
      extract.setInputCloud(cloud_filtered);
      extract.setIndices(inliers);
      extract.setNegative(false);

      // Copy the extracted component (the table) to a seperate point cloud
      extract.filter(*cloud_plane);
      //std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size() << " data points." << std::endl;

      // Remove the planar inliers, extract the rest
      extract.setNegative(true);
      extract.filter(*cloud_filtered);  // remove table from cloud_filtered

      // Debug output - DTC
      // Show the contents of the inlier set, together with the estimated plane parameters, in ax+by+cz+d=0 form (general equation of a plane)
      ROS_INFO_STREAM_NAMED("perception", "Model coefficients: " << model_coefficients->values[0] << " "
      << model_coefficients->values[1] << " "
      << model_coefficients->values[2] << " "
      << model_coefficients->values[3] ); // TODO: turn this into an rviz marker somehow?
    */
    // Show groups of recognized objects (the inliers)
    /*std::cerr << "Model inliers: " << inliers->indices.size () << std::endl;
      for (size_t i = 0; i < inliers->indices.size (); ++i)        {
      std::cerr << inliers->indices[i] << "    " << cloud.points[inliers->indices[i]].x << " "
      << cloud.points[inliers->indices[i]].y << " "
      << cloud.points[inliers->indices[i]].z << std::endl;
      }*/
    //    }


    // DTC: Removed to make compatible with PCL 1.5
    // Creating the KdTree object for the search method of the extraction
    //    pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree(new pcl::search::KdTreeFLANN<pcl::PointXYZRGB>);
    pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZRGB>);
    //    tree->setInputCloud(cloud_filtered);
    tree->setInputCloud(cloud_transformed, filtered_indices);

    // Find the clusters (objects) on the table
    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<pcl::PointXYZRGB> cluster_extract;
    //cluster_extract.setClusterTolerance(0.005); // 5mm -  If you take a very small value, it can happen that an actual object can be seen as multiple clusters. On the other hand, if you set the value too high, it could happen, that multiple objects are seen as one cluster. So our recommendation is to just test and try out which value suits your dataset.
    cluster_extract.setClusterTolerance(0.02); // 2cm
    cluster_extract.setMinClusterSize(100);
    cluster_extract.setMaxClusterSize(25000);
    //    cluster_extract.setSearchMethod(tree);
    //    cluster_extract.setInputCloud(cloud_filtered);
    cluster_extract.setInputCloud(cloud_transformed);
    cluster_extract.setIndices(filtered_indices);
    ROS_INFO_STREAM_NAMED("perception","Extracting...");
    cluster_extract.extract(cluster_indices);
    ROS_INFO_STREAM_NAMED("perception","after cluster extract");

    // Publish point cloud data
    //    filtered_pub_.publish(cloud_filtered);
    //    plane_pub_.publish(cloud_plane);

    ROS_WARN_STREAM_NAMED("perception","Number indicies/clusters: " << cluster_indices.size() );

    //    processClusters( cluster_indices, pointcloud_msg, cloud_filtered );
    processClusters( cluster_indices, cloud_transformed, cloud_filtered, cloud );

    // ---------------------------------------------------------------------------------------------
    // Final results
    if(result_.blocks.poses.size() > 0)
    {
      // Change action state, if we the action is currently active
      if(action_server_.isActive())
      {
        action_server_.setSucceeded(result_);
      }
      // Publish block poses
      block_pose_pub_.publish(result_.blocks);

      // Publish rviz markers of the blocks
      publishBlockLocation();

      ROS_INFO_STREAM_NAMED("perception","Finished ---------------------------------------------- ");
    }
    else
    {
      ROS_INFO_STREAM_NAMED("perception","Couldn't find any blocks this iteration!");
    }
  }
コード例 #11
0
void cloud_cb(const sensor_msgs::PointCloud2ConstPtr& input){
	
	sensor_msgs::PointCloud2::Ptr clusters (new sensor_msgs::PointCloud2);	
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
	pcl::fromROSMsg(*input, *cloud);
	pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);	
		
	std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl;
	
	// Create the filtering object: downsample the dataset using a leaf size of 1cm
  	pcl::VoxelGrid<pcl::PointXYZ> vg;
  	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
  	vg.setInputCloud (cloud);
  	vg.setLeafSize (0.01f, 0.01f, 0.01f);
  	vg.filter (*cloud_filtered);
  	std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size ()  << " data points." << std::endl;

	// Create the segmentation object for the planar model and set all the parameters
  	pcl::SACSegmentation<pcl::PointXYZ> seg;
  	pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  	pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
  	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
  	pcl::PCDWriter writer;
  	seg.setOptimizeCoefficients (true);
  	seg.setModelType (pcl::SACMODEL_PLANE);
  	seg.setMethodType (pcl::SAC_RANSAC);
  	seg.setMaxIterations (100);
  	seg.setDistanceThreshold (0.02);

  	int i=0, nr_points = (int) cloud_filtered->points.size ();
  	while (cloud_filtered->points.size () > 0.3 * nr_points)
  	{
    	// Segment the largest planar component from the remaining cloud
   	 	seg.setInputCloud (cloud_filtered);
    		seg.segment (*inliers, *coefficients);
    		if (inliers->indices.size () == 0)
   		 {
      			std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
      			break;
    		 }

    	// Extract the planar inliers from the input cloud
   	pcl::ExtractIndices<pcl::PointXYZ> extract;
    	extract.setInputCloud (cloud_filtered);
    	extract.setIndices (inliers);
    	extract.setNegative (false);

    	// Get the points associated with the planar surface
    	extract.filter (*cloud_plane);
    	std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;

    	// Remove the planar inliers, extract the rest
    	extract.setNegative (true);
    	extract.filter (*cloud_f);
    	*cloud_filtered = *cloud_f;
  	}

  	// Creating the KdTree object for the search method of the extraction
 	 pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  	tree->setInputCloud (cloud_filtered);

  	std::vector<pcl::PointIndices> cluster_indices;
  	pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  	ec.setClusterTolerance (0.02); // 2cm
  	ec.setMinClusterSize (10);
  	ec.setMaxClusterSize (2500);
  	ec.setSearchMethod (tree);
  	ec.setInputCloud (cloud_filtered);
  	ec.extract (cluster_indices);
	std::vector<pcl::PointIndices>::const_iterator it;
	std::vector<int>::const_iterator pit;

	 int j = 0;	
	for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
        	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
        	for(pit = it->indices.begin(); pit != it->indices.end(); pit++) {
        	//push_back: add a point to the end of the existing vector
                	cloud_cluster->points.push_back(cloud_filtered->points[*pit]); 
			
			/*cloud_cluster->width = cloud_cluster->points.size ();
    			cloud_cluster->height = 1;
    			cloud_cluster->is_dense = true;


			std::stringstream ss;
    			ss << "cloud_cluster_" << j << ".pcd";
    			writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); //*
    			j++;*/
        	}

        	//Merge current clusters to whole point cloud
    		*clustered_cloud += *cloud_cluster;

 	 }

	pcl::toROSMsg (*clustered_cloud , *clusters);
	
	clusters->header.frame_id = "/camera_depth_frame";
	clusters->header.stamp=ros::Time::now();
	pub.publish (*clusters);
	//sensor_msgs::PointCloud2::Ptr output (new sensor_msgs::PointCloud2);	
	//pcl::toROSMsg(*cloud_filtered, *output);
	//pub_plane.publish(*output);
}
コード例 #12
0
void 
cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
{
  pcl::PCLPointCloud2::Ptr cloud_blob (new pcl::PCLPointCloud2), cloud_filtered_blob (new pcl::PCLPointCloud2);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>), cloud_p (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);

  pcl_conversions::toPCL(*input, *cloud_blob);

  // Fill in the cloud data
  //pcl::PCDReader reader;
  //reader.read ("table_scene_lms400.pcd", *cloud_blob);

  // Create the filtering object: downsample the dataset using a leaf size of 1cm
  pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
  sor.setInputCloud (cloud_blob);
  sor.setLeafSize (0.01f, 0.01f, 0.01f);
  sor.filter (*cloud_filtered_blob);

  // Convert to the templated PointCloud
  pcl::fromPCLPointCloud2 (*cloud_filtered_blob, *cloud_filtered);

  //std::cerr << "PointCloud after filtering: " << cloud_filtered->width * cloud_filtered->height << " data points." << std::endl;

  // Write the downsampled version to disk
  //pcl::PCDWriter writer;
  //writer.write<pcl::PointXYZ> ("table_scene_lms400_downsampled.pcd", *cloud_filtered, false);

  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
  // Create the segmentation object
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  // Optional
  seg.setOptimizeCoefficients (true);
  // Mandatory
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setMaxIterations (1000);
  seg.setDistanceThreshold (0.01);

  // Create the filtering object
  pcl::ExtractIndices<pcl::PointXYZ> extract;

//  int i = 0, nr_points = (int) cloud_filtered->points.size ();
  // While 30% of the original cloud is still there
  //while (cloud_filtered->points.size () > 0.3 * nr_points)
  for (int i = 0; i < 2; i++)
  {
    // Segment the largest planar component from the remaining cloud
    seg.setInputCloud (cloud_filtered);
    seg.segment (*inliers, *coefficients);
    if (inliers->indices.size () == 0)
    {
      ROS_ERROR("Could not estimate a planar model for the given dataset.");
      break;
    }

    // Extract the inliers
    extract.setInputCloud (cloud_filtered);
    extract.setIndices (inliers);
    extract.setNegative (false);
    extract.filter (*cloud_p);

//    std::stringstream ss;
//    ss << "table_scene_lms400_plane_" << i << ".pcd";
//    writer.write<pcl::PointXYZ> (ss.str (), *cloud_p, false);

    // Create the filtering object
    extract.setNegative (true);
    extract.filter (*cloud_f);
    cloud_filtered.swap (cloud_f);
    //i++;
  }
  //pcl::PCLPointCloud2 pre_output;
  sensor_msgs::PointCloud2 output;
  pcl::toROSMsg(*cloud_p, output);
  //pcl_conversions::fromPCL(pre_output, output);
  pub.publish(output);
}
コード例 #13
0
ファイル: gest2.cpp プロジェクト: garamizo/gaitest
void 
cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
{
  // Container for original & filtered data
  pcl::PCLPointCloud2* cloud = new pcl::PCLPointCloud2; 
  pcl::PCLPointCloud2ConstPtr cloudPtr(cloud);
  // pcl::PCLPointCloud2 cloud_filtered;

  pcl::PCLPointCloud2::Ptr cloud_blob (new pcl::PCLPointCloud2);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>), cloud_p (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);

  // Convert to PCL data type
  pcl_conversions::toPCL(*input, *cloud_blob);

  // Perform the actual filtering
  pcl::PCLPointCloud2::Ptr cloud_filtered_blob (new pcl::PCLPointCloud2);
  pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
  sor.setInputCloud (cloud_blob);
  sor.setLeafSize (0.05, 0.05, 0.05);
  sor.setFilterFieldName("z");
  sor.setFilterLimits(0.01, 0.3);
  sor.filter (*cloud_filtered_blob);

  // // Remove outlier X
  // pcl::PCLPointCloud2::Ptr cloud_filtered_blobx (new pcl::PCLPointCloud2);
  // pcl::VoxelGrid<pcl::PCLPointCloud2> sorx;
  // sorx.setInputCloud(cloud_filtered_blobz);
  // sorx.setFilterFieldName("x");
  // sorx.setFilterLimits(-1, 1);
  // sorx.filter(*cloud_filtered_blobx);

  // // Remove outlier Y
  // pcl::PCLPointCloud2::Ptr cloud_filtered_blob (new pcl::PCLPointCloud2);
  // pcl::VoxelGrid<pcl::PCLPointCloud2> sory;
  // sory.setInputCloud(cloud_filtered_blobx);
  // sory.setFilterFieldName("y");
  // sory.setFilterLimits(-1, 1);
  // sory.filter(*cloud_filtered_blob);

  // Convert to the templated PointCloud
  pcl::fromPCLPointCloud2 (*cloud_filtered_blob, *cloud_filtered);

  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
  // Create the segmentation object
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  // Optional
  seg.setOptimizeCoefficients (true);
  // Mandatory
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  Eigen::Vector3f upVector(0, 0, 1);
  seg.setAxis(upVector);
  seg.setEpsAngle(1.5708);
  seg.setMaxIterations (1000);
  seg.setDistanceThreshold (0.05);
  seg.setInputCloud (cloud_filtered);
  seg.segment (*inliers, *coefficients);
  if (inliers->indices.size () == 0)
  {
    std::cerr << "Could not estimate a planar model for the given dataset." << std::endl;
    return;
  }

  // Create the filtering object
  pcl::ExtractIndices<pcl::PointXYZ> extract;
  // Extract the inliers
  extract.setInputCloud (cloud_filtered);
  extract.setIndices (inliers);
  extract.setNegative (false);
  extract.filter (*cloud_p);

  // Publish inliers
  // sensor_msgs::PointCloud2 inlierpc;
  // pcl_conversions::fromPCL(cloud_p, inlierpc);
  pub.publish (*cloud_p);

  // Publish the model coefficients
  pcl_msgs::ModelCoefficients ros_coefficients;
  pcl_conversions::fromPCL(*coefficients, ros_coefficients);
  pubCoef.publish (ros_coefficients);

    // ==========================================

  // // Convert to ROS data type
  // sensor_msgs::PointCloud2 downpc;
  // pcl_conversions::fromPCL(cloud_filtered, downpc);

  // // Publish the data
  // pub.publish (downpc);


  // pcl::ModelCoefficients coefficients;
  // pcl::PointIndices inliers;

  // //.makeShared()
  // // Create the segmentation object
  // pcl::SACSegmentation<pcl::PointXYZ> seg;
  // seg.setInputCloud (&cloudPtr);
  // seg.setOptimizeCoefficients (true); // Optional
  // seg.setModelType (pcl::SACMODEL_PLANE); // Mandatory
  // seg.setMethodType (pcl::SAC_RANSAC);
  // seg.setDistanceThreshold (0.1);

  // seg.segment (inliers, coefficients);

  // if (inliers.indices.size () == 0)
  // {
  //   PCL_ERROR ("Could not estimate a planar model for the given dataset.");
  //   return;
  // }

  // std::cerr << "Model coefficients: " << coefficients.values[0] << " " 
  //                                     << coefficients.values[1] << " "
  //                                     << coefficients.values[2] << " " 
  //                                     << coefficients.values[3] << std::endl;

  // // Publish the model coefficients
  // pcl_msgs::ModelCoefficients ros_coefficients;
  // pcl_conversions::fromPCL(coefficients, ros_coefficients);
  // pubCoef.publish (ros_coefficients);
}
void environement_identification(pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_filtered){
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_f (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_filtered_inliers (new pcl::PointCloud<pcl::PointXYZRGB> ());

    // Create the segmentation object for the planar model and set all the parameters
     pcl::SACSegmentation<pcl::PointXYZRGB> seg;
     pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
     pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
     pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZRGB> ());
     seg.setOptimizeCoefficients (true);
     seg.setModelType (pcl::SACMODEL_PLANE);
     seg.setMethodType (pcl::SAC_RANSAC);
     seg.setMaxIterations (100);
     seg.setDistanceThreshold (0.02);




     int i=0, nr_points = (int) cloud_filtered->points.size ();
       //while (cloud_filtered->points.size () > 0.3 * nr_points)
       //{
         // Segment the largest planar component from the remaining cloud
         seg.setInputCloud (cloud_filtered);
         seg.segment (*inliers, *coefficients);
         if (inliers->indices.size () == 0)
         {
           std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
           //break;
         }else{

         // Extract the planar inliers from the input cloud
         pcl::ExtractIndices<pcl::PointXYZRGB> extract;
         extract.setInputCloud (cloud_filtered);
         extract.setIndices (inliers);
         extract.setNegative (false);

         // Get the points associated with the planar surface
         extract.filter (*cloud_plane);
         //std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;

         // Remove the planar inliers, extract the rest
         extract.setNegative (true);
         extract.filter (*cloud_f);
         *cloud_filtered = *cloud_f;
         }
      // }


       // Create the filtering object
        pcl::StatisticalOutlierRemoval<pcl::PointXYZRGB> sor;
        sor.setInputCloud (cloud_filtered);
        sor.setMeanK (50);
        sor.setStddevMulThresh (1.0);
        sor.filter (*cloud_filtered_inliers);


   std::cout << "cloud filtred after plane extraction : "<<cloud_filtered_inliers->size()<< std::endl;


       // Creating the KdTree object for the search method of the extraction
        pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZRGB>);
        tree->setInputCloud (cloud_filtered_inliers);

        std::vector<pcl::PointIndices> cluster_indices;
        pcl::EuclideanClusterExtraction<pcl::PointXYZRGB> ec;
        ec.setClusterTolerance (0.09); // 2cm
        ec.setMinClusterSize (100);
        ec.setMaxClusterSize (25000);
        ec.setSearchMethod (tree);
        ec.setInputCloud (cloud_filtered_inliers);
        ec.extract (cluster_indices);

    std::cout << "cluster number : "<<cluster_indices.size()<< std::endl;
        int j = 0;

          for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
          {
            pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZRGB>);

            for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit){

                j=j%(sizeof(ColorB)/sizeof(*ColorB));
                cloud_filtered_inliers->points[*pit].rgb = *reinterpret_cast<float*>(new uint32_t(static_cast<uint32_t>(ColorR[j]) << 16 |
                                                                                          static_cast<uint32_t>(ColorG[j]) << 8  |
                                                                                          static_cast<uint32_t>(ColorB[j])        ));

                cloud_cluster->points.push_back (cloud_filtered_inliers->points[*pit]);
            }

                cloud_cluster->width = cloud_cluster->points.size ();
                cloud_cluster->height = 1;
                cloud_cluster->is_dense = true;

            std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;


            pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgb(cloud_cluster);
            (viewer)->addPointCloud<pcl::PointXYZRGB> (cloud_cluster, rgb, "cloud identification"+j);

            j++;
          }



}
コード例 #15
0
ファイル: extraction.cpp プロジェクト: iral-lab/jmlearning
void 
cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
{
    // sensor_msgs::PointCloud2 cloud_filtered;
    pcl::PointCloud<pcl::PointXYZ>::Ptr downsampled_XYZ  (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>::Ptr output_p  (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_f  (new pcl::PointCloud<pcl::PointXYZ>);
    sensor_msgs::PointCloud2::Ptr downsampled (new sensor_msgs::PointCloud2);
    // sensor_msgs::PointCloud2::Ptr output (new sensor_msgs::PointCloud2);

    
    // std::cerr << "PointCloud before filtering: " << cloud->width * cloud->height
    //         << " data points." << std::endl;

    // Create the filtering object: downsample the dataset using a leaf size of 1cm
    pcl::VoxelGrid<sensor_msgs::PointCloud2> sor;
    sor.setInputCloud (input);
    sor.setLeafSize (0.01f, 0.01f, 0.01f);
    sor.filter (*downsampled);

    // std::cerr << "PointCloud after filtering: " << cloud_filtered->width * cloud_filtered->height << " data points." << std::endl;

    // Change from type sensor_msgs::PointCloud2 to pcl::PointXYZ
    pcl::fromROSMsg (*downsampled, *downsampled_XYZ);

    //Create the SACSegmentation object and set the model and method type
    pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
    pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
    // Create the segmentation object
    pcl::SACSegmentation<pcl::PointXYZ> seg;
    // Optional
    seg.setOptimizeCoefficients (true);
    // Mandatory
    seg.setModelType (pcl::SACMODEL_PLANE);
    seg.setMethodType (pcl::SAC_RANSAC);//For more info: wikipedia.org/wiki/RANSAC
    seg.setMaxIterations (100);
    seg.setDistanceThreshold (0.02);//How close a point must be to the model to considered an inlier

    

    int i = 0, nr_points = (int) downsampled_XYZ->points.size ();

    //Contains the plane point cloud
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
    // While 30% of the original cloud is still there
    while (downsampled_XYZ->points.size () > 0.3 * nr_points)
    {
        // Segment the largest planar component from the remaining cloud
        seg.setInputCloud (downsampled_XYZ);
        seg.segment (*inliers, *coefficients);

        if (inliers->indices.size () == 0)
        {
            std::cerr << "Could not estimate a planar model for the given dataset." << std::endl;
            break;
        }

        // Extract the planar inliers from the input cloud
        pcl::ExtractIndices<pcl::PointXYZ> extract;
        extract.setInputCloud (downsampled_XYZ);
        extract.setIndices (inliers);
        extract.setNegative (false);

        // Get the points associated with the planar surface
        extract.filter (*cloud_plane);
        // std::cerr << "PointCloud representing the planar component: " 
        //         << output_p->width * output_p->height << " data points." << std::endl;

        // std::stringstream ss;
        // ss << "table_scene_lms400_plane_" << i << ".pcd";
        // writer.write<pcl::PointXYZ> (ss.str (), *cloud_p, false);

        // Remove the planar inliers, extract the rest
        extract.setNegative (true);
        extract.filter (*cloud_f);
        downsampled_XYZ.swap(cloud_f);
        i++;
    }

    // Creating the KdTree object for the search method of the extraction
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
    tree->setInputCloud (downsampled_XYZ);

    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    ec.setClusterTolerance (0.02); // 2cm
    ec.setMinClusterSize (100);
    ec.setMaxClusterSize (25000);
    ec.setSearchMethod (tree);
    ec.setInputCloud (downsampled_XYZ);
    ec.extract (cluster_indices);

    ros::NodeHandle nh;

    //Create a publisher for each cluster
    for (int i = 0; i < cluster_indices.size(); ++i)
    {
        std::string topicName = "/pcl_tut/cluster" + boost::lexical_cast<std::string>(i);
        

        ros::Publisher pub = nh.advertise<sensor_msgs::PointCloud2> (topicName, 1);

        pub_vec.push_back(pub);
    }

    int j = 0;
    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
    {
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
        for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
            cloud_cluster->points.push_back (downsampled_XYZ->points[*pit]); //*
        cloud_cluster->width = cloud_cluster->points.size ();
        cloud_cluster->height = 1;
        cloud_cluster->is_dense = true;

        // std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
        
        //Convert the pointcloud to be used in ROS
        sensor_msgs::PointCloud2::Ptr output (new sensor_msgs::PointCloud2);
        pcl::toROSMsg (*cloud_cluster, *output);
        output->header.frame_id = input->header.frame_id;

        // Publish the data
        pub_vec[j].publish (output);
        ++j;
    }
   
}
コード例 #16
0
ファイル: Segmentation.cpp プロジェクト: Erickmok/Examples
int main (int argc, char** argv)
{
  sensor_msgs::PointCloud2::Ptr cloud_blob (new sensor_msgs::PointCloud2), cloud_filtered_blob (new sensor_msgs::PointCloud2);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>), cloud_p (new pcl::PointCloud<pcl::PointXYZ>);

  // Fill in the cloud data
  pcl::PCDReader reader;
  reader.read ("table_scene_lms400.pcd", *cloud_blob);

  std::cerr << "PointCloud before filtering: " << cloud_blob->width * cloud_blob->height << " data points." << std::endl;

  // Create the filtering object: downsample the dataset using a leaf size of 1cm
  pcl::VoxelGrid<sensor_msgs::PointCloud2> sor;
  sor.setInputCloud (cloud_blob);
  sor.setLeafSize (0.01f, 0.01f, 0.01f);
  sor.filter (*cloud_filtered_blob);

  // Convert to the templated PointCloud
  pcl::fromROSMsg (*cloud_filtered_blob, *cloud_filtered);

  std::cerr << "PointCloud after filtering: " << cloud_filtered->width * cloud_filtered->height << " data points." << std::endl;

  // Write the downsampled version to disk
  pcl::PCDWriter writer;
  writer.write<pcl::PointXYZ> ("table_scene_lms400_downsampled.pcd", *cloud_filtered, false);

  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
  // Create the segmentation object
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  // Optional
  seg.setOptimizeCoefficients (true);
  // Mandatory
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setMaxIterations (1000);
  seg.setDistanceThreshold (0.01);

  // Create the filtering object
  pcl::ExtractIndices<pcl::PointXYZ> extract;

  int i = 0, nr_points = (int) cloud_filtered->points.size ();
  // While 30% of the original cloud is still there
  while (cloud_filtered->points.size () > 0.3 * nr_points)
  {
    // Segment the largest planar component from the remaining cloud
    seg.setInputCloud (cloud_filtered);
    seg.segment (*inliers, *coefficients);
    if (inliers->indices.size () == 0)
    {
      std::cerr << "Could not estimate a planar model for the given dataset." << std::endl;
      break;
    }

    // Extract the inliers
    extract.setInputCloud (cloud_filtered);
    extract.setIndices (inliers);
    extract.setNegative (false);
    extract.filter (*cloud_p);
    std::cerr << "PointCloud representing the planar component: " << cloud_p->width * cloud_p->height << " data points." << std::endl;

    std::stringstream ss;
    ss << "table_scene_lms400_plane_" << i << ".pcd";
    writer.write<pcl::PointXYZ> (ss.str (), *cloud_p, false);

    // Create the filtering object
    extract.setNegative (true);
    extract.filter (*cloud_filtered);

    i++;
  }

  return (0);
}
コード例 #17
0
ファイル: filter_planes.cpp プロジェクト: andybarry/pronto
void FilterPlanes::filterPlanes(vector<BasicPlane> &plane_stack){
  pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZRGB>), cloud_p (new pcl::PointCloud<pcl::PointXYZRGB>);
  
  if (verbose_text>0){
    cout << "PointCloud before filtering: " << cloud->width * cloud->height << " data points." << std::endl;
  }
  
  #if DO_TIMING_PROFILE
    vector<int64_t> tic_toc;
    tic_toc.push_back(bot_timestamp_now());
  #endif

/*  Ptcoll_cfg ptcoll_cfg;
  ptcoll_cfg.point_lists_id =pose_element_id; //bot_timestamp_now();
  ptcoll_cfg.collection = pose_coll_id;
  ptcoll_cfg.element_id = pose_element_id; */
  
  //1. Downsample the dataset using a leaf size of 1cm
  // this is 99% of the cpu time
  pcl::VoxelGrid<pcl::PointXYZRGB> sor;
  sor.setInputCloud (cloud);
  // for table dataset:  sor.setLeafSize (0.01, 0.01, 0.01);
  sor.setLeafSize (0.05, 0.05, 0.05);
//  sor.setLeafSize (0.1, 0.1, 0.1);
  sor.filter (*cloud_filtered);
  if (verbose_text>0){
    cout << "PointCloud after filtering: " << cloud_filtered->width * cloud_filtered->height << " data points." << std::endl;
  }
  
  #if DO_TIMING_PROFILE
  tic_toc.push_back(bot_timestamp_now());
  #endif
  
  if (verbose_lcm>2){
/*  ptcoll_cfg.id = 200;
  ptcoll_cfg.reset=true;
  ptcoll_cfg.name ="cloud_downsampled";
  ptcoll_cfg.npoints =	 cloud_filtered->points.size();
  float colorm_temp0[] ={-1.0,-1.0,-1.0,-1.0};
  ptcoll_cfg.rgba.assign(colorm_temp0,colorm_temp0+4*sizeof(float));  
  ptcoll_cfg.type =1;
  pcdXYZRGB_to_lcm(publish_lcm,ptcoll_cfg, *cloud_filtered);*/
  }
  
  // 2. Set up the Ransac Plane Fitting Object:
  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
  pcl::SACSegmentation<pcl::PointXYZRGB> seg;
  // Optional
  seg.setOptimizeCoefficients (true);
  // Mandatory
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setMaxIterations (100); // was 4000
  
  seg.setDistanceThreshold (distance_threshold_); // 0.01 for table data set
  // Create the filtering object
  pcl::ExtractIndices<pcl::PointXYZRGB> extract;
  
  #if DO_TIMING_PROFILE
  tic_toc.push_back(bot_timestamp_now());
  #endif
  
  int n_major = 0, nr_points = cloud_filtered->points.size ();
  //vector<BasicPlaneX> plane_stack;
  BasicPlane one_plane;
  // Extract the primary planes:
  // major planes are the coarse planes extracted via ransac. they might contain disconnected points
  // these are broken up into minor planes which are portions of major planes
  
  if(verbose_lcm > 2){
    for (int i=0;i<7;i++){
      char n_major_char[10];
      sprintf(n_major_char,"%d",i);
 /*     ptcoll_cfg.id =210+ i+3;
      ptcoll_cfg.reset=true;
      ptcoll_cfg.name =(char*) "cloud_p ";
      ptcoll_cfg.name.append(n_major_char);
      ptcoll_cfg.npoints = 0;
      float colorm_temp0[] ={-1.0,-1.0,-1.0,-1.0};
      ptcoll_cfg.rgba.assign(colorm_temp0,colorm_temp0+4*sizeof(float));  
      ptcoll_cfg.type=1;
      pcdXYZRGB_to_lcm(publish_lcm,ptcoll_cfg, *cloud_filtered);   
*/
    }
    
    for (int i=0;i<7;i++){
/*
      Ptcoll_cfg ptcoll_cfg2;
      // the i below accounts for super planes in the same utime
      ptcoll_cfg2.point_lists_id =pose_element_id; //bot_timestamp_now();
      ptcoll_cfg2.collection = pose_coll_id;
      ptcoll_cfg2.element_id = pose_element_id;    
      if (i==0){
        ptcoll_cfg2.reset=true;
      }else{
        ptcoll_cfg2.reset=false;
      }
      ptcoll_cfg2.id =500;
      ptcoll_cfg2.name.assign("Grown Stack Final");  
      ptcoll_cfg2.npoints = 0;
      ptcoll_cfg2.type =1;      
      pcdXYZRGB_to_lcm(publish_lcm,ptcoll_cfg2, *cloud_filtered);  
*/
    }       

    // TODO: this will rest this object. need to add publish of reset
    // at start of this block and set rese ttofal
    for (int i=0;i<7;i++){
/*
      Ptcoll_cfg ptcoll_cfg2;
      // the i below accounts for super planes in the same utime
      ptcoll_cfg2.point_lists_id =pose_element_id; //bot_timestamp_now();
      ptcoll_cfg2.collection = pose_coll_id;
      ptcoll_cfg2.element_id = pose_element_id;
      if (i==0){
        ptcoll_cfg2.reset=true;
      }else{
        ptcoll_cfg2.reset=false;
      }
      ptcoll_cfg2.id =501;
      ptcoll_cfg2.name.assign("Grown Stack Final Hull");  
      ptcoll_cfg2.npoints = 0;
      ptcoll_cfg2.type =3;
      pcdXYZRGB_to_lcm(publish_lcm,ptcoll_cfg2, *cloud_filtered);  
*/
    }       
  }

  #if DO_TIMING_PROFILE
  tic_toc.push_back(bot_timestamp_now());
  #endif
  
  while (cloud_filtered->points.size () > stop_proportion_ * nr_points) { 
    // While XX% of the original cloud is still there
    char n_major_char[10];
    sprintf(n_major_char,"%d",n_major);
    
    if (n_major >6) {
      if (verbose_text >0){
	std::cout << n_major << " is the max number of planes to find, quitting" << std::endl;
      }
      break; 
    }

    //a Segment the largest planar component from the remaining cloud
    seg.setInputCloud (cloud_filtered);
    seg.segment (*inliers, *coefficients);
    if (inliers->indices.size () == 0)
    {
      std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
      break;
    }
    
 
    if (inliers->indices.size () <  stop_cloud_size_) // stop when the plane is only a few points
    {
      //std::cerr << "No remaining planes in this set" << std::endl;
      break;
    }    
    
    //b Extract the inliers
    extract.setInputCloud (cloud_filtered);
    extract.setIndices (inliers);
    extract.setNegative (false);
    extract.filter (*cloud_p);
    if (verbose_text>0){
      std::cout << "PointCloud representing the planar component: " << cloud_p->width * cloud_p->height << " data points." << std::endl;
    }
    
    // Create the filtering object
    pcl::StatisticalOutlierRemoval<pcl::PointXYZRGB> sor;
    sor.setInputCloud (cloud_p);
    sor.setMeanK (30);
    sor.setStddevMulThresh (0.5); //was 1.0
    sor.filter (*cloud_p);

    if(verbose_lcm > 2){
/*
      ptcoll_cfg.id =210+ n_major+3;
      ptcoll_cfg.reset=true;
      ptcoll_cfg.name ="cloud_p ";
      ptcoll_cfg.name.append(n_major_char);
      ptcoll_cfg.npoints = cloud_p->points.size();
      float colorm_temp0[] ={-1.0,-1.0,-1.0,-1.0};
      ptcoll_cfg.rgba.assign(colorm_temp0,colorm_temp0+4*sizeof(float));  
      ptcoll_cfg.type=1;
      pcdXYZRGB_to_lcm(publish_lcm,ptcoll_cfg, *cloud_p); 
*/   
    }

    vector<BasicPlane> grown_stack;
    vector<BasicPlane> * grown_stack_ptr;
    grown_stack_ptr = &grown_stack;
    
    GrowCloud grow;
    grow.setInputCloud(cloud_p);
    grow.setMinCloudSize(stop_cloud_size_); // useing stop cloud size here too
    grow.setLCM(publish_lcm);
    grow.doGrowCloud(*grown_stack_ptr);
    
    if (verbose_text>0){
      cout << "grow_cloud new found " << grown_stack.size() << " seperate clouds\n";
    }
	
    // Spit raw clouds out to LCM:
    if(verbose_lcm > 2){
      for (int i=0;i<grown_stack.size();i++){
/*
	Ptcoll_cfg ptcoll_cfg2;
	ptcoll_cfg2.reset=false;
	// the i below accounts for super planes in the same utime
	ptcoll_cfg2.point_lists_id =10*n_major + i; //filterplanes->pose_element_id;
	ptcoll_cfg2.collection = pose_coll_id;
	ptcoll_cfg2.element_id = pose_element_id;    

	ptcoll_cfg2.id =500;
	ptcoll_cfg2.name.assign("Grown Stack Final");  
	ptcoll_cfg2.npoints = grown_stack[i].cloud.points.size ();
	ptcoll_cfg2.type =1;
	
	int id =  plane_stack.size() + i; //   10*n_major + i;
	float colorm_temp0[] ={colors[3*(id%num_colors)],colors[3*(id%num_colors)+1],colors[3*(id%num_colors)+2] ,0.0};
	ptcoll_cfg2.rgba.assign(colorm_temp0,colorm_temp0+4*sizeof(float));  
	pcdXYZRGB_to_lcm(publish_lcm,ptcoll_cfg2, grown_stack[i].cloud);  
*/
      }  
    }
    
    BasicPlane one_plane;
    int n_minor=0;
    BOOST_FOREACH( BasicPlane one_plane, grown_stack ){
      pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_projected (new pcl::PointCloud<pcl::PointXYZRGB>);
      pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_hull (new pcl::PointCloud<pcl::PointXYZRGB>);
      
      // c Project the model inliers (seems to be necessary to fitting convex hull
      pcl::ProjectInliers<pcl::PointXYZRGB> proj;
      proj.setModelType (pcl::SACMODEL_PLANE);
      pcl::PointCloud<pcl::PointXYZRGB>::Ptr temp (new pcl::PointCloud<pcl::PointXYZRGB> ());
      *temp = (one_plane.cloud);
      proj.setInputCloud (temp);
      proj.setModelCoefficients (coefficients);
      proj.filter (*cloud_projected);
      
      std::vector <pcl::Vertices> vertices;
      if (1==1){ // convex:
        pcl::ConvexHull<pcl::PointXYZRGB> chull;
        chull.setInputCloud (cloud_projected);
        chull.setDimension(2);
        chull.reconstruct (*cloud_hull,vertices);
      }else { // concave
        pcl::ConcaveHull<pcl::PointXYZRGB> chull;
        chull.setInputCloud (cloud_projected);
        chull.setKeepInformation(true);
        chull.setAlpha(0.5);  
        // for arch way:
        // 1.1 too few
        // 0.7 a little to few but much better
        chull.reconstruct (*cloud_hull,vertices);
      }
      
      //std::cout << "Hull has: " << cloud_hull->points.size () << " vertices." << std::endl;
      if (cloud_hull->points.size () ==0){
        cout <<"ERROR: CONVEX HULL HAS NO POINTS! - NEED TO RESOLVE THIS\n"; 
      }
      
      
      // d.2 Find the mean colour of the hull:
      int rgba[]={0,0,0,0};
      for(int i=0;i<temp->points.size();i++){
	int rgba_one = *reinterpret_cast<int*>(&temp->points[i].rgba);
	rgba[3] += ((rgba_one >> 24) & 0xff);
	rgba[2] += ((rgba_one >> 16) & 0xff);
	rgba[1] += ((rgba_one >> 8) & 0xff);
	rgba[0] += (rgba_one & 0xff);      
      }
      double scale = ((double) temp->points.size());
      rgba[3] =(int)  round(((double) rgba[3]) / scale);
      rgba[2] =(int)  round(((double) rgba[2]) / scale);
      rgba[1] =(int)  round(((double) rgba[1]) / scale);
      rgba[0] =(int)  round(((double) rgba[0]) / scale);
      
      // Write the plane to file for experimentation:
      //stringstream oss;
      //oss << ptcoll_cfg.element_id <<"_" << ptcoll_cfg.name << ".pcd";
      //writer.write (oss.str(), *this_hull, false);
      for(int i=0;i<cloud_hull->points.size();i++){
	unsigned char* rgba_ptr = (unsigned char*)&cloud_hull->points[i].rgba;
	(*rgba_ptr) =  rgba[0]  ;
	(*(rgba_ptr+1)) = rgba[1];
	(*(rgba_ptr+2)) = rgba[2];
	(*(rgba_ptr+3)) = rgba[3];	
	
      }
      
      (one_plane.coeffs) = *coefficients;
      one_plane.cloud = *cloud_hull;
      one_plane.utime = pose_element_id;
      one_plane.major = n_major;
      one_plane.minor = n_minor;
      one_plane.n_source_points = cloud_projected->points.size();
      
      
      plane_stack.push_back(one_plane);      
      n_minor++;
  
    //  int stop;
    //  cout << "int to cont: ";
    //  cin >> stop;      
    }
    
    
    // Create the filtering object
    extract.setNegative (true);
    extract.filter (*cloud_filtered);
    n_major++;
  }
コード例 #18
0
void ImageProcessing::segEuclideanClusters(const char *filename) {
    // Read in the cloud data
    pcl::PCDReader reader;
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>), cloud_f(new pcl::PointCloud<pcl::PointXYZ>);
    reader.read(filename, *cloud);
    std::cout << "PointCloud before filtering has: " << cloud->points.size() << " data points." << std::endl; //*

    // Create the filtering object: downsample the dataset using a leaf size of 1cm
    pcl::VoxelGrid<pcl::PointXYZ> vg;
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
    vg.setInputCloud(cloud);
    vg.setLeafSize(0.01f, 0.01f, 0.01f);
    vg.filter(*cloud_filtered);
    std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size() << " data points." << std::endl; //*

    // Create the segmentation object for the planar model and set all the parameters
    pcl::SACSegmentation<pcl::PointXYZ> seg;
    pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
    pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane(new pcl::PointCloud<pcl::PointXYZ> ());
    pcl::PCDWriter writer;
    seg.setOptimizeCoefficients(true);
    seg.setModelType(pcl::SACMODEL_PLANE);
    seg.setMethodType(pcl::SAC_RANSAC);
    seg.setMaxIterations(100);
    seg.setDistanceThreshold(0.02);

    int i = 0, nr_points = (int) cloud_filtered->points.size();
    while (cloud_filtered->points.size() > 0.3 * nr_points) {
        // Segment the largest planar component from the remaining cloud
        seg.setInputCloud(cloud_filtered);
        seg.segment(*inliers, *coefficients);
        if (inliers->indices.size() == 0) {
            std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
            break;
        }

        // Extract the planar inliers from the input cloud
        pcl::ExtractIndices<pcl::PointXYZ> extract;
        extract.setInputCloud(cloud_filtered);
        extract.setIndices(inliers);
        extract.setNegative(false);

        // Get the points associated with the planar surface
        extract.filter(*cloud_plane);
        std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size() << " data points." << std::endl;

        // Remove the planar inliers, extract the rest
        extract.setNegative(true);
        extract.filter(*cloud_f);
        *cloud_filtered = *cloud_f;
    }

    // Creating the KdTree object for the search method of the extraction
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
    tree->setInputCloud(cloud_filtered);

    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    ec.setClusterTolerance(0.02); // 2cm
    ec.setMinClusterSize(100);
    ec.setMaxClusterSize(25000);
    ec.setSearchMethod(tree);
    ec.setInputCloud(cloud_filtered);
    ec.extract(cluster_indices);

    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr all_clusters(new pcl::PointCloud<pcl::PointXYZRGB>);
    pcl::PointXYZRGB aPoint;
    int j = 0;
    Color myColor;
    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
        myColor = Color::random(); //one color for each cluster.
        //adding all points of one cluster
        for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); pit++) {
            cloud_cluster->points.push_back(cloud_filtered->points[*pit]); //*
            aPoint.x = cloud_cluster->points.back().x;
            aPoint.y = cloud_cluster->points.back().y;
            aPoint.z = cloud_cluster->points.back().z;
            aPoint.r = myColor.red;
            aPoint.g = myColor.green;
            aPoint.b = myColor.blue;
            all_clusters->points.push_back(aPoint);

        }
        cloud_cluster->width = cloud_cluster->points.size();
        cloud_cluster->height = 1;
        cloud_cluster->is_dense = true;

        std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size() << " data points." << std::endl;
        std::stringstream ss;
        ss << "cloud_cluster_" << j << ".pcd";

        j++;
    }

    //writer.write<pcl::PointXYZRGB> ("clustered_cloud.pcd", *cloud_cluster, false); //*

    pcl::visualization::CloudViewer viewer("Cluster viewer");
    viewer.showCloud(all_clusters);
    while (!viewer.wasStopped()) {
    }
}
コード例 #19
0
  bool SnapIt::processModelCylinder(jsk_pcl_ros::CallSnapIt::Request& req,
                                    jsk_pcl_ros::CallSnapIt::Response& res) {
    pcl::PointCloud<pcl::PointXYZ>::Ptr candidate_points (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
    Eigen::Vector3f n, C_orig;
    if (!extractPointsInsideCylinder(req.request.center,
                                     req.request.direction,
                                     req.request.radius,
                                     req.request.height,
                                     inliers, n, C_orig,
                                     1.3)) {
      return false;
    }
    if (inliers->indices.size() < 3) {
      NODELET_ERROR("not enough points inside of the target_plane");
      return false;
    }
    
    geometry_msgs::PointStamped centroid;
    centroid.point.x = C_orig[0];
    centroid.point.y = C_orig[1];
    centroid.point.z = C_orig[2];
    centroid.header = req.request.header;
    
    
    pcl::ExtractIndices<pcl::PointXYZ> extract;
    extract.setInputCloud(input_);
    extract.setIndices(inliers);
    extract.filter(*candidate_points);
    
    publishPointCloud(debug_candidate_points_pub_, candidate_points);


    // first, to remove plane we estimate the plane
    pcl::ModelCoefficients::Ptr plane_coefficients (new pcl::ModelCoefficients);
    pcl::PointIndices::Ptr plane_inliers (new pcl::PointIndices);
    extractPlanePoints(candidate_points, plane_inliers, plane_coefficients,
                       n, req.request.eps_angle);
    if (plane_inliers->indices.size() == 0) {
      NODELET_ERROR ("plane estimation failed");
      return false;
    }

    // remove the points blonging to the plane
    pcl::PointCloud<pcl::PointXYZ>::Ptr points_inside_pole_wo_plane (new pcl::PointCloud<pcl::PointXYZ>);
    extract.setInputCloud (candidate_points);
    extract.setIndices (plane_inliers);
    extract.setNegative (true);
    extract.filter (*points_inside_pole_wo_plane);

    publishPointCloud(debug_candidate_points_pub2_, points_inside_pole_wo_plane);
    
    // normal estimation
    pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
    pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
    ne.setSearchMethod (tree);
    ne.setInputCloud (points_inside_pole_wo_plane);
    ne.setKSearch (50);
    ne.compute (*cloud_normals);
    
    
    // segmentation
    pcl::ModelCoefficients::Ptr cylinder_coefficients (new pcl::ModelCoefficients);
    pcl::PointIndices::Ptr cylinder_inliers (new pcl::PointIndices);
    // Create the segmentation object
    pcl::SACSegmentationFromNormals<pcl::PointXYZ, pcl::Normal> seg;
    // Optional
    seg.setOptimizeCoefficients (true);
    // Mandatory
    seg.setModelType (pcl::SACMODEL_CYLINDER);
    seg.setMethodType (pcl::SAC_RANSAC);
    seg.setRadiusLimits (0.01, req.request.radius * 1.2);
    seg.setDistanceThreshold (0.05);
    
    seg.setInputCloud(points_inside_pole_wo_plane);
    seg.setInputNormals (cloud_normals);
    seg.setMaxIterations (10000);
    seg.setNormalDistanceWeight (0.1);
    seg.setAxis(n);
    if (req.request.eps_angle != 0.0) {
      seg.setEpsAngle(req.request.eps_angle);
    }
    else {
      seg.setEpsAngle(0.35);
    }
    seg.segment (*cylinder_inliers, *cylinder_coefficients);
    if (cylinder_inliers->indices.size () == 0)
    {
      NODELET_ERROR ("Could not estimate a cylinder model for the given dataset.");
      return false;
    }

    debug_centroid_pub_.publish(centroid);
    
    pcl::PointCloud<pcl::PointXYZ>::Ptr cylinder_points (new pcl::PointCloud<pcl::PointXYZ>);
    extract.setInputCloud (points_inside_pole_wo_plane);
    extract.setIndices (cylinder_inliers);
    extract.setNegative (false);
    extract.filter (*cylinder_points);

    publishPointCloud(debug_candidate_points_pub3_, cylinder_points);

    Eigen::Vector3f n_prime;
    Eigen::Vector3f C_new;
    for (size_t i = 0; i < 3; i++) {
      C_new[i] = cylinder_coefficients->values[i];
      n_prime[i] = cylinder_coefficients->values[i + 3];
    }

    double radius = fabs(cylinder_coefficients->values[6]);
    // inorder to compute centroid, we project all the points to the center line.
    // and after that, get the minimum and maximum points in the coordinate system of the center line
    double min_alpha = DBL_MAX;
    double max_alpha = -DBL_MAX;
    for (size_t i = 0; i < cylinder_points->points.size(); i++ ) {
      pcl::PointXYZ q = cylinder_points->points[i];
      double alpha = (q.getVector3fMap() - C_new).dot(n_prime);
      if (alpha < min_alpha) {
        min_alpha = alpha;
      }
      if (alpha > max_alpha) {
        max_alpha = alpha;
      }
    }
    // the center of cylinder
    Eigen::Vector3f C_new_prime = C_new + (max_alpha + min_alpha) / 2.0 * n_prime;
    
    Eigen::Vector3f n_cross = n.cross(n_prime);
    if (n.dot(n_prime)) {
      n_cross = - n_cross;
    }
    double theta = asin(n_cross.norm());
    Eigen::Quaternionf trans (Eigen::AngleAxisf(theta, n_cross.normalized()));
    Eigen::Vector3f C = trans * C_orig;
    Eigen::Affine3f A = Eigen::Translation3f(C) * Eigen::Translation3f(C_new_prime - C) * trans * Eigen::Translation3f(C_orig).inverse();
    tf::poseEigenToMsg((Eigen::Affine3d)A, res.transformation);

    geometry_msgs::PointStamped centroid_transformed;
    centroid_transformed.point.x = C_new_prime[0];
    centroid_transformed.point.y = C_new_prime[1];
    centroid_transformed.point.z = C_new_prime[2];
    centroid_transformed.header = req.request.header;
    debug_centroid_after_trans_pub_.publish(centroid_transformed);

    // publish marker
    visualization_msgs::Marker marker;
    marker.type = visualization_msgs::Marker::CYLINDER;
    marker.scale.x = radius;
    marker.scale.y = radius;
    marker.scale.z = (max_alpha - min_alpha);
    marker.pose.position.x = C_new_prime[0];
    marker.pose.position.y = C_new_prime[1];
    marker.pose.position.z = C_new_prime[2];

    // n_prime -> z
    // n_cross.normalized() -> x
    Eigen::Vector3f z_axis = n_prime.normalized();
    Eigen::Vector3f y_axis = n_cross.normalized();
    Eigen::Vector3f x_axis = (y_axis.cross(z_axis)).normalized();
    Eigen::Matrix3f M;
    for (size_t i = 0; i < 3; i++) {
      M(i, 0) = x_axis[i];
      M(i, 1) = y_axis[i];
      M(i, 2) = z_axis[i];
    }
    
    Eigen::Quaternionf q (M);
    marker.pose.orientation.x = q.x();
    marker.pose.orientation.y = q.y();
    marker.pose.orientation.z = q.z();
    marker.pose.orientation.w = q.w();
    marker.color.g = 1.0;
    marker.color.a = 1.0;
    marker.header = input_header_;
    marker_pub_.publish(marker);
    
    return true;
  }
コード例 #20
0
	void PointCloudProcessor::_doEuclideanClusterExtraction(const QList<pcl::PointCloud<PointType>::Ptr> & clouds)
	{
		QList<pcl::PointCloud<PointType>::Ptr> clusteredClouds;
		foreach (pcl::PointCloud<PointType>::Ptr cloud, clouds)
		{
			// Create the filtering object: downsample the dataset using a leaf size of 10cm
			pcl::PointCloud<PointType>::Ptr cloudFiltered (new pcl::PointCloud<PointType> ());
			pcl::VoxelGrid<PointType> vg;
			vg.setInputCloud (cloud);
			vg.setLeafSize (0.1f, 0.1f, 0.1f);
			vg.filter (*cloudFiltered);
			int nr_points = static_cast<int>(cloudFiltered->points.size());
			addStatus(QStringLiteral("PointCloud after filtering has: ") + QString::number(nr_points) + QStringLiteral(" data points."));

			// Create the segmentation object for the planar model and set all the parameters
			pcl::SACSegmentation<PointType> seg;
			pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
			pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
			pcl::PointCloud<PointType>::Ptr cloud_plane (new pcl::PointCloud<PointType> ());
			seg.setOptimizeCoefficients (true);
			seg.setModelType (pcl::SACMODEL_PLANE);
			seg.setMethodType (pcl::SAC_RANSAC);
			seg.setMaxIterations (100);
			seg.setDistanceThreshold (0.02);

			pcl::PointCloud<PointType>::Ptr cloud_f (new pcl::PointCloud<PointType>);
			while (cloudFiltered->points.size () > 0.3 * nr_points)
			{
				// Segment the largest planar component from the remaining cloud
				seg.setInputCloud (cloudFiltered);
				seg.segment (*inliers, *coefficients);
				if (inliers->indices.size () == 0)
				{
					addStatus(QStringLiteral("Could not estimate a planar model for the given dataset."));
					break;
				}

				// Extract the planar inliers from the input cloud
				pcl::ExtractIndices<PointType> extract;
				extract.setInputCloud (cloudFiltered);
				extract.setIndices (inliers);
				extract.setNegative (false);

				// Get the points associated with the planar surface
				extract.filter (*cloud_plane);
				addStatus(QStringLiteral("PointCloud representing the planar component: ") + QString::number(cloud_plane->points.size()) + QStringLiteral(" data points."));

				// Remove the planar inliers, extract the rest
				extract.setNegative (true);
				extract.filter (*cloud_f);
				*cloudFiltered = *cloud_f;
			}

			// Creating the KdTree object for the search method of the extraction
			pcl::search::KdTree<PointType>::Ptr tree (new pcl::search::KdTree<PointType>);
			tree->setInputCloud (cloudFiltered);

			std::vector<pcl::PointIndices> cluster_indices;
			pcl::EuclideanClusterExtraction<PointType> ec;
			ec.setClusterTolerance (0.2); // 20cm
			ec.setMinClusterSize (100);
			ec.setMaxClusterSize (250000);
			ec.setSearchMethod (tree);
			ec.setInputCloud (cloudFiltered);
			ec.extract (cluster_indices);

			for (auto it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
			{
				pcl::PointCloud<PointType>::Ptr cloud_cluster (new pcl::PointCloud<PointType>);
				for (auto pit = it->indices.begin (); pit != it->indices.end (); pit++)
				{
					cloud_cluster->points.push_back (cloudFiltered->points[*pit]); //*
				}
				cloud_cluster->width = cloud_cluster->points.size ();
				cloud_cluster->height = 1;
				cloud_cluster->is_dense = true;

				clusteredClouds.push_back(cloud_cluster);
			}
		}
コード例 #21
0
void UAV_Segmentation::cloudCallback (const sensor_msgs::PointCloud2::ConstPtr& cloud_in)
{
  ROS_INFO("Processing!");
  /************************ CENTER AND LEFT BOXES ***************************************/
  //Creating point cloud and convert ROS Message
  pcl::PointCloud<pcl::PointXYZ>::Ptr pcl_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
  pcl::PointCloud<pcl::PointXYZ>::Ptr seg_cloud (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::fromROSMsg(*cloud_in, *pcl_cloud);
  //Create and define filter parameters

  pcl::PassThrough<pcl::PointXYZ> pass3;
  pass3.setFilterFieldName("x");
  pass3.setFilterLimits(-2, 2); //-0.5 0.5
  pass3.setInputCloud(pcl_cloud);
  pass3.filter(*pcl_cloud);

  pcl::PassThrough<pcl::PointXYZ> pass;
  pass.setFilterFieldName("y");
  pass.setFilterLimits(-2, 2); //-0.5 0.5
  pass.setInputCloud(pcl_cloud);
  pass.filter(*pcl_cloud);

  pcl::PassThrough<pcl::PointXYZ> pass2;
  pass2.setFilterFieldName("z");
  pass2.setFilterLimits(0, 3.0); //-0.5 0.5
  pass2.setInputCloud(pcl_cloud);
  pass2.filter(*pcl_cloud);

  //Model fitting process ->RANSAC
  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  seg.setOptimizeCoefficients (true);
  seg.setModelType (pcl::SACMODEL_PARALLEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setDistanceThreshold (0.03); //0.03
  seg.setAxis (Eigen::Vector3f(1, 0, 0));
  seg.setEpsAngle (0.1); //0.02
  seg.setInputCloud (pcl_cloud);
  seg.segment (*inliers, *coefficients);
  //Verify if inliers is not empty
  if (inliers->indices.size () == 0)
    return;
  pcl::PointCloud<pcl::PointXYZ>::Ptr treated_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
  for (std::vector<int>::const_iterator it = inliers->indices.begin(); it != inliers->indices.end (); ++it)
    treated_cloud->push_back(pcl_cloud->points[*it]);

  pcl::ExtractIndices<pcl::PointXYZ> extract;
	extract.setInputCloud(pcl_cloud);
	extract.setIndices(inliers);
	extract.setNegative(true);
	extract.filter(*seg_cloud);

  //Apply clustering algorithm
  pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree (new pcl::search::KdTree<pcl::PointXYZ>);
  kdtree->setInputCloud (seg_cloud);
  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance (0.5);
  ec.setMinClusterSize (2);
  ec.setMaxClusterSize (150);
  ec.setSearchMethod (kdtree);
  ec.setInputCloud (seg_cloud);
  ec.extract (cluster_indices);
  pcl::PointCloud<pcl::PointXYZI>::Ptr cluster_cloud (new pcl::PointCloud<pcl::PointXYZI> ());
  pcl::PointXYZI cluster_point;
  double cluster_final_average;
  int cluster_id=0;
  float x1 = 0.0, y1 = 0.0, z1 = 0.0;
  float x2 = 0.0, y2 = 0.0, z2 = 0.0;
  float x3 = 0.0, y3 = 0.0, z3 = 0.0;
  int total1 = 0, total2 = 0, total3 = 0;
  bool hasUAV1, hasCup2, hasCup3;

  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end ();
  ++it, cluster_id+=1)
  {
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
    {
      cluster_point.x = seg_cloud->points[*pit].x;
      cluster_point.y = seg_cloud->points[*pit].y;
      cluster_point.z = seg_cloud->points[*pit].z;
      cluster_point.intensity = cluster_id;
      cluster_cloud->push_back(cluster_point);

      if(cluster_id == 0){
        x1 += seg_cloud->points[*pit].x;
        y1 += seg_cloud->points[*pit].y;
        z1 += seg_cloud->points[*pit].z;
        total1++;
      }
    }
  }
  if(total1 != 0 ){
    x1 = x1/total1;
    y1 = y1/total1;
    z1 = z1/total1;
    hasUAV1=true;
  }else{
    hasUAV1 = false;
  }


  //Publish message
  sensor_msgs::PointCloud2 cloud;
  pcl::toROSMsg(*cluster_cloud, cloud);
  cloud.header.stamp = ros::Time::now();
  cloud.header.frame_id = cloud_in->header.frame_id;
  treated_cloud_pub_.publish(cloud);


  //Geometry
  geometry_msgs::PointStamped UAVPoint1;


  tf::Quaternion q;

  geometry_msgs::PointStamped UAVSensorPoint1;

  static tf::TransformBroadcaster tfBc1;

  tf::Transform tfCup1;

  UAVPoint1.header.frame_id = "base_footprint";

  UAVPoint1.header.stamp = cloud_in->header.stamp;


  UAVPoint1.point.x = x1;


  UAVPoint1.point.y = y1;


  UAVPoint1.point.z = z1;


  ROS_INFO("Cup 1: X=%f Y=%f Z=%f", UAVPoint1.point.x, UAVPoint1.point.y, UAVPoint1.point.z);
  trabfinal::gpsXY uavPos;
  uavPos.x=UAVPoint1.point.x;
  uavPos.y=UAVPoint1.point.y;
  uavPos.z=UAVPoint1.point.z;

  uav_control.publish(uavPos);


  tf_listener.transformPoint("base_footprint", UAVPoint1, UAVSensorPoint1);


  tfCup1.setOrigin( tf::Vector3(UAVSensorPoint1.point.x, UAVSensorPoint1.point.y, UAVSensorPoint1.point.z) );

  ROS_INFO("Sensor Frame UAV 1: X=%f Y=%f Z=%f", UAVSensorPoint1.point.x, UAVSensorPoint1.point.y, UAVSensorPoint1.point.z);

  q.setRPY(0, 0, 0);

  tfCup1.setRotation(q);


  tfBc1.sendTransform(tf::StampedTransform(tfCup1, cloud_in->header.stamp, "base_footprint", "uav1"));

  ROS_INFO("All Sent!");

}
コード例 #22
0
  void TorusFinder::segment(
    const sensor_msgs::PointCloud2::ConstPtr& cloud_msg)
  {
    if (!done_initialization_) {
      return;
    }
    boost::mutex::scoped_lock lock(mutex_);
    vital_checker_->poke();
    pcl::PointCloud<pcl::PointNormal>::Ptr cloud
      (new pcl::PointCloud<pcl::PointNormal>);
    pcl::fromROSMsg(*cloud_msg, *cloud);
    jsk_recognition_utils::ScopedWallDurationReporter r
      = timer_.reporter(pub_latest_time_, pub_average_time_);
    if (voxel_grid_sampling_) {
      pcl::PointCloud<pcl::PointNormal>::Ptr downsampled_cloud
      (new pcl::PointCloud<pcl::PointNormal>);
      pcl::VoxelGrid<pcl::PointNormal> sor;
      sor.setInputCloud (cloud);
      sor.setLeafSize (voxel_size_, voxel_size_, voxel_size_);
      sor.filter (*downsampled_cloud);
      cloud = downsampled_cloud;
    }
    
    pcl::SACSegmentation<pcl::PointNormal> seg;
    if (use_normal_) {
      pcl::SACSegmentationFromNormals<pcl::PointNormal, pcl::PointNormal> seg_normal;
      seg_normal.setInputNormals(cloud);
      seg = seg_normal;
    }

    
    seg.setOptimizeCoefficients (true);
    seg.setInputCloud(cloud);
    seg.setRadiusLimits(min_radius_, max_radius_);
    if (algorithm_ == "RANSAC") {
      seg.setMethodType(pcl::SAC_RANSAC);
    }
    else if (algorithm_ == "LMEDS") {
      seg.setMethodType(pcl::SAC_LMEDS);
    }
    else if (algorithm_ == "MSAC") {
      seg.setMethodType(pcl::SAC_MSAC);
    }
    else if (algorithm_ == "RRANSAC") {
      seg.setMethodType(pcl::SAC_RRANSAC);
    }
    else if (algorithm_ == "RMSAC") {
      seg.setMethodType(pcl::SAC_RMSAC);
    }
    else if (algorithm_ == "MLESAC") {
      seg.setMethodType(pcl::SAC_MLESAC);
    }
    else if (algorithm_ == "PROSAC") {
      seg.setMethodType(pcl::SAC_PROSAC);
    }
    
    seg.setDistanceThreshold (outlier_threshold_);
    seg.setMaxIterations (max_iterations_);
    seg.setModelType(pcl::SACMODEL_CIRCLE3D);
    if (use_hint_) {
      seg.setAxis(hint_axis_);
      seg.setEpsAngle(eps_hint_angle_);
    }
    pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
    pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
    seg.segment(*inliers, *coefficients);
    JSK_NODELET_INFO("input points: %lu", cloud->points.size());
    if (inliers->indices.size() > min_size_) {
      // check direction. Torus should direct to origin of pointcloud
      // always.
      Eigen::Vector3f dir(coefficients->values[4],
                          coefficients->values[5],
                          coefficients->values[6]);
      if (dir.dot(Eigen::Vector3f::UnitZ()) < 0) {
        dir = - dir;
      }
      
      Eigen::Affine3f pose = Eigen::Affine3f::Identity();
      Eigen::Vector3f pos = Eigen::Vector3f(coefficients->values[0],
                                            coefficients->values[1],
                                            coefficients->values[2]);
      Eigen::Quaternionf rot;
      rot.setFromTwoVectors(Eigen::Vector3f::UnitZ(), dir);
      pose = pose * Eigen::Translation3f(pos) * Eigen::AngleAxisf(rot);
      PCLIndicesMsg ros_inliers;
      ros_inliers.indices = inliers->indices;
      ros_inliers.header = cloud_msg->header;
      pub_inliers_.publish(ros_inliers);
      PCLModelCoefficientMsg ros_coefficients;
      ros_coefficients.values = coefficients->values;
      ros_coefficients.header = cloud_msg->header;
      pub_coefficients_.publish(ros_coefficients);
      jsk_recognition_msgs::Torus torus_msg;
      torus_msg.header = cloud_msg->header;
      tf::poseEigenToMsg(pose, torus_msg.pose);
      torus_msg.small_radius = 0.01;
      torus_msg.large_radius = coefficients->values[3];
      pub_torus_.publish(torus_msg);
      jsk_recognition_msgs::TorusArray torus_array_msg;
      torus_array_msg.header = cloud_msg->header;
      torus_array_msg.toruses.push_back(torus_msg);
      pub_torus_array_.publish(torus_array_msg);
      // publish pose stamped
      geometry_msgs::PoseStamped pose_stamped;
      pose_stamped.header = torus_msg.header;
      pose_stamped.pose = torus_msg.pose;
      pub_pose_stamped_.publish(pose_stamped);
      pub_torus_array_with_failure_.publish(torus_array_msg);
      pub_torus_with_failure_.publish(torus_msg);
    }
    else {
      jsk_recognition_msgs::Torus torus_msg;
      torus_msg.header = cloud_msg->header;
      torus_msg.failure = true;
      pub_torus_with_failure_.publish(torus_msg);
      jsk_recognition_msgs::TorusArray torus_array_msg;
      torus_array_msg.header = cloud_msg->header;
      torus_array_msg.toruses.push_back(torus_msg);
      pub_torus_array_with_failure_.publish(torus_array_msg);
      JSK_NODELET_INFO("failed to find torus");
    }
  }
コード例 #23
0
ファイル: ClusterExtraction.cpp プロジェクト: Sapphire1/PCL
void ClusterExtraction::extract() {
  /*
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud = in_pcl.read();
  // Creating the KdTree object for the search method of the extraction
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud (cloud);
  
  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance (clusterTolerance); // 2cm
  ec.setMinClusterSize (minClusterSize);
  ec.setMaxClusterSize (maxClusterSize);
  ec.setSearchMethod (tree);
  ec.setInputCloud (cloud);
  ec.extract (cluster_indices);
  

  std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> clusters;
  
  int j = 0;
  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
  {
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
      cloud_cluster->points.push_back (cloud->points[*pit]); //*
      cloud_cluster->width = cloud_cluster->points.size ();
      cloud_cluster->height = 1;
      cloud_cluster->is_dense = true;

	clusters.push_back(cloud_cluster);
    std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
    std::stringstream ss;
//     if(j==0)
//     {
//       ss << "cloud_cluster_0" << ".pcd";
//       writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false);
//       j++;
//     }
   // if(j==0)	
    //{
	std::cin.ignore();
	out_the_biggest_cluster.write(cloud_cluster);
	j++;
	std::cout<<"Zapis!!!\n";
   // }
    
  }	
	out_indices.write(cluster_indices);
	out_clusters.write(clusters);
	//std::cout<<"j=="<<j<<endl;
	//std::cout<<clusters.size()<<endl;
*/

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_f (new pcl::PointCloud<pcl::PointXYZ>);

// Read in the cloud data
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud = in_pcl.read();
  std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //*

  // Create the filtering object: downsample the dataset using a leaf size of 1cm
  pcl::VoxelGrid<pcl::PointXYZ> vg;
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
  vg.setInputCloud (cloud);
  vg.setLeafSize (0.01f, 0.01f, 0.01f);
  vg.filter (*cloud_filtered);
  std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size ()  << " data points." << std::endl; //*

  // Create the segmentation object for the planar model and set all the parameters
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
  //pcl::PCDWriter writer;
  seg.setOptimizeCoefficients (true);
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setMaxIterations (100);
  seg.setDistanceThreshold (0.02);

  int i=0, nr_points = (int) cloud_filtered->points.size ();
  /*
  while (cloud_filtered->points.size () > 0.3 * nr_points)
  {
    // Segment the largest planar component from the remaining cloud
    seg.setInputCloud (cloud_filtered);
    seg.segment (*inliers, *coefficients);
    if (inliers->indices.size () == 0)
    {
      std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
      break;
    }

    // Extract the planar inliers from the input cloud
    pcl::ExtractIndices<pcl::PointXYZ> extract;
    extract.setInputCloud (cloud_filtered);
    extract.setIndices (inliers);
    extract.setNegative (false);

    // Get the points associated with the planar surface
    extract.filter (*cloud_plane);
    std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;

    // Remove the planar inliers, extract the rest
    extract.setNegative (true);
    extract.filter (*cloud_f);
    *cloud_filtered = *cloud_f;
  }
  */

  // Creating the KdTree object for the search method of the extraction
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud (cloud_filtered);

  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance (0.02); // 2cm
  ec.setMinClusterSize (100);
  ec.setMaxClusterSize (25000);
  ec.setSearchMethod (tree);
  ec.setInputCloud (cloud_filtered);
  ec.extract (cluster_indices);

  int j = 0;
  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
  {
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
      cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*
    cloud_cluster->width = cloud_cluster->points.size ();
    cloud_cluster->height = 1;
    cloud_cluster->is_dense = true;

    std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
    //std::stringstream ss;
    //ss << "cloud_cluster_" << j << ".pcd";
    //writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); //*
    //std::cin.ignore();
    // check if cluster contain interesting us plane, if so, return cluster, next remove plane and we have object :)
    //if (include_plane){
	out_the_biggest_cluster.write(cloud_cluster);
	break;
    //}
    j++;
  }


	
}
コード例 #24
0
  void FloorAxisAlignment::alignCloudPrincipleAxis (const PointCloudConstPtr input_cloud_ptr,
      const PointCloudPtr output_cloud_ptr,
      Eigen::Matrix4f& transform_output)
  {
//        Visualization visualizer;
    Eigen::Matrix4f inital_guess;
    inital_guess.block<3,3>(0,0) = Eigen::AngleAxisf(angle_, axis_).toRotationMatrix();
//    inital_guess = Eigen::Matrix4f::Zero(4,4);
//    inital_guess(0,0) = 1.0;
//    inital_guess(1,2) = 1.0;
//    inital_guess(2,1) = -1.0;
//    inital_guess(3,3) = 1.0;
    PointCloudPtr rotated_cloud_ptr (new PointCloud);
    transformPointCloud (*input_cloud_ptr, *rotated_cloud_ptr, inital_guess);
//    std::vector<PointCloudConstPtr> vis_cloud_ptrs;
//    vis_cloud_ptrs.push_back(rotated_cloud_ptr);
    //transformPointCloud (*input_cloud_ptr, *output_cloud_ptr, inital_guess);

    //assume the model is approx correct, i.e. z is height
    // find the largest plane perpendicular to z axis and use this to align cloud
    pcl17::ModelCoefficients::Ptr coefficients (new pcl17::ModelCoefficients);
    pcl17::PointIndices::Ptr inliers (new pcl17::PointIndices);
    pcl17::SACSegmentation<PointType> seg;
    seg.setOptimizeCoefficients (true);
    seg.setModelType (pcl17::SACMODEL_PERPENDICULAR_PLANE);
    seg.setMethodType (pcl17::SAC_RANSAC);
    seg.setDistanceThreshold (ransac_threshold_);
    seg.setMaxIterations(max_iterations_);
    //seg.setProbability(0.1);

    seg.setAxis (Eigen::Vector3f (0, 0, 1));
    seg.setEpsAngle (30.0 * (M_PI / 180));//radians
    seg.setInputCloud (rotated_cloud_ptr);
    seg.segment (*inliers, *coefficients);

    if (inliers->indices.size () == 0)
    {
      PCL17_ERROR("Could not estimate a planar model for the given dataset.");
      // I had some issues with pcl on a different computer to where I normally dev.  This is a workaround to be removed
      coefficients->values.push_back(-0.0370391);
      coefficients->values.push_back(0.0777064);
      coefficients->values.push_back(0.996288);
      coefficients->values.push_back(2.63374);
    }


    std::cerr << "Model coefficients: " << coefficients->values[0] << " " << coefficients->values[1]
    << " " << coefficients->values[2] << " " << coefficients->values[3] << std::endl;

    // calculate angle and axis from dot product
    double rotate = acos (coefficients->values[2]);
    Eigen::Vector3f axis_to_rotate_about (-coefficients->values[1], coefficients->values[0], 0.0);
    axis_to_rotate_about.normalize ();

    //convert axis and angle to rotation matrix and apply to pointcloud
    Eigen::AngleAxis<float> angle_axis (rotate, axis_to_rotate_about);
    transform_output = Eigen::Matrix4f::Identity (4, 4);
    transform_output.block<3, 3> (0, 0) = angle_axis.toRotationMatrix ().inverse ();

    // apply translation to bring the floor to z = 0
    transform_output(2, 3) = coefficients->values[3];
    transformPointCloud (*rotated_cloud_ptr, *output_cloud_ptr, transform_output);

//  pcl17::ExtractIndices<PointType> eifilter;
//   eifilter.setInputCloud (rotated_cloud_ptr);
//   eifilter.setIndices (inliers);
//   eifilter.filter (*output_cloud_ptr);
//   vis_cloud_ptrs.push_back(output_cloud_ptr);
//   visualizer.visualizeCloud(vis_cloud_ptrs);
  }
コード例 #25
0
/*!
 * @brief メソッドPointCloudMethod::extractPlane().平面を検出するメソッド
 * @param pcl::PointCloud<pcl::PointXYZ>::Ptr inputPointCloud
 * @return pcl::PointCloud<pcl::PointXYZ>::Ptr outputPointCloud
 */
pcl::PointCloud<pcl::PointXYZRGB>::Ptr PointCloudMethod::extractPlane(pcl::PointCloud<pcl::PointXYZRGB>::Ptr &inputPointCloud, bool optimize, double threshold, bool negative)
{
	cout << "before Extract Plane => " << inputPointCloud->size() << endl;

	pcl::PointCloud<pcl::PointXYZRGB>::Ptr filtered(new pcl::PointCloud<pcl::PointXYZRGB>());
	pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
	pcl::PointIndices::Ptr inliers(new pcl::PointIndices);

	//セグメンテーションオブジェクトの生成
	pcl::SACSegmentation<pcl::PointXYZRGB> seg;

	//オプション
	seg.setOptimizeCoefficients(optimize);

	//Mandatory
	seg.setModelType(pcl::SACMODEL_PLANE);
	seg.setMethodType(pcl::SAC_RANSAC);
	seg.setDistanceThreshold(threshold);

	seg.setInputCloud(inputPointCloud->makeShared());
	seg.segment(*inliers, *coefficients);


	//pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_f(new pcl::PointCloud<pcl::PointXYZRGB>());
	//int i = 0, nr_points = (int)inputPointCloud->points.size();
	//while (inputPointCloud->points.size() > 0.3*nr_points)
	//{
	//	seg.setInputCloud(inputPointCloud);
	//	seg.segment(*inliers, *coefficients);
	//	if (inliers->indices.size() == 0)
	//	{
	//		cout << "Could not estimate a planar model for the given dataset." << endl;
	//		break;
	//	}
	//	pcl::ExtractIndices<pcl::PointXYZRGB> extract;
	//	extract.setInputCloud(inputPointCloud);
	//	extract.setIndices(inliers);
	//	extract.setNegative(false);
	//	extract.filter(*filtered);
	//	extract.setNegative(true);
	//	extract.filter(*cloud_f);
	//	*inputPointCloud = *cloud_f;
	//}

	//pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZRGB>);
	//tree->setInputCloud(filtered);
	//vector<pcl::PointIndices> cluster_indices;
	//pcl::EuclideanClusterExtraction<pcl::PointXYZRGB> ec;
	//ec.setClusterTolerance(0.02); //cm
	//ec.setMinClusterSize(100);
	//ec.setMaxClusterSize(25000);
	//ec.setSearchMethod(tree);
	//ec.setInputCloud(filtered);
	//ec.extract(cluster_indices);

	//int j = 0;
	//for (vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it)
	//{
	//	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZRGB>);
	//	for (vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit)
	//	{
	//		cloud_cluster->points.push_back(filtered->points[*pit]);
	//	}
	//	cloud_cluster->width = cloud_cluster->points.size();
	//	cloud_cluster->height = 1;
	//	cloud_cluster->is_dense = true;
	//	filtered = cloud_cluster;
	//	j++;
	//}

	/*for (size_t i = 0; i < inliers->indices.size(); ++i){
		inputPointCloud->points[inliers->indices[i]].r = 255;
		inputPointCloud->points[inliers->indices[i]].g = 255;
		inputPointCloud->points[inliers->indices[i]].b = 255;
		}*/

	pcl::ExtractIndices<pcl::PointXYZRGB> extract;
	extract.setInputCloud(inputPointCloud);
	extract.setIndices(inliers);
	extract.setNegative(negative);
	extract.filter(*filtered);

	cout << "after Extract Plane => " << filtered->size() << endl;
	return filtered;
}
コード例 #26
0
ファイル: cluster_extraction.cpp プロジェクト: Nerei/pcl
int 
main (int argc, char** argv)
{
  // Read in the cloud data
  pcl::PCDReader reader;
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
  reader.read ("table_scene_lms400.pcd", *cloud);
  std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //*

  // Create the filtering object: downsample the dataset using a leaf size of 1cm
  pcl::VoxelGrid<pcl::PointXYZ> vg;
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
  vg.setInputCloud (cloud);
  vg.setLeafSize (0.01f, 0.01f, 0.01f);
  vg.filter (*cloud_filtered);
  std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size ()  << " data points." << std::endl; //*

  // Create the segmentation object for the planar model and set all the parameters
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
  pcl::PCDWriter writer;
  seg.setOptimizeCoefficients (true);
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setMaxIterations (100);
  seg.setDistanceThreshold (0.02);

  int i=0, nr_points = (int) cloud_filtered->points.size ();
  while (cloud_filtered->points.size () > 0.3 * nr_points)
  {
    // Segment the largest planar component from the remaining cloud
    seg.setInputCloud (cloud_filtered);
    seg.segment (*inliers, *coefficients);
    if (inliers->indices.size () == 0)
    {
      std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
      break;
    }

    // Extract the planar inliers from the input cloud
    pcl::ExtractIndices<pcl::PointXYZ> extract;
    extract.setInputCloud (cloud_filtered);
    extract.setIndices (inliers);
    extract.setNegative (false);

    // Write the planar inliers to disk
    extract.filter (*cloud_plane);
    std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;

    // Remove the planar inliers, extract the rest
    extract.setNegative (true);
    extract.filter (*cloud_f);
    *cloud_filtered = *cloud_f;
  }

  // Creating the KdTree object for the search method of the extraction
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud (cloud_filtered);

  std::vector<pcl::PointIndices> cluster_indices;
  pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
  ec.setClusterTolerance (0.02); // 2cm
  ec.setMinClusterSize (100);
  ec.setMaxClusterSize (25000);
  ec.setSearchMethod (tree);
  ec.setInputCloud (cloud_filtered);
  ec.extract (cluster_indices);

  int j = 0;
  for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
  {
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
    for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
      cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*
    cloud_cluster->width = cloud_cluster->points.size ();
    cloud_cluster->height = 1;
    cloud_cluster->is_dense = true;

    std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
    std::stringstream ss;
    ss << "cloud_cluster_" << j << ".pcd";
    writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); //*
    j++;
  }

  return (0);
}
コード例 #27
0
/*****************************************************************************
 // Identify good matches using RANSAC
 // Return fundemental matrix
 */
cv::Mat ransacTest( const std::vector<cv::DMatch>& matches,
                   const std::vector<cv::KeyPoint>& keypoints1,
                   const std::vector<cv::KeyPoint>& keypoints2,
                   std::vector<cv::DMatch>& outMatches)
{
    
    // Convert keypoints into Point2f
    std::vector<cv::Point2f> points1, points2;
    for (   std::vector<cv::DMatch>::
         const_iterator it= matches.begin();
         it!= matches.end(); ++it)
        
    {
        // Get the position of left keypoints
        float x= keypoints1[it->queryIdx].pt.x;
        float y= keypoints1[it->queryIdx].pt.y;
        points1.push_back(cv::Point2f(x,y));
        
        // Get the position of right keypoints
        x= keypoints2[it->trainIdx].pt.x;
        y= keypoints2[it->trainIdx].pt.y;
        points2.push_back(cv::Point2f(x,y));
    }
    
    
    // Compute F matrix using RANSAC
    std::vector<uchar> inliers(points1.size(),0);
    cv::Mat fundemental= cv::findFundamentalMat(cv::Mat(points1),cv::Mat(points2), // matching points
                                                inliers,      // match status (inlier or outlier)
                                                CV_FM_RANSAC, // RANSAC method
                                                _distance,     // distance to epipolar line
                                                _confidence);  // confidence probability
    
    // extract the surviving (inliers) matches
    std::vector<uchar>::const_iterator
    itIn= inliers.begin();
    std::vector<cv::DMatch>::const_iterator
    itM= matches.begin();
    // for all matches
    for ( ;itIn!= inliers.end(); ++itIn, ++itM)
    {
        if (*itIn)
        { // it is a valid match
            outMatches.push_back(*itM);
        }
    }
    
    if (_refine)
    {
        // The F matrix will be recomputed with
        // all accepted matches
        // Convert keypoints into Point2f
        // for final F computation
        points1.clear();
        points2.clear();
        for (std::vector<cv::DMatch>::
             const_iterator it= outMatches.begin();
             it!= outMatches.end(); ++it)
        {
            // Get the position of left keypoints
            float x= keypoints1[it->queryIdx].pt.x;
            float y= keypoints1[it->queryIdx].pt.y;
            points1.push_back(cv::Point2f(x,y));
            
            // Get the position of right keypoints
            x= keypoints2[it->trainIdx].pt.x;
            y= keypoints2[it->trainIdx].pt.y;
            points2.push_back(cv::Point2f(x,y));
        }
        // Compute 8-point F from all accepted matches
        //fundemental = cv::findFundamentalMat(cv::Mat(points1),cv::Mat(points2), CV_FM_8POINT); // 8-point method
        
        fundemental =  cv::findHomography(cv::Mat(points1),cv::Mat(points2), cv::RANSAC/*CV_LMEDS*/, 1);
    }
    return fundemental;
}
コード例 #28
0
bool seg_cb(bwi_perception::ButtonDetection::Request &req, bwi_perception::ButtonDetection::Response &res)
{
	//get the point cloud by aggregating k successive input clouds
	waitForCloudK(15);
	cloud = cloud_aggregated;

	//**Step 1: z-filter and voxel filter**//
	
	// Create the filtering object
	pcl::PassThrough<PointT> pass;
	pass.setInputCloud (cloud);
	pass.setFilterFieldName ("z");
	pass.setFilterLimits (0.0, 1.15);
	pass.filter (*cloud);
	
	// Create the filtering object: downsample the dataset using a leaf size of 1cm
	pcl::VoxelGrid<PointT> vg;
	pcl::PointCloud<PointT>::Ptr cloud_filtered (new pcl::PointCloud<PointT>);
	vg.setInputCloud (cloud);
	vg.setLeafSize (0.0025f, 0.0025f, 0.0025f);
	vg.filter (*cloud_filtered);

	//publish point cloud for debugging
	ROS_INFO("Publishing point cloud...");
	/*pcl::toROSMsg(*cloud_filtered,cloud_ros);
	cloud_ros.header.frame_id = cloud->header.frame_id;
	cloud_pub.publish(cloud_ros);*/

    ROS_INFO("After voxel grid filter: %i points",(int)cloud_filtered->points.size());
    
    //**Step 2: plane fitting**//
    
    //find palne
    //one cloud contains plane other cloud contains other objects
    pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
	pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
    // Create the segmentation object
	pcl::SACSegmentation<PointT> seg;
	// Optional
    seg.setOptimizeCoefficients (true);
	// Mandatory
	seg.setModelType (pcl::SACMODEL_PLANE);
	seg.setMethodType (pcl::SAC_RANSAC);
	seg.setMaxIterations (1000);
	seg.setDistanceThreshold (0.02);

	// Create the filtering object
	pcl::ExtractIndices<PointT> extract;

	// Segment the largest planar component from the remaining cloud
	seg.setInputCloud (cloud_filtered);
	seg.segment (*inliers, *coefficients);

	// Extract the plane
	extract.setInputCloud (cloud_filtered);
	extract.setIndices (inliers);
	extract.setNegative (false);
	extract.filter (*cloud_plane);
     
    //for everything else, cluster extraction; segment extraction
    //extract everything else
	extract.setNegative (true);
	extract.filter (*cloud_blobs);
	
    //get the plane coefficients
	Eigen::Vector4f plane_coefficients;
	plane_coefficients(0)=coefficients->values[0];
	plane_coefficients(1)=coefficients->values[1];
	plane_coefficients(2)=coefficients->values[2];
	plane_coefficients(3)=coefficients->values[3];

    	
    //**Step 3: Eucledian Cluster Extraction**//
	std::vector<PointCloudT::Ptr > clusters = computeClusters(cloud_blobs,0.04);
	
	ROS_INFO("clustes found: %i", (int)clusters.size());
	
	clusters_on_plane.clear();
	
	//if clusters are touching the table put them in a vector
	for (unsigned int i = 0; i < clusters.size(); i++){
		Eigen::Vector4f centroid_i;
		pcl::compute3DCentroid(*clusters.at(i), centroid_i);
		pcl::PointXYZ center;
		center.x=centroid_i(0);center.y=centroid_i(1);center.z=centroid_i(2);

		double distance = pcl::pointToPlaneDistance(center, plane_coefficients);
		if (distance < 0.1 /*&& clusters.at(i).get()->points.size() >*/ ){
			clusters_on_plane.push_back(clusters.at(i));
		}
	}
	ROS_INFO("clustes_on_plane found: %i", (int)clusters_on_plane.size());
	
	// if the clousters size == 0 return false
	if(clusters_on_plane.size() == 0) {
		
		cloud_mutex.unlock ();

		res.button_found = false; 
		return true;
	}
	//**Step 4: detect the button among the remaining clusters**//
	int max_index = -1;

	double max_red = 0.0;
	// Find the max red value
	for (unsigned int i = 0; i < clusters_on_plane.size(); i++){
		double red_i = computeAvgRedValue(clusters_on_plane.at(i));
		//ROS_INFO("Cluster %i: %i points, red_value = %f",i,(int)clusters_on_plane.at(i)->points.size(),red_i);

		if (red_i > max_red){
			max_red = red_i;
			max_index = i;
		}
	}
	
	//publish  cloud if we think it's a button
	/*max_red > 170 && max_red < 250 && */
	ROS_INFO("max_red=%f", max_red);

	
	if (max_index >= 0 && max_red > red_min) {
			
	    ROS_INFO("Button_found");

		pcl::toROSMsg(*clusters_on_plane.at(max_index),cloud_ros);
		cloud_ros.header.frame_id = cloud->header.frame_id;
		cloud_pub.publish(cloud_ros);

		//fill in response
	    res.button_found = true;
	    res.cloud_button = cloud_ros;

		/*Eigen::Vector4f centroid;
		pcl::compute3DCentroid(*clusters_on_plane.at(max_index), centroid);

		//transforms the pose into /map frame
		geometry_msgs::Pose pose_i;
		pose_i.position.x=centroid(0);
		pose_i.position.y=centroid(1);
		pose_i.position.z=centroid(2);
		pose_i.orientation = tf::createQuaternionMsgFromRollPitchYaw(0,0,-3.14/2);

		geometry_msgs::PoseStamped stampedPose;

		stampedPose.header.frame_id = cloud->header.frame_id;
		stampedPose.header.stamp = ros::Time(0);
		stampedPose.pose = pose_i;*/

		//geometry_msgs::PoseStamped stampOut;
		//listener.waitForTransform(cloud->header.frame_id, "m1n6s200_link_base", ros::Time(0), ros::Duration(3.0));
		//listener.transformPose("m1n6s200_link_base", stampedPose, stampOut);

		//stampOut.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(0,-3.14/2,0);
		//pose_pub.publish(stampOut);

	}
	
	else {
		res.button_found = false;
		
	}
	
	cloud_mutex.unlock ();

	return true;
}
コード例 #29
0
int main (int argc, char** argv)
{	
	PointCloudT::Ptr cloud (new PointCloudT);
	PointCloudT::Ptr new_cloud (new PointCloudT);
	bool new_cloud_available_flag = false;
	//pcl::Grabber* grab = new pcl::OpenNIGrabber ();

	PointCloudT::Ptr ddd;

	boost::function<void (const PointCloudT::ConstPtr&)> f =
		boost::bind(&grabberCallback, _1, cloud, &new_cloud_available_flag);
	grab->registerCallback (f);
	viewer->registerKeyboardCallback(keyboardEventOccurred);
	grab->start ();
	
	bool first_time = true;

	FILE* objects;
	objects = fopen ("objects.txt","a");

	while(!new_cloud_available_flag)
		boost::this_thread::sleep(boost::posix_time::milliseconds(1));

	new_cloud_available_flag=false;


	////////////////////
	// invert correction
	////////////////////
				
	Eigen::Matrix4f transMat = Eigen::Matrix4f::Identity(); 
	transMat (1,1) = -1;

    ////////////////////
	// pass filter
	////////////////////

	PointCloudT::Ptr passed_cloud;
	pcl::PassThrough<PointT> pass;
	passed_cloud = boost::shared_ptr<PointCloudT>(new PointCloudT);

	
	////////////////////
	// voxel grid
	////////////////////
	PointCloudT::Ptr voxelized_cloud;
	voxelized_cloud = boost::shared_ptr<PointCloudT>(new PointCloudT);
	pcl::VoxelGrid<PointT> vg;
	vg.setLeafSize (0.001, 0.001, 0.001);
	

	////////////////////
	// sac segmentation
	////////////////////
	
	PointCloudT::Ptr cloud_f;
	PointCloudT::Ptr cloud_plane;
	PointCloudT::Ptr cloud_filtered;
	cloud_f = boost::shared_ptr<PointCloudT>(new PointCloudT);	
	cloud_plane = boost::shared_ptr<PointCloudT> (new PointCloudT);	
	cloud_filtered = boost::shared_ptr<PointCloudT> (new PointCloudT);

	pcl::SACSegmentation<PointT> seg;
	pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
	pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
	seg.setOptimizeCoefficients (true);
	seg.setModelType (pcl::SACMODEL_PLANE);
	seg.setMethodType (pcl::SAC_RANSAC);
	seg.setMaxIterations (100);
	seg.setDistanceThreshold (0.02);

	////////////////////
	// euclidean clustering
	////////////////////
	std::vector<pcl::PointIndices> cluster_indices;
	std::vector<PointCloudT::Ptr> extracted_clusters;
	pcl::search::KdTree<PointT>::Ptr eucl_tree (new pcl::search::KdTree<PointT>);
	pcl::EuclideanClusterExtraction<PointT> ec;
	ec.setClusterTolerance (0.04);
	ec.setMinClusterSize (100);
	ec.setMaxClusterSize (25000);
	ec.setSearchMethod (eucl_tree);

	PointCloudT::Ptr cloud_cluster;

	////////////////////
	// vfh estimate
	////////////////////
	pcl::NormalEstimation<PointT, pcl::Normal> ne;
	pcl::search::KdTree<PointT>::Ptr vfh_tree1 (new pcl::search::KdTree<PointT> ());
	pcl::VFHEstimation<PointT, pcl::Normal, pcl::VFHSignature308> vfh;
	pcl::search::KdTree<PointT>::Ptr vfh_tree2 (new pcl::search::KdTree<PointT> ());
	std::vector<pcl::PointCloud<pcl::VFHSignature308>::Ptr> computed_vfhs;	
	
	ne.setSearchMethod (vfh_tree1);
	ne.setRadiusSearch (0.05);
	vfh.setSearchMethod (vfh_tree2);
	vfh.setRadiusSearch (0.05);
	pcl::PointCloud<pcl::Normal>::Ptr normals;
	pcl::PointCloud<pcl::VFHSignature308>::Ptr vfhs;


	////////////////////
	// nearest neighbour
	////////////////////
	int k = 6;

	std::string kdtree_idx_file_name = "kdtree.idx";
	std::string training_data_h5_file_name = "training_data.h5";
	std::string training_data_list_file_name = "training_data.list";

//	std::vector<vfh_model> models;
//	flann::Matrix<float> data;

//	loadFileList (models, training_data_list_file_name);
//	flann::load_from_file (data, 
//						   training_data_h5_file_name, 
//						   "training_data");
//	
//	flann::Index<flann::ChiSquareDistance<float> > index (data, 
//														  flann::SavedIndexParams 
//														  ("kdtree.idx"));


    ////////////////////
	// process nearest neighbour
	////////////////////
	std::vector<hypothesis> final_hypothesis;
	final_hypothesis.clear();



	double last = pcl::getTime();

	while (! viewer->wasStopped())
	{
		if (new_cloud_available_flag)
		{

			new_cloud_available_flag = false;
			double now = pcl::getTime();

			////////////////////
			// pass filter
			////////////////////
					  
			//passed_cloud = boost::shared_ptr<PointCloudT>(new PointCloudT);

			////////////////////
			// voxel grid
			////////////////////
			//voxelized_cloud = boost::shared_ptr<PointCloudT>(new PointCloudT);

			////////////////////
			// sac segmentation
			////////////////////
	
			//cloud_f = boost::shared_ptr<PointCloudT>(new PointCloudT);	
			//cloud_plane = boost::shared_ptr<PointCloudT> (new PointCloudT);	
			//cloud_filtered = boost::shared_ptr<PointCloudT> (new PointCloudT);

			////////////////////
			// euclidean clustering
			////////////////////
			extracted_clusters.clear();
			cluster_indices.clear();

			////////////////////
			// vfh estimate
			////////////////////
			computed_vfhs.clear();


            ////////////////////
			// nearest neighbour
			////////////////////
			
			cloud_mutex.lock();
			
			//displayCloud(viewer,cloud);
			boost::thread displayCloud_(displayCloud,viewer,cloud);

			if(now-last > 13 || first_time)
			{
				first_time = false;

				last=now;

                ////////////////////
				// invert correction
				////////////////////

				pcl::transformPointCloud(*cloud,*new_cloud,transMat);
				
				////////////////////
				// pass filter
				////////////////////
				
				pass.setInputCloud (new_cloud);
				pass.setFilterFieldName ("x");
				pass.setFilterLimits (-0.5, 0.5);
				//pass.setFilterLimitsNegative (true);
				pass.filter (*passed_cloud);


				////////////////////
				// voxel grid
				////////////////////

				vg.setInputCloud (passed_cloud);
				vg.filter (*voxelized_cloud);

				////////////////////
				// sac segmentation
				////////////////////
			
				*cloud_filtered = *voxelized_cloud;

				int i=0, nr_points = (int) voxelized_cloud->points.size ();
				while (cloud_filtered->points.size () > 0.3 * nr_points)
				{
					// Segment the largest planar component from the remaining cloud
					seg.setInputCloud (cloud_filtered);
					seg.segment (*inliers, *coefficients);
					if (inliers->indices.size () == 0)
					{
						std::cout << "Couldnt estimate a planar model for the dataset.\n";
						break;
					}

					// Extract the planar inliers from the input cloud
					pcl::ExtractIndices<PointT> extract;
					extract.setInputCloud (cloud_filtered);
					extract.setIndices (inliers);
					extract.setNegative (false);

					// Get the points associated with the planar surface
					extract.filter (*cloud_plane);

					// Remove the planar inliers, extract the rest
					extract.setNegative (true);
					extract.filter (*cloud_f);
					*cloud_filtered = *cloud_f;
				}

                ////////////////////
				// euclidean clustering
				////////////////////
				
				// Creating the KdTree object for the search method of the extraction
				eucl_tree->setInputCloud (cloud_filtered);

				ec.setInputCloud (cloud_filtered);
				ec.extract (cluster_indices);

				
				for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
				{
					//PointCloudT::Ptr cloud_cluster (new PointCloudT);
					cloud_cluster = boost::shared_ptr<PointCloudT>(new PointCloudT);
					for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
						cloud_cluster->points.push_back (cloud_filtered->points [*pit]);
					cloud_cluster->width = cloud_cluster->points.size ();
					cloud_cluster->height = 1;
					cloud_cluster->is_dense = true;
					
					extracted_clusters.push_back(cloud_cluster);
				}
				cloud_cluster.reset();

							
				////////////////////
				// vfh estimate
				////////////////////
				for (int z=0; z<extracted_clusters.size(); ++z)
				{
					vfhs = boost::shared_ptr<pcl::PointCloud<pcl::VFHSignature308> > (new pcl::PointCloud<pcl::VFHSignature308>);
					normals = boost::shared_ptr<pcl::PointCloud<pcl::Normal> > (new pcl::PointCloud<pcl::Normal>);

					ne.setInputCloud (extracted_clusters.at(z));
					ne.compute (*normals);
					vfh.setInputCloud (extracted_clusters.at(z));
					vfh.setInputNormals (normals);
					vfh.compute (*vfhs);
					computed_vfhs.push_back(vfhs);
	
				}
				vfhs.reset();
				normals.reset();

				////////////////////
				// nearest neighbour
				////////////////////	

				std::vector<vfh_model> models;
				flann::Matrix<int> k_indices;
				flann::Matrix<float> k_distances;
				flann::Matrix<float> data;


				loadFileList (models, training_data_list_file_name);
				flann::load_from_file (data, 
									   training_data_h5_file_name, 
									   "training_data");
	
				flann::Index<flann::ChiSquareDistance<float> > index 
					(data, 
					 flann::SavedIndexParams 
					 ("kdtree.idx"));


				for(int z=0; z<computed_vfhs.size(); ++z)
				{
					vfh_model histogram;
					histogram.second.resize(308);
	
					for (size_t i = 0; i < 308; ++i)
					{
						histogram.second[i] = computed_vfhs.at(z)->points[0].histogram[i];
					}

					index.buildIndex ();
					nearestKSearch (index, histogram, k, k_indices, k_distances);
					
					hypothesis x;
					x.distance = k_distances[0][0];
					size_t index = models.at(k_indices[0][0]).first.find("_v",5);

					x.object_name = models.at(k_indices[0][0]).first.substr(5,index-5);

					ddd = boost::shared_ptr<PointCloudT>(new PointCloudT);
					pcl::transformPointCloud(*extracted_clusters.at(z),*ddd,transMat);
					x.cluster = ddd;
					ddd.reset();

					std::string filename ="";
					filename += "inputcloud_" + boost::lexical_cast<std::string>(j+1);
					filename += "_" + boost::lexical_cast<std::string>(z) + ".pcd";
					x.cluster_name = filename.c_str();

					final_hypothesis.push_back(x);

					x.cluster.reset();
					//delete x;
					
//                    std::string filename ="";
//					filename += "inputcloud_" + boost::lexical_cast<std::string>(j+1);
//					filename += "_" + boost::lexical_cast<std::string>(z) + ".pcd";
//					const char* filen = filename.c_str();
//					fprintf(objects,"%s",filen);
//					fprintf(objects,"::");
//					fprintf(objects,models.at (k_indices[0][0]).first.c_str());
//					fprintf(objects,"::");
//					fprintf(objects,"%f",k_distances[0][0]);
//					fprintf(objects,"\n");					
				}				
				delete[] k_indices.ptr ();
				delete[] k_distances.ptr ();
				delete[] data.ptr ();
				
				std::cout << final_hypothesis.size() << std::endl;
				
				viewer->removeAllShapes();

				for(int z=0; z<final_hypothesis.size();++z)
				{
					if(final_hypothesis.at(z).distance < 100)
					{
						fprintf(objects,"%s",final_hypothesis.at(z).cluster_name.c_str());
						fprintf(objects,"::");
						fprintf(objects,"%s",final_hypothesis.at(z).object_name.c_str());
						fprintf(objects,"::");
						fprintf(objects,"%f",final_hypothesis.at(z).distance);
						fprintf(objects,"\n");
					std::stringstream ddd;
						ddd << final_hypothesis.at(z).object_name;
						ddd << "\n" << "(";
						ddd << final_hypothesis.at(z).distance;
						ddd << ")";

						viewer->addText3D(ddd.str().c_str(),
										 final_hypothesis.at(z).cluster->points[0],
										 0.02,1,1,1,
										 boost::lexical_cast<std::string>(z));
						drawBoundingBox(final_hypothesis.at(z).cluster,viewer,z);
					}
				}
				//boost::thread allBoxes_(allBoxes,viewer,final_hypothesis);		
				//allBoxes_.join();
				viewer->spinOnce();
				final_hypothesis.clear();
				j++;
			}

//			for(int z=0; z<extracted_clusters.size(); ++z)
//			{
//				//viewer->addPointCloud<PointT>(extracted_clusters.at(z),
//				//							 boost::lexical_cast<std::string>(z));
//
//				std::string filename ="";
//				filename += "inputcloud_" + boost::lexical_cast<std::string>(j);
//				filename += "_" + boost::lexical_cast<std::string>(z) + ".pcd";
//				pcl::io::savePCDFile(filename,*extracted_clusters.at(z),false);
//			}	


//			for(int z=0; z<computed_vfhs.size(); ++z)
//			{
//				//viewer->addPointCloud<PointT>(extracted_clusters.at(z),
//				//							 boost::lexical_cast<std::string>(z));
//
//				std::string filename ="";
//				filename += "inputcloud_" + boost::lexical_cast<std::string>(j);
//				filename += "_" + boost::lexical_cast<std::string>(z) + "_vfhs.pcd";
//				pcl::io::savePCDFileASCII<pcl::VFHSignature308> (filename, *computed_vfhs.at(z));
//			}			


			//viewer->removeAllShapes();
//			viewer->removeAllPointClouds();
//			viewer->setCameraPosition(0, 0, 0, 0, 0, 1, 0, -1, 0); 
//			pcl::visualization::PointCloudColorHandlerRGBField<PointT> rgb(cloud);
//			viewer->addPointCloud<PointT>(cloud,rgb,"input_cloud");
//			viewer->spinOnce();
		

			//std::cout << final_hypothesis.at(0).cluster->points[0];

			//boost::this_thread::sleep(boost::posix_time::milliseconds(10));
			displayCloud_.join();
			cloud_mutex.unlock();
		}
    }
	grab->stop();
	return 0;
}
コード例 #30
0
// Identify good matches using RANSAC
// Return number of matched points
cv::Mat RobustMatcher::ransacTest(const std::vector<cv::DMatch>& matches,
    const std::vector<cv::KeyPoint>& keypoints1,
	const std::vector<cv::KeyPoint>& keypoints2, std::vector<cv::DMatch>& outMatches) {

    // Convert keypoints into Point2f
    std::vector<cv::Point2f> points1, points2;

    for (std::vector<cv::DMatch>::const_iterator it = matches.begin(); it!= matches.end(); ++it) {
        // Get the position of left keypoints
        float x = keypoints1[it->queryIdx].pt.x;
        float y = keypoints1[it->queryIdx].pt.y;
        points1.push_back(cv::Point2f(x,y));
        // Get the position of right keypoints
        x = keypoints2[it->trainIdx].pt.x;
        y = keypoints2[it->trainIdx].pt.y;
        points2.push_back(cv::Point2f(x,y));
    }

	if(points1.empty() || points2.empty()) return cv::Mat();

    // Compute F matrix using RANSAC
    std::vector<uchar> inliers(points1.size(),0);
	cv::Mat fundamental = cv::findFundamentalMat(
        cv::Mat(points1),cv::Mat(points2), // matching points
        inliers,      // match status (inlier ou outlier)
        CV_FM_RANSAC, // RANSAC method
        this->_distance,     // distance to epipolar line
        this->_confidence);  // confidence probability

    // Extract the surviving (inliers) matches
    std::vector<uchar>::const_iterator itIn = inliers.begin();
    std::vector<cv::DMatch>::const_iterator itM = matches.begin();
    // For all matches
    for ( ;itIn!= inliers.end(); ++itIn, ++itM) {
        if (*itIn) { // it is a valid match
            outMatches.push_back(*itM);
        }
    }

    std::cout << "Number of matched points (after cleaning): " << outMatches.size() << std::endl;
    if (outMatches.size()>13){
        //std::cout << "true";
        this->_reconized = true;
	}

	if (outMatches.empty()) return fundamental;

    if (this->_refineF) {
        // The F matrix will be recomputed with all accepted matches
        // Convert keypoints into Point2f for final F computation
        points1.clear();
        points2.clear();
        for (std::vector<cv::DMatch>::const_iterator it= outMatches.begin();
            it!= outMatches.end(); ++it) {
            // Get the position of left keypoints
            float x= keypoints1[it->queryIdx].pt.x;
            float y= keypoints1[it->queryIdx].pt.y;
            points1.push_back(cv::Point2f(x,y));
            // Get the position of right keypoints
            x = keypoints2[it->trainIdx].pt.x;
            y = keypoints2[it->trainIdx].pt.y;
            points2.push_back(cv::Point2f(x,y));
        }

        // Compute 8-point F from all accepted matches
		fundamental= cv::findFundamentalMat(
            cv::Mat(points1),cv::Mat(points2), // matching points
        CV_FM_8POINT); // 8-point method
    }
	return fundamental;
}