static mcxstatus meetMain ( int argc , const char* argv[] ) { mcxIO **xfmcs = NULL ; mclMatrix *lft = NULL ; mclMatrix *rgt = NULL ; mclMatrix *dst = NULL ; int a = 0 ; int n_mx = 0 ; int j ; dim o, m, e ; mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_YES) ; mclx_app_init(stderr) ; xfmcs = (mcxIO**) mcxAlloc ( (argc)*sizeof(mcxIO*) , EXIT_ON_FAIL ) ; mcxIOopen(xfout, EXIT_ON_FAIL) ; for(j=a;j<argc;j++) { xfmcs[n_mx] = mcxIOnew(argv[j], "r") ; n_mx++ ; } if (!n_mx) mcxDie(1, me, "at least one clustering matrix required") /* Fixme: do a decent initialization with lft = clmTop() *before* * this loop (removing the need for ugly tmp assignment), but that requires * we know the correct domain to pass to it. For that, we need to peak into * the first matrix. */ ; for (j=0;j<n_mx;j++) { mclMatrix* tmp = mclxRead (xfmcs[j], EXIT_ON_FAIL) ; if (clmEnstrict(tmp, &o, &m, &e, ENSTRICT_SPLIT_OVERLAP)) report_partition("clmmeet", tmp, xfmcs[j]->fn, o, m, e) , mcxExit(1) ; if (!lft) { lft = tmp ; continue ; } else rgt = tmp ; if (!MCLD_EQUAL(lft->dom_rows, rgt->dom_rows)) mcxDie ( 1 , me , "domains not equal (files %s/%s)" , xfmcs[j-1]->fn->str , xfmcs[j]->fn->str ) ; mcxIOclose(xfmcs[j]) ; dst = clmMeet(lft, rgt) ; lft = dst ; mclxFree(&rgt) ; } mclxColumnsRealign(lft, mclvSizeRevCmp) ; mclxWrite(lft, xfout, MCLXIO_VALUE_NONE, EXIT_ON_FAIL) ; mclxFree(&lft) ; mcxIOfree(&xfout) ; free(xfmcs) ; return STATUS_OK ; }
static dim clm_clm_prune ( mclx* mx , mclx* cl , dim prune_sz , mclx** cl_adjustedpp , dim* n_sink , dim* n_source ) { dim d, n_adjusted = 0 ; mclx* cl_adj = mclxCopy(cl) ; mclv* cid_affected = mclvClone(cl->dom_cols) ; const char* me = "clmAssimilate" ; double bar_affected = 1.5 ; mclx *el_to_cl = NULL ; mclx *el_on_cl = NULL ; mclx *cl_on_cl = NULL ; mclx *cl_on_el = NULL ; *n_sink = 0 ; *n_source = 0 ; mclvMakeConstant(cid_affected, 1.0) ; mclxColumnsRealign(cl_adj, mclvSizeCmp) ; *cl_adjustedpp = NULL ; clmCastActors (&mx, &cl_adj, &el_to_cl, &el_on_cl, &cl_on_cl, &cl_on_el, 0.95) ; mclxFree(&cl_on_el) ; for (d=0;d<N_COLS(cl_on_cl);d++) { mclv* clthis = cl_adj->cols+d ; mclv* cllist = cl_on_cl->cols+d ; mclp* pself = mclvGetIvp(cllist, clthis->vid, NULL) ; double self_val = -1.0 ; if (pself) self_val = pself->val , pself->val *= 1.001 /* to push it up in case of equal weights */ ;if(0)fprintf(stderr, "test size %d\n", (int) clthis->n_ivps) ; if (prune_sz && clthis->n_ivps > prune_sz) continue ; while (1) { mclv* clthat ; dim e ; if (cllist->n_ivps < 2) break ; mclvSort(cllist, mclpValRevCmp) /* now get biggest mass provided that cluster * ranks higher (has at least as many entries) * * fixme/todo: we probably have a slight order * dependency for some fringe cases. If provable * then either solve or document it. */ ; for (e=0;e<cllist->n_ivps;e++) if (cllist->ivps[e].idx >= clthis->vid) break /* found none or itself */ ; if (e == cllist->n_ivps || cllist->ivps[e].idx == clthis->vid) break ; if /* Should Not Happen */ (!(clthat = mclxGetVector(cl_adj, cllist->ivps[e].idx, RETURN_ON_FAIL, NULL) ) ) break /* works for special case prune_sz == 0 */ /* if (clthat->n_ivps + clthis->n_ivps > prune_sz) */ /* ^iced. inconsistent behaviour as k grows. */ ; { mcxLog ( MCX_LOG_LIST , me , "source %ld|%lu|%.3f absorbed by %ld|%lu|%.3f" , clthis->vid, (ulong) clthis->n_ivps, self_val , clthat->vid, (ulong) clthat->n_ivps, cllist->ivps[0].val ) ; n_adjusted += clthis->n_ivps ; (*n_sink)++ /* note: we could from our precomputed cl_on_cl * obtain that A is absorbed in B, B is absorbed in C. * below we see that A will be merged with B, * and the result will then be merged with C. * This depends on the fact that cl_adj is ordered * on increasing cluster size. */ ; mcldMerge(cl_adj->cols+d, clthat, clthat) ; mclvResize(cl_adj->cols+d, 0) ; mclvInsertIdx(cid_affected, clthat->vid, 2.0) ; } break ; } mclvSort(cllist, mclpIdxCmp) ; } mclxFree(&cl_on_cl) ; mclxFree(&el_on_cl) ; mclxFree(&el_to_cl) ; mclxMakeCharacteristic(cl) ; mclvUnary(cid_affected, fltxGT, &bar_affected) ; *n_source = cid_affected->n_ivps ; mclvFree(&cid_affected) ; mclxColumnsRealign(cl_adj, mclvSizeRevCmp) ; if (!n_adjusted) { mclxFree(&cl_adj) ; return 0 ; } mclxUnary(cl_adj, fltxCopy, NULL) ; mclxMakeCharacteristic(cl_adj) ; *cl_adjustedpp = cl_adj ; return n_adjusted ; }
int main ( int argc , const char* argv[] ) { mcxIO* xf_tab = NULL ; mcxIO* xf_tabr = NULL ; mcxIO* xf_tabc = NULL ; mcxIO* xf_restrict_tab = NULL ; mcxIO* xf_restrict_tabr = NULL ; mcxIO* xf_restrict_tabc = NULL ; mcxIO* xf_mx = mcxIOnew("-", "r") ; mcxIO* xfout = NULL ; const char* fndump = "-" ; mclTab* tabr = NULL ; mclTab* tabc = NULL ; mclTab* restrict_tabr = NULL ; mclTab* restrict_tabc = NULL ; mcxbool transpose = FALSE ; mcxbool lazy_tab = FALSE ; mcxbool write_tabc = FALSE ; mcxbool write_tabr = FALSE ; mcxbool cat = FALSE ; mcxbool tree = FALSE ; mcxbool skel = FALSE ; mcxbool newick = FALSE ; mcxbits newick_bits = 0 ; mcxbits cat_bits = 0 ; dim catmax = 1 ; dim n_max = 0 ; dim table_nlines = 0 ; dim table_nfields = 0 ; int split_idx = 1 ; int split_inc = 1 ; const char* split_stem = NULL ; const char* sort_mode = NULL ; mcxTing* line = mcxTingEmpty(NULL, 10) ; mcxbits modes = MCLX_DUMP_VALUES ; mcxbits mode_dump = MCLX_DUMP_PAIRS ; mcxbits mode_part = 0 ; mcxbits mode_loop = MCLX_DUMP_LOOP_ASIS ; mcxbits mode_matrix = 0 ; int digits = MCLXIO_VALUE_GETENV ; mcxOption* opts, *opt ; mcxstatus parseStatus = STATUS_OK ; mcxLogLevel = MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN ; mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_YES) ; mclx_app_init(stderr) ; mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1) ; opts = mcxOptParse(options, (char**) argv, argc, 1, 0, &parseStatus) ; if (!opts) exit(0) ; for (opt=opts;opt->anch;opt++) { mcxOptAnchor* anch = opt->anch ; switch(anch->id) { case MY_OPT_HELP : case MY_OPT_APROPOS : mcxOptApropos(stdout, me, syntax, 0, 0, options) ; return 0 ; case MY_OPT_VERSION : app_report_version(me) ; return 0 ; case MY_OPT_TAB : xf_tab = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_TABC : xf_tabc = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_TABR : xf_tabr = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_OUTPUT : fndump = opt->val ; break ; case MY_OPT_SEP_LEAD : sep_lead_g = opt->val ; break ; case MY_OPT_SEP_FIELD : sep_row_g = opt->val ; break ; case MY_OPT_SEP_CAT : sep_cat_g = opt->val ; break ; case MY_OPT_SEP_VAL : sep_val_g = opt->val ; break ; case MY_OPT_PREFIXC : prefixc_g = opt->val ; break ; case MY_OPT_RESTRICT_TAB : xf_restrict_tab = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_RESTRICT_TABC : xf_restrict_tabc = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_RESTRICT_TABR : xf_restrict_tabr = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_LAZY_TAB : lazy_tab = TRUE ; break ; case MY_OPT_NO_VALUES : BIT_OFF(modes, MCLX_DUMP_VALUES) ; break ; case MY_OPT_DUMP_RLINES : mode_dump = MCLX_DUMP_LINES ; BIT_ON(modes, MCLX_DUMP_NOLEAD) ; break ; case MY_OPT_DUMP_VLINES : mode_dump = MCLX_DUMP_LINES ; BIT_ON(modes, MCLX_DUMP_LEAD_VALUE) ; break ; case MY_OPT_DUMP_LINES : mode_dump = MCLX_DUMP_LINES ; break ; case MY_OPT_OMIT_EMPTY : BIT_ON(modes, MCLX_DUMP_OMIT_EMPTY) ; break ; case MY_OPT_SORT : sort_mode = opt->val ; break ; case MY_OPT_NO_LOOPS : mode_loop = MCLX_DUMP_LOOP_NONE ; break ; case MY_OPT_CAT_LIMIT : n_max = atoi(opt->val) ; break ; case MY_OPT_SPLIT_STEM : split_stem = opt->val ; sep_cat_g = NULL ; break ; case MY_OPT_FORCE_LOOPS : mode_loop = MCLX_DUMP_LOOP_FORCE ; break ; case MY_OPT_SKEL : skel = TRUE ; break ; case MY_OPT_WRITE_TABC : write_tabc = TRUE ; break ; case MY_OPT_DIGITS : digits = strtol(opt->val, NULL, 10) ; break ; case MY_OPT_WRITE_TABR : write_tabr = TRUE ; break ; case MY_OPT_DUMP_RDOM : transpose = TRUE ; skel = TRUE ; mode_dump = MCLX_DUMP_LINES ; break ; case MY_OPT_DUMP_CDOM : skel = TRUE ; mode_dump = MCLX_DUMP_LINES ; break ; case MY_OPT_IMX : mcxIOnewName(xf_mx, opt->val) ; break ; case MY_OPT_ICL : mcxIOnewName(xf_mx, opt->val) ; mode_dump = MCLX_DUMP_LINES ; BIT_ON(modes, MCLX_DUMP_NOLEAD) ; BIT_OFF(modes, MCLX_DUMP_VALUES) ; break ; case MY_OPT_TREECAT : mcxIOnewName(xf_mx, opt->val) ; tree = TRUE ; cat_bits |= MCLX_PRODUCE_DOMSTACK ; break ; case MY_OPT_CAT : mcxIOnewName(xf_mx, opt->val) ; cat = TRUE ; break ; case MY_OPT_DUMP_MATRIX : mode_matrix |= MCLX_DUMP_MATRIX ; break ; case MY_OPT_TRANSPOSE : transpose = TRUE ; break ; case MY_OPT_DUMP_UPPER : mode_part = MCLX_DUMP_PART_UPPER ; break ; case MY_OPT_DUMP_UPPERI : mode_part = MCLX_DUMP_PART_UPPERI ; break ; case MY_OPT_DUMP_LOWER : mode_part = MCLX_DUMP_PART_LOWER ; break ; case MY_OPT_DUMP_LOWERI : mode_part = MCLX_DUMP_PART_LOWERI ; break ; case MY_OPT_DUMP_NOLEAD : BIT_ON(modes, MCLX_DUMP_NOLEAD) ; break ; case MY_OPT_NEWICK_MODE : if (strchr(opt->val, 'N')) newick_bits |= (MCLX_NEWICK_NONL | MCLX_NEWICK_NOINDENT) ; if (strchr(opt->val, 'I')) newick_bits |= MCLX_NEWICK_NOINDENT ; if (strchr(opt->val, 'B')) newick_bits |= MCLX_NEWICK_NONUM ; if (strchr(opt->val, 'S')) newick_bits |= MCLX_NEWICK_NOPTHS ; newick = TRUE ; break ; case MY_OPT_DUMP_NEWICK : newick = TRUE ; break ; case MY_OPT_DUMP_TABLE : mode_dump = MCLX_DUMP_TABLE ; break ; case MY_OPT_TABLE_NFIELDS : table_nfields = atoi(opt->val) ; break ; case MY_OPT_TABLE_NLINES : table_nlines = atoi(opt->val) ; break ; case MY_OPT_DUMP_PAIRS : mode_dump = MCLX_DUMP_PAIRS ; break ; } } ; if (skel) cat_bits |= MCLX_READ_SKELETON ; modes |= mode_loop | mode_dump | mode_part | mode_matrix ; xfout = mcxIOnew(fndump, "w") ; mcxIOopen(xfout, EXIT_ON_FAIL) ; mcxIOopen(xf_mx, EXIT_ON_FAIL) ; if (cat || tree) catmax = n_max ? n_max : 0 ; if ((write_tabc || write_tabr) && !xf_tab) mcxDie(1, me, "need a single tab file (-tab option) with --write-tabc or --write-tabr") ; if (xf_tab && mcxIOopen(xf_tab, RETURN_ON_FAIL)) mcxDie(1, me, "no tab") ; else { if (xf_tabr && mcxIOopen(xf_tabr, RETURN_ON_FAIL)) mcxDie(1, me, "no tabr") ; if (xf_tabc && mcxIOopen(xf_tabc, RETURN_ON_FAIL)) mcxDie(1, me, "no tabc") ; } { if (xf_restrict_tab && mcxIOopen(xf_restrict_tab, RETURN_ON_FAIL)) mcxDie(1, me, "no restriction tab") ; else { if (xf_restrict_tabr && mcxIOopen(xf_restrict_tabr, RETURN_ON_FAIL)) mcxDie(1, me, "no restriction tabr") ; if (xf_restrict_tabc && mcxIOopen(xf_restrict_tabc, RETURN_ON_FAIL)) mcxDie(1, me, "no restriction tabc") ; } /* fixme: below is pretty boilerplate, happens in other places as well */ if (xf_restrict_tab) { if (!(restrict_tabr = mclTabRead (xf_restrict_tab, NULL, RETURN_ON_FAIL))) mcxDie(1, me, "error reading restriction tab") ; restrict_tabc = restrict_tabr ; mcxIOclose(xf_restrict_tab) ; } else { if (xf_restrict_tabr) { if (!(restrict_tabr = mclTabRead(xf_restrict_tabr, NULL, RETURN_ON_FAIL))) mcxDie(1, me, "error reading restriction tabr") ; mcxIOclose(xf_restrict_tabr) ; } if (xf_restrict_tabc) { if (!(restrict_tabc = mclTabRead(xf_restrict_tabc, NULL, RETURN_ON_FAIL))) mcxDie(1, me, "error reading restriction tabc") ; mcxIOclose(xf_restrict_tabc) ; } } } /* fixme: restructure code to include bit below */ if (write_tabc || write_tabr) { mclv* dom_cols = mclvInit(NULL) ; mclv* dom_rows = mclvInit(NULL) ; mclv* dom = write_tabc ? dom_cols : dom_rows ; if (!(tabc = mclTabRead(xf_tab, NULL, RETURN_ON_FAIL))) mcxDie(1, me, "error reading tab file") ; if (mclxReadDomains(xf_mx, dom_cols, dom_rows)) mcxDie(1, me, "error reading matrix file") ; mcxIOclose(xf_mx) /* fixme check status */ ; mclTabWrite(tabc, xfout, dom, RETURN_ON_FAIL) ; mcxIOclose(xfout) ; return 0 ; } if (newick) { mcxTing* thetree ; mclxCat cat ; if (xf_tab && !(tabr = mclTabRead(xf_tab, NULL, RETURN_ON_FAIL))) mcxDie(1, me, "error reading tab file") ; mclxCatInit(&cat) ; if ( mclxCatRead ( xf_mx , &cat , 0 , NULL , tabr ? tabr->domain : NULL , MCLX_CATREAD_CLUSTERTREE | MCLX_ENSURE_ROOT ) ) mcxDie(1, me, "failure reading file") ; thetree = mclxCatNewick(&cat, tabr, newick_bits) ; fwrite(thetree->str, 1, thetree->len, xfout->fp) ; fputc('\n', xfout->fp) ; mcxIOclose(xfout) ; return 0 ; } while (1) { mclxIOdumper dumper ; mclxCat cat ; dim i ; if (xf_tab && !lazy_tab) cat_bits |= MCLX_REQUIRE_GRAPH ; mclxCatInit(&cat) ; if (mclxCatRead(xf_mx, &cat, catmax, NULL, NULL, cat_bits)) break ; for (i=0;i<cat.n_level;i++) { mclx* mx = cat.level[i].mx ; if (restrict_tabr || restrict_tabc) { mclx* sub ; sub = mclxSub ( mx , restrict_tabc ? restrict_tabc->domain : mx->dom_cols , restrict_tabr ? restrict_tabr->domain : mx->dom_rows ) ; mx = sub ; } /* noteme fixme dangersign mx now may violate some 'cat' invariant */ if (sort_mode) { if (!strcmp(sort_mode, "size-ascending")) mclxColumnsRealign(mx, mclvSizeCmp) ; else if (!strcmp(sort_mode, "size-descending")) mclxColumnsRealign(mx, mclvSizeRevCmp) ; else mcxErr(me, "unknown sort mode <%s>", sort_mode) ; if (catmax != 1) mcxErr(me, "-sort option and cat mode may fail or corrupt") ; } if (xf_tab && !tabr) { if (!( tabr = mclTabRead (xf_tab, lazy_tab ? NULL : mx->dom_rows, RETURN_ON_FAIL) ) ) mcxDie(1, me, "consider using --lazy-tab option") ; tabc = tabr ; mcxIOclose(xf_tab) ; } else { if (!tabr && xf_tabr) { if (!(tabr = mclTabRead (xf_tabr, lazy_tab ? NULL : mx->dom_rows, RETURN_ON_FAIL) ) ) mcxDie(1, me, "consider using --lazy-tab option") ; mcxIOclose(xf_tabr) ; } if (!tabc && xf_tabc) { if (!( tabc = mclTabRead (xf_tabc, lazy_tab ? NULL : mx->dom_cols, RETURN_ON_FAIL) ) ) mcxDie(1, me, "consider using --lazy-tab option") ; mcxIOclose(xf_tabc) ; } } ; if (transpose) { mclx* tp = mclxTranspose(mx) ; mclxFree(&mx) ; mx = tp ; if (tabc || tabr) { mclTab* tabt = tabc ; tabc = tabr ; tabr = tabt ; } } if (mode_dump == MCLX_DUMP_TABLE) BIT_ON(modes, MCLX_DUMP_TABLE_HEADER) ; mclxIOdumpSet(&dumper, modes, sep_lead_g, sep_row_g, sep_val_g) ; dumper.table_nlines = table_nlines ; dumper.table_nfields = table_nfields ; dumper.prefixc = prefixc_g ; if (split_stem) { mcxTing* ting = mcxTingPrint(NULL, "%s.%03d", split_stem, split_idx) ; mcxIOclose(xfout) ; mcxIOrenew(xfout, ting->str, "w") ; split_idx += split_inc ; } if ( mclxIOdump ( mx , xfout , &dumper , tabc , tabr , digits , RETURN_ON_FAIL ) ) mcxDie(1, me, "something suboptimal") ; mclxFree(&mx) ; if (sep_cat_g && i+1 < cat.n_level) fprintf(xfout->fp, "%s\n", sep_cat_g) ; } break ; } mcxIOfree(&xf_mx) ; mcxIOfree(&xfout) ; mcxIOfree(&xf_tab) ; mcxIOfree(&xf_tabr) ; mcxIOfree(&xf_tabc) ; mcxTingFree(&line) ; return 0 ; }
dim clmAdjust ( mclx* mx , mclx* cl , dim cls_size_max , mclx** cl_adjustedpp , mclv** ls_adjustedpp /* nodes that moved around */ , dim* sjd_left , dim* sjd_right ) { dim sum_adjusted = 0, n_ite = 0 ; dim dist_curr_adj = 0, dist_adj_curr = 0 ; mclx* cl_adj = NULL ; mclx* cl_curr = cl ; mclv* ls_adjusted = mclvInit(NULL) ; clmXScore score_curr, score_adj ; const char* me = "clmAdjust" ; *cl_adjustedpp = NULL ; *ls_adjustedpp = NULL ; while (1) { dim n_adjusted ; double cov_curr, cov_adj, frac_curr = 0.0, frac_adj = 0.0 ; mclv* cid_affected = NULL, *nid_affected = NULL ; dim o, m, e ; if (n_ite++ >= 100) break ; mclxColumnsRealign(cl_curr, mclvSizeCmp) ; if ( !(n_adjusted = clm_clm_adjust (mx, cl_curr, cls_size_max, &cl_adj, &cid_affected, &nid_affected) ) ) break ; mcxTell ( me , "assembled %lu nodes with %lu clusters affected" , (ulong) n_adjusted , (ulong) cid_affected->n_ivps ) ; clmXScanInit(&score_curr) ; clmXScanInit(&score_adj) ; clmXScanDomainSet(mx, cl_curr,cid_affected, &score_curr) ; clmXScanDomainSet(mx, cl_adj, cid_affected, &score_adj) ; clmXScoreCoverage(&score_curr, &cov_curr, NULL) ; clmXScoreCoverage(&score_adj , &cov_adj , NULL) ; if (score_curr.n_hits && score_adj.n_hits) frac_curr = score_curr.sum_i / score_curr.n_hits , frac_adj = score_adj.sum_i / score_adj.n_hits ; mcxLog ( MCX_LOG_LIST , me , "consider (%.5f|%.5f|%lu) vs (%.5f|%.5f|%lu)" , cov_adj, frac_adj, (ulong) score_adj.n_hits , cov_curr, frac_curr, (ulong) score_curr.n_hits ) /* experience tells us that mcl's funneling * worsens frac */ ; if (frac_adj <= frac_curr) { mclvFree(&cid_affected) ; mclvFree(&nid_affected) ; break ; } clmEnstrict(cl_adj, &o, &m, &e, 0) ; clmSJDistance(cl_curr, cl_adj, NULL, NULL, &dist_curr_adj, &dist_adj_curr) ; mcxLog ( MCX_LOG_AGGR , me , "distance %lu|%lu" , (ulong) dist_curr_adj, (ulong) dist_adj_curr ) ; mclvAdd(ls_adjusted, nid_affected, ls_adjusted) ; if (cl_curr != cl) mclxFree(&cl_curr) ; cl_curr = cl_adj ; sum_adjusted += n_adjusted ; mclvFree(&cid_affected) ; mclvFree(&nid_affected) ; } if (cl_curr != cl) /* fixme free logic */ { mclxColumnsRealign(cl_curr, mclvSizeRevCmp) ; *cl_adjustedpp = cl_curr ; *ls_adjustedpp = ls_adjusted ; clmSJDistance (cl, cl_curr, NULL, NULL, &dist_curr_adj, &dist_adj_curr) ; if (sjd_left) *sjd_left = dist_curr_adj , *sjd_right = dist_adj_curr ; } else { if (sjd_left) *sjd_left = 0 , *sjd_right = 0 ; mclvFree(&ls_adjusted) ; } mcxLog ( MCX_LOG_AGGR , me , "total adjusted %lu, final distance %lu|%lu" , (ulong) sum_adjusted , (ulong) dist_curr_adj , (ulong) dist_adj_curr ) ; mclxColumnsRealign(cl, mclvSizeRevCmp) ; return sum_adjusted ; }