コード例 #1
0
ファイル: ftrl.cpp プロジェクト: rpdodo/mllib
void ftrl_proximal::update(SparseVector<float> x, float p, float y)
{
    for (SparseVector<float>::InnerIterator it(x); it; ++it)
    {
        int i = it.index();
        float x_i = it.value();
        float g = (p - y) * x_i;
        float sigma = (sqrt(n_(i) + g * g) - sqrt(n_(i))) / alpha_;
        z_(i) += g - sigma * w_(i);
        n_(i) += g * g;
    }
}
コード例 #2
0
ファイル: wallDist.C プロジェクト: mikemt/OpenFOAM-dev
void Foam::wallDist::constructn() const
{
    n_ = tmp<volVectorField>
    (
        new volVectorField
        (
            IOobject
            (
                "n" & patchTypeName_,
                mesh().time().timeName(),
                mesh()
            ),
            mesh(),
            dimensionedVector("n" & patchTypeName_, dimless, vector::zero),
            patchDistMethod::patchTypes<vector>(mesh(), patchIDs_)
        )
    );

    const fvPatchList& patches = mesh().boundary();

    forAllConstIter(labelHashSet, patchIDs_, iter)
    {
        label patchi = iter.key();
        n_().boundaryField()[patchi] == patches[patchi].nf();
    }
コード例 #3
0
void show_account_list_config_dialog(SFLPhoneClient *client)
{
    account_list_dialog = GTK_DIALOG(gtk_dialog_new_with_buttons(_("Accounts"),
                                     GTK_WINDOW(client->win),
                                     GTK_DIALOG_DESTROY_WITH_PARENT, NULL,
                                     NULL));

    /* Set window properties */
    gtk_container_set_border_width(GTK_CONTAINER(account_list_dialog), 0);
    gtk_window_set_resizable(GTK_WINDOW(account_list_dialog), FALSE);

    GtkWidget *accountFrame = gnome_main_section_new(_("Configured Accounts"));
    gtk_box_pack_start(GTK_BOX(gtk_dialog_get_content_area(account_list_dialog)),
                       accountFrame, TRUE, TRUE, 0);
    gtk_widget_show(accountFrame);
    g_signal_connect(G_OBJECT(account_list_dialog), "destroy",
                     G_CALLBACK(dialog_destroy_cb), NULL);

    /* Accounts tab */
    GtkWidget *tab = create_account_list(client);
    gtk_widget_show(tab);
    gtk_container_add(GTK_CONTAINER(accountFrame), tab);

    /* Status bar for the account list */
    account_list_status_bar = gtk_statusbar_new();
    gtk_widget_show(account_list_status_bar);
    gtk_box_pack_start(GTK_BOX(gtk_dialog_get_content_area(account_list_dialog)), account_list_status_bar, TRUE, TRUE, 0);

    const gint num_accounts = account_list_get_registered_accounts();

    if (num_accounts) {
        gchar * message = g_strdup_printf(n_("There is %d active account",
                                             "There are %d active accounts",
                                             num_accounts), num_accounts);
        gtk_statusbar_push(GTK_STATUSBAR(account_list_status_bar), CONTEXT_ID_REGISTRATION,
                           message);
        g_free(message);
    } else {
        gtk_statusbar_push(GTK_STATUSBAR(account_list_status_bar), CONTEXT_ID_REGISTRATION,
                           _("You have no active accounts"));
    }

    gtk_dialog_run(account_list_dialog);

    status_bar_display_account();

    gtk_widget_destroy(GTK_WIDGET(account_list_dialog));

    /* Invalidate static pointers */
    account_list_dialog = NULL;
    account_list_status_bar = NULL;
    edit_button = NULL;
    delete_button = NULL;
    move_down_button = NULL;
    move_up_button = NULL;
    account_store = NULL;

    update_actions(client);
}
コード例 #4
0
int main(int argc, char **argv)
{
	ros::init (argc, argv, "optris_imager_node");

	// private node handle to support command line parameters for rosrun
	ros::NodeHandle n_("~");

	std::string xmlConfig = "";
	n_.getParam("xmlConfig", xmlConfig);

	// A specific configuration file for each imager device is needed (cf. config directory)
	struct stat s;
	if(stat(xmlConfig.c_str(), &s) != 0)
	{
		std::cerr << "usage: rosrun <package> <node> _xmlConfig:=<xmlConfig>" << std::endl;
		std::cerr << " verify that <xmlConfig> is existent" << std::endl;
		return -1;
	}

	ros::NodeHandle n;

	_imager = new optris::PIImager(xmlConfig.c_str());

	ros::ServiceServer service = n_.advertiseService("auto_flag", onAutoFlag);
	_img_pub = n.advertise<sensor_msgs::Image>("thermal_image" , 1);

	unsigned char* bufferRaw = new unsigned char[_imager->getRawBufferSize()];

	_imager->setFrameCallback(onFrame);

	_thermal_image.header.frame_id = "thermal_image";
	_thermal_image.height          = _imager->getHeight();
	_thermal_image.width 	       = _imager->getWidth();
	_thermal_image.encoding        = "mono16";
	_thermal_image.step		       = _thermal_image.width*2;
	_thermal_image.data.resize(_thermal_image.height*_thermal_image.step);

	_imager->startStreaming();

	// loop over acquire-process-release-publish steps
	// Images are published in raw format (unsigned short, see onFrame callback for details)
	ros::Rate loop_rate(_imager->getMaxFramerate());
	while (ros::ok())
	{
		_imager->getFrame(bufferRaw);
		_imager->process(bufferRaw);
		_imager->releaseFrame();
		loop_rate.sleep();
	}

	delete [] bufferRaw;
	delete _imager;

	return 0;
}
コード例 #5
0
	void process(const std::string,const XMLCh* v)
	{
		std::string s=XMLChString(v);
		T i;
		std::stringstream ss(s);
		ss >> i;

		if (!ss.fail())
			n_(i);
		else
			std::cerr << "Failed to parse '" << s << "' as type " << std::endl;
	}
コード例 #6
0
ファイル: sflnotify.c プロジェクト: dyfet/sflphone
void
notify_voice_mails(guint count, account_t* acc)
{
#if USE_NOTIFY
    // the account is different from NULL
    gchar *title = g_markup_printf_escaped(_("%s account : %s") ,
                                           (gchar*) g_hash_table_lookup(acc->properties , ACCOUNT_TYPE) ,
                                           (gchar*) g_hash_table_lookup(acc->properties , ACCOUNT_ALIAS)) ;
    gchar *body = g_markup_printf_escaped(n_("%d voice mail", "%d voice mails", count), count);

    create_new_gnome_notification(title,
                                  body,
                                  NOTIFY_URGENCY_LOW,
                                  NOTIFY_EXPIRES_DEFAULT);
#endif
}
コード例 #7
0
int main (int argc, char* argv[])
{
	ros::init (argc, argv, "optris_colorconvert_node");

	// private node handle to support command line parameters for rosrun
	ros::NodeHandle n_("~");

	int palette = 6;
	n_.getParam("palette", palette);
	_palette = (optris::EnumOptrisColoringPalette) palette;

	optris::EnumOptrisPaletteScalingMethod scalingMethod = optris::eMinMax;
	int sm;
	n_.getParam("paletteScaling", sm);
	if(sm>=1 && sm <=4) scalingMethod = (optris::EnumOptrisPaletteScalingMethod) sm;

	_iBuilder.setPaletteScalingMethod(scalingMethod);
	_iBuilder.setPalette(_palette);

	double tMin = 20.;
	double tMax = 40.;
	n_.getParam("temperatureMin", tMin);
	n_.getParam("temperatureMax", tMax);
	_iBuilder.setManualTemperatureRange((float)tMin, (float)tMax);

	ros::NodeHandle n;
	image_transport::ImageTransport it(n);
	image_transport::Subscriber subThermal = it.subscribe("thermal_image", 1, onThermalDataReceive);
	image_transport::Subscriber subVisible = it.subscribe("visible_image", 1, onVisibleDataReceive);

    image_transport::Publisher pubt = it.advertise("thermal_image_view", 1);
    image_transport::Publisher pubv = it.advertise("visible_image_view", 1);
    _pubThermal = &pubt;
    _pubVisible = &pubv;

	// specify loop rate: a meaningful value according to your publisher configuration
	ros::Rate loop_rate(30);
	while (ros::ok())
	{
        ros::spinOnce();
        loop_rate.sleep();
	}

	if(_bufferThermal)	delete [] _bufferThermal;
	if(_bufferVisible)  delete [] _bufferVisible;
}
コード例 #8
0
ファイル: RosAria.cpp プロジェクト: warcraft23/MobileRobots
/*
 * To Read the parameter
*/
void RosAriaNode::readParameters()
{
  // Robot Parameters  
  robot->lock();
  ros::NodeHandle n_("~");
  if (n_.hasParam("TicksMM"))
  {
    n_.getParam( "TicksMM", TicksMM);
    ROS_INFO("Setting TicksMM from ROS Parameter: %d", TicksMM);
    robot->comInt(93, TicksMM);
  }
  else
  {
    TicksMM = robot->getOrigRobotConfig()->getTicksMM();
    n_.setParam( "TicksMM", TicksMM);
    ROS_INFO("Setting TicksMM from robot EEPROM: %d", TicksMM);
  }
  
  if (n_.hasParam("DriftFactor"))
  {
    n_.getParam( "DriftFactor", DriftFactor);
    ROS_INFO("Setting DriftFactor from ROS Parameter: %d", DriftFactor);
    robot->comInt(89, DriftFactor);
  }
  else
  {
    DriftFactor = robot->getOrigRobotConfig()->getDriftFactor();
    n_.setParam( "DriftFactor", DriftFactor);
    ROS_INFO("Setting DriftFactor from robot EEPROM: %d", DriftFactor);
  }
  
  if (n_.hasParam("RevCount"))
  {
    n_.getParam( "RevCount", RevCount);
    ROS_INFO("Setting RevCount from ROS Parameter: %d", RevCount);
    robot->comInt(88, RevCount);
  }
  else
  {
    RevCount = robot->getOrigRobotConfig()->getRevCount();
    n_.setParam( "RevCount", RevCount);
    ROS_INFO("Setting RevCount from robot EEPROM: %d", RevCount);
  }
  robot->unlock();
}
コード例 #9
0
ファイル: ftrl.cpp プロジェクト: rpdodo/mllib
float ftrl_proximal::predict(SparseVector<float> x)
{
    double wTx = 0.0;

    for (SparseVector<float>::InnerIterator it(x); it; ++it)
    {
        int i = it.index();
        int sign = 0;
        if(z_(i) < 0)
            sign =-1;
        else 
            sign = 1;

        if(z_(i) * sign <= lambda1_)
            w_(i) = 0.0;
        else 
            w_(i) = (sign * lambda1_ - z_(i)) / ((beta_ + sqrt(n_(i))) / alpha_ + lambda2_);

        wTx += w_(i) * it.value();
    }

    return 1.0 / (1.0 + exp(-max(min(wTx, 35.0), -35.0)));
}
コード例 #10
0
ファイル: do_cum.c プロジェクト: rashadkm/grass_cmake
int do_cum_mfd(void)
{
    int r, c, dr, dc;
    CELL is_swale;
    DCELL value, valued, tci_div, sum_contour, cell_size;
    int killer, threshold;

    /* MFD */
    int mfd_cells, stream_cells, swale_cells, astar_not_set, is_null;
    double *dist_to_nbr, *contour, *weight, sum_weight, max_weight;
    int r_nbr, c_nbr, r_max, c_max, ct_dir, np_side;
    CELL ele, ele_nbr, aspect, is_worked;
    double prop, max_val;
    int workedon, edge, flat;
    int asp_r[9] = { 0, -1, -1, -1, 0, 1, 1, 1, 0 };
    int asp_c[9] = { 0, 1, 0, -1, -1, -1, 0, 1, 1 };
    int this_index, down_index, nbr_index;
    
    G_message(_("SECTION 3a: Accumulating Surface Flow with MFD."));
    G_debug(1, "MFD convergence factor set to %d.", c_fac);

    /* distances to neighbours, weights, contour lengths */
    dist_to_nbr = (double *)G_malloc(sides * sizeof(double));
    weight = (double *)G_malloc(sides * sizeof(double));
    contour = (double *)G_malloc(sides * sizeof(double));
    
    cell_size = get_dist(dist_to_nbr, contour);

    flag_clear_all(worked);
    workedon = 0;

    if (bas_thres <= 0)
	threshold = 60;
    else
	threshold = bas_thres;

    for (killer = 1; killer <= do_points; killer++) {
	G_percent(killer, do_points, 1);
	this_index = astar_pts[killer];
	seg_index_rc(alt_seg, this_index, &r, &c);
	FLAG_SET(worked, r, c);
	aspect = asp[this_index];
	if (aspect) {
	    dr = r + asp_r[ABS(aspect)];
	    dc = c + asp_c[ABS(aspect)];
	}
	else
	    dr = dc = -1;
	if (dr >= 0 && dr < nrows && dc >= 0 && dc < ncols) { /* if ((dr = astar_pts[killer].downr) > -1) { */
	    value = wat[this_index];
	    down_index = SEG_INDEX(wat_seg, dr, dc);

	    /* get weights */
	    max_weight = 0;
	    sum_weight = 0;
	    np_side = -1;
	    mfd_cells = 0;
	    astar_not_set = 1;
	    ele = alt[this_index];
	    is_null = 0;
	    edge = 0;
	    /* this loop is needed to get the sum of weights */
	    for (ct_dir = 0; ct_dir < sides; ct_dir++) {
		/* get r, c (r_nbr, c_nbr) for neighbours */
		r_nbr = r + nextdr[ct_dir];
		c_nbr = c + nextdc[ct_dir];
		weight[ct_dir] = -1;

		if (dr == r_nbr && dc == c_nbr)
		    np_side = ct_dir;

		/* check that neighbour is within region */
		if (r_nbr >= 0 && r_nbr < nrows && c_nbr >= 0 &&
		    c_nbr < ncols) {

		    nbr_index = SEG_INDEX(wat_seg, r_nbr, c_nbr);

		    valued = wat[nbr_index];
		    ele_nbr = alt[nbr_index];

		    is_worked = FLAG_GET(worked, r_nbr, c_nbr);
		    if (is_worked == 0) {
			is_null = Rast_is_c_null_value(&ele_nbr);
			edge = is_null;
			if (!is_null && ele_nbr <= ele) {
			    if (ele_nbr < ele) {
				weight[ct_dir] =
				    mfd_pow(((ele -
					      ele_nbr) / dist_to_nbr[ct_dir]),
					    c_fac);
			    }
			    if (ele_nbr == ele) {
				weight[ct_dir] =
				    mfd_pow((0.5 / dist_to_nbr[ct_dir]),
					    c_fac);
			    }
			    sum_weight += weight[ct_dir];
			    mfd_cells++;

			    if (weight[ct_dir] > max_weight) {
				max_weight = weight[ct_dir];
			    }

			    if (dr == r_nbr && dc == c_nbr) {
				astar_not_set = 0;
			    }
			    if (value < 0 && valued > 0)
				wat[nbr_index] = -valued;
			}
		    }
		}
		else
		    edge = 1;
		if (edge)
		    break;
	    }
	    /* do not distribute flow along edges, this causes artifacts */
	    if (edge) {
		continue;
	    }

	    /* honour A * path 
	     * mfd_cells == 0: fine, SFD along A * path
	     * mfd_cells == 1 && astar_not_set == 0: fine, SFD along A * path
	     * mfd_cells > 0 && astar_not_set == 1: A * path not included, add to mfd_cells
	     */

	    /* MFD, A * path not included, add to mfd_cells */
	    if (mfd_cells > 0 && astar_not_set == 1) {
		mfd_cells++;
		sum_weight += max_weight;
		weight[np_side] = max_weight;
	    }

	    /* set flow accumulation for neighbours */
	    max_val = -1;
	    tci_div = sum_contour = 0.;

	    if (mfd_cells > 1) {
		prop = 0.0;
		for (ct_dir = 0; ct_dir < sides; ct_dir++) {
		    r_nbr = r + nextdr[ct_dir];
		    c_nbr = c + nextdc[ct_dir];

		    /* check that neighbour is within region */
		    if (r_nbr >= 0 && r_nbr < nrows && c_nbr >= 0 &&
			c_nbr < ncols && weight[ct_dir] > -0.5) {
			is_worked = FLAG_GET(worked, r_nbr, c_nbr);
			if (is_worked == 0) {

			    nbr_index = SEG_INDEX(wat_seg, r_nbr, c_nbr);

			    weight[ct_dir] = weight[ct_dir] / sum_weight;
			    /* check everything adds up to 1.0 */
			    prop += weight[ct_dir];

			    if (atanb_flag) {
				sum_contour += contour[ct_dir];
				tci_div += get_slope_tci(ele, alt[nbr_index],
				                         dist_to_nbr[ct_dir]) *
					   weight[ct_dir];
			    }

			    valued = wat[nbr_index];
			    if (value > 0) {
				if (valued > 0)
				    valued += value * weight[ct_dir];
				else
				    valued -= value * weight[ct_dir];
			    }
			    else {
				if (valued < 0)
				    valued += value * weight[ct_dir];
				else
				    valued = value * weight[ct_dir] - valued;
			    }
			    wat[nbr_index] = valued;
			}
			else if (ct_dir == np_side) {
			    /* check for consistency with A * path */
			    workedon++;
			}
		    }
		}
		if (ABS(prop - 1.0) > 5E-6f) {
		    G_warning(_("MFD: cumulative proportion of flow distribution not 1.0 but %f"),
			      prop);
		}
	    }
	    /* SFD-like accumulation */
	    else {
		valued = wat[down_index];
		if (value > 0) {
		    if (valued > 0)
			valued += value;
		    else
			valued -= value;
		}
		else {
		    if (valued < 0)
			valued += value;
		    else
			valued = value - valued;
		}
		wat[down_index] = valued;

		if (atanb_flag) {
		    sum_contour = contour[np_side];
		    tci_div = get_slope_tci(ele, alt[down_index],
				            dist_to_nbr[np_side]);
		}
	    }
	    /* topographic wetness index ln(a / tan(beta)) and
	     * stream power index a * tan(beta) */
	    if (atanb_flag) {
		sca[this_index] = fabs(wat[this_index]) *
		                  (cell_size / sum_contour);
		tanb[this_index] = tci_div;
	    }
	}
    }
    if (workedon)
	G_warning(n_("MFD: A * path already processed when distributing flow: %d of %d cell", 
        "MFD: A * path already processed when distributing flow: %d of %d cells", 
        do_points),
		  workedon, do_points);


    G_message(_("SECTION 3b: Adjusting drainage directions."));

    for (killer = 1; killer <= do_points; killer++) {
	G_percent(killer, do_points, 1);
	this_index = astar_pts[killer];
	seg_index_rc(alt_seg, this_index, &r, &c);
	FLAG_UNSET(worked, r, c);
	aspect = asp[this_index];
	if (aspect) {
	    dr = r + asp_r[ABS(aspect)];
	    dc = c + asp_c[ABS(aspect)];
	}
	else
	    dr = dc = -1;
	if (dr >= 0 && dr < nrows && dc >= 0 && dc < ncols) { /* if ((dr = astar_pts[killer].downr) > -1) { */
	    value = wat[this_index];
	    down_index = SEG_INDEX(wat_seg, dr, dc);

	    r_max = dr;
	    c_max = dc;

	    /* get max flow accumulation */
	    max_val = -1;
	    stream_cells = 0;
	    swale_cells = 0;
	    ele = alt[this_index];
	    is_null = 0;
	    edge = 0;
	    flat = 1;

	    for (ct_dir = 0; ct_dir < sides; ct_dir++) {
		/* get r, c (r_nbr, c_nbr) for neighbours */
		r_nbr = r + nextdr[ct_dir];
		c_nbr = c + nextdc[ct_dir];

		/* check that neighbour is within region */
		if (r_nbr >= 0 && r_nbr < nrows && c_nbr >= 0 &&
		    c_nbr < ncols) {

		    nbr_index = SEG_INDEX(wat_seg, r_nbr, c_nbr);

		    /* check for swale or stream cells */
		    is_swale = FLAG_GET(swale, r_nbr, c_nbr);
		    if (is_swale)
			swale_cells++;
		    valued = wat[nbr_index];
		    ele_nbr = alt[nbr_index];
		    edge = Rast_is_c_null_value(&ele_nbr);
		    if ((ABS(valued) + 0.5) >= threshold  &&
		        ele_nbr > ele)
			stream_cells++;

		    is_worked = !(FLAG_GET(worked, r_nbr, c_nbr));
		    if (is_worked == 0) {
			if (ele_nbr != ele)
			    flat = 0;
			is_null = Rast_is_c_null_value(&ele_nbr);
			edge = is_null;
			if (!is_null && ABS(valued) > max_val) {
			    max_val = ABS(valued);
			    r_max = r_nbr;
			    c_max = c_nbr;
			}
		    }
		}
		else
		    edge = 1;
		if (edge)
		    break;
	    }
	    /* do not distribute flow along edges, this causes artifacts */
	    if (edge) {
		is_swale = FLAG_GET(swale, r, c);
		if (is_swale && aspect > 0) {
		    aspect = -1 * drain[r - r_nbr + 1][c - c_nbr + 1];
		    asp[this_index] = aspect;
		}
		continue;
	    }
	    
	    /* update asp */
	    if (dr != r_max || dc != c_max) {
		aspect = drain[r - r_max + 1][c - c_max + 1];
		if (asp[this_index] < 0)
		    aspect = -aspect;
		asp[this_index] = aspect;
	    }
	    is_swale = FLAG_GET(swale, r, c);
	    /* start new stream */
	    value = ABS(value) + 0.5;
	    if (!is_swale && (int)value >= threshold && stream_cells < 1 &&
		swale_cells < 1 && !flat) {
		FLAG_SET(swale, r, c);
		is_swale = 1;
	    }
	    /* continue stream */
	    if (is_swale) {
		FLAG_SET(swale, r_max, c_max);
	    }
	    else {
		if (er_flag && !is_swale)
		    slope_length(r, c, r_max, c_max);
	    }
	}
    }

    G_free(astar_pts);

    flag_destroy(worked);

    G_free(dist_to_nbr);
    G_free(weight);

    return 0;
}
コード例 #11
0
ファイル: cats.c プロジェクト: rashadkm/grass_cmake
/*!
   \brief Set category constraints using 'where' or 'cats' option and layer number.

   \param Map pointer to Map_info structure
   \param layer layer number
   \param where where statement
   \param catstr category list as string

   \return pointer to cat_list structure or NULL
 */
struct cat_list *Vect_cats_set_constraint(struct Map_info *Map, int layer,
                                         char *where, char *catstr)
{
    struct cat_list *list = NULL;
    int ret;

    if (layer < 1) {
	G_warning(_("Layer number must be > 0 for category constraints"));
	/* no valid constraints, all categories qualify */
	return list;
    }

    /* where has precedence over cats */
    if (where) {
	struct field_info *Fi = NULL;
	dbDriver *driver = NULL;
	int ncats, *cats = NULL;
	int i, j;

	if (catstr)
	    G_warning(_("'%s' and '%s' parameters were supplied, cats will be ignored"), "where", "cats");

	Fi = Vect_get_field(Map, layer);
	if (!Fi) {
	    G_fatal_error(_("Database connection not defined for layer %d"),
			  layer);
	}

	G_verbose_message(_("Loading categories from table <%s>..."), Fi->table);

	driver = db_start_driver_open_database(Fi->driver, Fi->database);
	if (driver == NULL)
	    G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			  Fi->database, Fi->driver);
	
	ncats = db_select_int(driver, Fi->table, Fi->key, where,
			      &cats);
	if (ncats == -1)
		G_fatal_error(_("Unable select records from table <%s>"),
			      Fi->table);
	G_verbose_message(n_("One category loaded", "%d categories loaded", ncats), ncats);
	    
	db_close_database_shutdown_driver(driver);

	/* sort */
	qsort(cats, ncats, sizeof(int), cmp);
	
	/* remove duplicates */
	j = 1;
	for (i = 1; i < ncats; i++) {
	    if (cats[i] != cats[j - 1]) {
		cats[j] = cats[i];
		j++;
	    }
	}
	ncats = j;
	
	/* convert to cat list */
	list = Vect_new_cat_list();
	
	ret = Vect_array_to_cat_list(cats, ncats, list);
	if (ret == 0)
	    G_warning(_("No categories selected with '%s' option"), "where");
	
	if (cats)
	    G_free(cats);
    }
    else if (catstr) {
	list = Vect_new_cat_list();

	ret = Vect_str_to_cat_list(catstr, list);
	if (ret > 0)
	    G_warning(_("%d errors in '%s' option"), ret, "cats");
    }
    
    if (list) {
	if (list->n_ranges < 1) {
	    Vect_destroy_cat_list(list);
	    list = NULL;
	}
	else
	    list->field = layer;
    }
	
    return list;
}
コード例 #12
0
// actual test application
int main(int argc, char **argv)
{
  // init ROS
  ros::init(argc, argv, "pr2_multi_vel_test");
  ros::NodeHandle n_("~");

  // advertise joint velocity command
  ros::Publisher qdot_des_pub_ = n_.advertise<std_msgs::Float64MultiArray>("multi_vel_command", 1);

  // construct RobotArm object...
  RobotArm arm(n_);
  // ...init it
  ROS_INFO("Init of arm action interface...");
  if(!arm.init())
    return 0;

  // activate standard controller to go to desired configuration
  ROS_INFO("Starting standard arm controllers...");
  ros::Duration(0.5).sleep();
  if(!arm.startControllerPlugin())
    return 0;

  // ... use it to go the initial joint configuration
  ROS_INFO("Going to desired initial configuration...");
  if(!arm.gotoDesiredConfiguration())
    return 0;

  // ... and deactivate the standard controller
  ROS_INFO("Stopping standard arm controllers...");
  if(!arm.stopControllerPlugin())
    return 0;
  
  // get controller namespace and desired test parameters from parameter server
  std::string joint_to_test_;
  double joint_velocity_, test_time_;
  int joint_index_;
  std::string vel_controller_ns_;

  if(!retrieveParameter(n_, "", "vel_controller_namespace", vel_controller_ns_))
    return 0;
  if(!retrieveParameter(n_, vel_controller_ns_, "joint_to_test", joint_to_test_))
    return 0;
  if(!retrieveParameter(n_, vel_controller_ns_, "joint_index", joint_index_))
    return 0;
  if(!retrieveParameter(n_, vel_controller_ns_, "joint_velocity", joint_velocity_))
    return 0;
  if(!retrieveParameter(n_, vel_controller_ns_, "test_time", test_time_))
    return 0;

  // start test with user questions
  performTest(qdot_des_pub_, joint_to_test_, joint_index_, joint_velocity_, test_time_);
  printAndSleep(5.0);

  // restart standard controller to be nice
  ROS_INFO("Re-starting standard arm controllers...");
  if(!arm.startControllerPlugin())
    return 0;

  // exit
  return 0;
}
コード例 #13
0
ファイル: main.c プロジェクト: rkrug/grass-ci
int main(int argc, char **argv)
{
    int i, j, k, ret;
    int nlines, type, ltype, afield, tfield, geo, cat;
    int sp, nsp, nspused, node, line;
    struct Option *map, *output, *afield_opt, *tfield_opt, *afcol, *type_opt,
	*term_opt, *nsp_opt;
    struct Flag *geo_f;
    struct GModule *module;
    struct Map_info Map, Out;
    int *testnode;		/* array all nodes: 1 - should be tested as Steiner, 
				 * 0 - no need to test (unreachable or terminal) */
    struct ilist *TList;	/* list of terminal nodes */
    struct ilist *StArcs;	/* list of arcs on Steiner tree */
    struct ilist *StNodes;	/* list of nodes on Steiner tree */
    struct boxlist *pointlist;
    double cost, tmpcost;
    struct cat_list *Clist;
    struct line_cats *Cats;
    struct line_pnts *Points;
    
    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("network"));
    G_add_keyword(_("steiner tree"));
    module->label =
	_("Creates Steiner tree for the network and given terminals.");
    module->description =
	_("Note that 'Minimum Steiner Tree' problem is NP-hard "
	  "and heuristic algorithm is used in this module so "
	  "the result may be sub optimal.");

    map = G_define_standard_option(G_OPT_V_INPUT);
    output = G_define_standard_option(G_OPT_V_OUTPUT);

    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->key = "arc_type";
    type_opt->options = "line,boundary";
    type_opt->answer = "line,boundary";
    type_opt->label = _("Arc type");

    afield_opt = G_define_standard_option(G_OPT_V_FIELD);
    afield_opt->key = "arc_layer";
    afield_opt->answer = "1";
    afield_opt->label = _("Arc layer");

    tfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    tfield_opt->key = "node_layer";
    tfield_opt->answer = "2";
    tfield_opt->label = _("Node layer (used for terminals)");

    afcol = G_define_option();
    afcol->key = "acolumn";
    afcol->type = TYPE_STRING;
    afcol->required = NO;
    afcol->description = _("Arcs' cost column (for both directions)");

    term_opt = G_define_standard_option(G_OPT_V_CATS);
    term_opt->key = "terminal_cats";
    term_opt->required = YES;
    term_opt->description =
	_("Categories of points on terminals (layer is specified by nlayer)");

    nsp_opt = G_define_option();
    nsp_opt->key = "npoints";
    nsp_opt->type = TYPE_INTEGER;
    nsp_opt->required = NO;
    nsp_opt->multiple = NO;
    nsp_opt->answer = "-1";
    nsp_opt->description = _("Number of Steiner points (-1 for all possible)");

    geo_f = G_define_flag();
    geo_f->key = 'g';
    geo_f->description =
	_("Use geodesic calculation for longitude-latitude locations");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    Cats = Vect_new_cats_struct();
    Points = Vect_new_line_struct();

    type = Vect_option_to_types(type_opt);
    afield = atoi(afield_opt->answer);

    TList = Vect_new_list();
    StArcs = Vect_new_list();
    StNodes = Vect_new_list();

    Clist = Vect_new_cat_list();
    tfield = atoi(tfield_opt->answer);
    Vect_str_to_cat_list(term_opt->answer, Clist);

    G_debug(1, "Imput categories:\n");
    for (i = 0; i < Clist->n_ranges; i++) {
	G_debug(1, "%d - %d\n", Clist->min[i], Clist->max[i]);
    }

    if (geo_f->answer)
	geo = 1;
    else
	geo = 0;

    Vect_check_input_output_name(map->answer, output->answer, G_FATAL_EXIT);

    Vect_set_open_level(2);

    if (Vect_open_old(&Map, map->answer, "") < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), map->answer);

    nnodes = Vect_get_num_nodes(&Map);
    nlines = Vect_get_num_lines(&Map);

    /* Create list of terminals based on list of categories */
    for (i = 1; i <= nlines; i++) {
	ltype = Vect_get_line_type(&Map, i);
	if (!(ltype & GV_POINT))
	    continue;

	Vect_read_line(&Map, Points, Cats, i);
	if (!(Vect_cat_get(Cats, tfield, &cat)))
	    continue;
	node = Vect_find_node(&Map, Points->x[0], Points->y[0], Points->z[0], 0, 0);
	if (!node) {
	    G_warning(_("Point is not connected to the network (cat=%d)"), cat);
	    continue;
	}
	if (Vect_cat_in_cat_list(cat, Clist)) {
	    Vect_list_append(TList, node);
	}
    }

    nterms = TList->n_values;
    /* GTC Terminal refers to an Steiner tree endpoint */
    G_message(_("Number of terminals: %d\n"), nterms);

    if (nterms < 2) {
        /* GTC Terminal refers to an Steiner tree endpoint */
        G_fatal_error(_("Not enough terminals (< 2)"));
    }

    /* Number of steiner points */
    nsp = atoi(nsp_opt->answer);
    if (nsp > nterms - 2) {
	nsp = nterms - 2;
	G_warning(_("Requested number of Steiner points > than possible"));
    }
    else if (nsp == -1) {
	nsp = nterms - 2;
    }

    G_message(_("Number of Steiner points set to %d\n"), nsp);

    testnode = (int *)G_malloc((nnodes + 1) * sizeof(int));
    for (i = 1; i <= nnodes; i++)
	testnode[i] = 1;

    /* Alloc arrays of costs for nodes, first node at 1 (0 not used) */
    nodes_costs = (double **)G_malloc((nnodes) * sizeof(double *));
    for (i = 0; i < nnodes; i++) {
	nodes_costs[i] =
	    (double *)G_malloc((nnodes - i) * sizeof(double));
	for (j = 0; j < nnodes - i; j++)
	    nodes_costs[i][j] = -1;	/* init, i.e. cost was not calculated yet */
    }

    /* alloc memory from each to each other (not directed) terminal */
    i = nterms + nterms - 2;	/*  max number of terms + Steiner points */
    comps = (int *)G_malloc(i * sizeof(int));
    i = i * (i - 1) / 2;	/* number of combinations */
    term_costs = (COST *) G_malloc(i * sizeof(COST));

    /* alloc memory for costs from Stp to each other terminal */
    i = nterms + nterms - 2 - 1;	/*  max number of terms + Steiner points - 1 */
    sp_costs = (COST *) G_malloc(i * sizeof(COST));

    terms = (int *)G_malloc((nterms + nterms - 2) * sizeof(int));	/* i.e. +(nterms - 2)  St Points */
    /* Create initial parts from list of terminals */
    G_debug(1, "List of terminal nodes (%d):\n", nterms);
    for (i = 0; i < nterms; i++) {
	G_debug(1, "%d\n", TList->value[i]);
	terms[i] = TList->value[i];
	testnode[terms[i]] = 0;	/* do not test as Steiner */
    }

    /* Build graph */
    Vect_net_build_graph(&Map, type, afield, 0, afcol->answer, NULL, NULL,
			 geo, 0);

    /* Init costs for all terminals */
    for (i = 0; i < nterms; i++)
	init_node_costs(&Map, terms[i]);

    /* Test if all terminal may be connected */
    for (i = 1; i < nterms; i++) {
	ret = get_node_costs(terms[0], terms[i], &cost);
	if (ret == 0) {
            /* GTC Terminal refers to an Steiner tree endpoint */
	    G_fatal_error(_("Terminal at node [%d] cannot be connected "
			    "to terminal at node [%d]"), terms[0], terms[i]);
	}
    }

    /* Remove not reachable from list of SP candidates */
    j = 0;
    for (i = 1; i <= nnodes; i++) {
	ret = get_node_costs(terms[0], i, &cost);
	if (ret == 0) {
	    testnode[i] = 0;
	    G_debug(2, "node %d removed from list of Steiner point candidates\n", i );
	    j++;
	}
    }

    G_message(_("[%d] (not reachable) nodes removed from list "
		"of Steiner point candidates"), j);

    /* calc costs for terminals MST */
    ret = mst(&Map, terms, nterms, &cost, PORT_DOUBLE_MAX, NULL, NULL, 0, 1);	/* no StP, rebuild */
    G_message(_("MST costs = %f"), cost);

    /* Go through all nodes and try to use as steiner points -> find that which saves most costs */
    nspused = 0;
    for (j = 0; j < nsp; j++) {
	sp = 0;
	G_verbose_message(_("Search for [%d]. Steiner point"), j + 1);

	for (i = 1; i <= nnodes; i++) {
	    G_percent(i, nnodes, 1);
	    if (testnode[i] == 0) {
		G_debug(3, "skip test for %d\n", i);
		continue;
	    }
	    ret =
		mst(&Map, terms, nterms + j, &tmpcost, cost, NULL, NULL, i,
		    0);
	    G_debug(2, "cost = %f x %f\n", tmpcost, cost);
	    if (tmpcost < cost) {	/* sp candidate */
		G_debug(3,
			"  steiner candidate node = %d mst = %f (x last = %f)\n",
			i, tmpcost, cost);
		sp = i;
		cost = tmpcost;
	    }
	}
	if (sp > 0) {
	    G_message(_("Steiner point at node [%d] was added "
			"to terminals (MST costs = %f)"), sp, cost);
	    terms[nterms + j] = sp;
	    init_node_costs(&Map, sp);
	    testnode[sp] = 0;
	    nspused++;
	    /* rebuild for nex cycle */
	    ret =
		mst(&Map, terms, nterms + nspused, &tmpcost, PORT_DOUBLE_MAX,
		    NULL, NULL, 0, 1);
	}
	else {			/* no steiner found */
	    G_message(_("No Steiner point found -> leaving cycle"));
	    break;
	}
    }

    G_message(_("Number of added Steiner points: %d "
	    "(theoretic max is %d).\n"), nspused, nterms - 2);

    /* Build lists of arcs and nodes for final version */
    ret =
	mst(&Map, terms, nterms + nspused, &cost, PORT_DOUBLE_MAX, StArcs,
	    StNodes, 0, 0);

    /* Calculate true costs, which may be lower than MST if steiner points were not used */

    if (nsp < nterms - 2) {
        G_message(_("Spanning tree costs on complet graph = %f\n"
            "(may be higher than resulting Steiner tree costs!!!)"),
		cost);
    }
    else
        G_message(_("Steiner tree costs = %f"), cost);

    /* Write arcs to new map */
    if (Vect_open_new(&Out, output->answer, Vect_is_3d(&Map)) < 0)
	G_fatal_error(_("Unable to create vector map <%s>"), output->answer);

    Vect_hist_command(&Out);

    G_debug(1, "Steiner tree:");
    G_debug(1, "Arcs' categories (layer %d, %d arcs):", afield,
	    StArcs->n_values);
    
    for (i = 0; i < StArcs->n_values; i++) {
	line = StArcs->value[i];
	ltype = Vect_read_line(&Map, Points, Cats, line);
	Vect_write_line(&Out, ltype, Points, Cats);
	Vect_cat_get(Cats, afield, &cat);
        G_debug(1, "arc cat = %d", cat);
    }
    
    G_debug(1, "Nodes' categories (layer %d, %d nodes):", tfield,
	    StNodes->n_values);

    k = 0;
    pointlist = Vect_new_boxlist(0);
    for (i = 0; i < StNodes->n_values; i++) {
	double x, y, z;
	struct bound_box box;
	
	node = StNodes->value[i];
	
	Vect_get_node_coor(&Map, node, &x, &y, &z);
	box.E = box.W = x;
	box.N = box.S = y;
	box.T = box.B = z;
	Vect_select_lines_by_box(&Map, &box, GV_POINT, pointlist);
	
	nlines = Vect_get_node_n_lines(&Map, node);
	for (j = 0; j < pointlist->n_values; j++) {
	    line = pointlist->id[j];
	    ltype = Vect_read_line(&Map, Points, Cats, line);
	    if (!(ltype & GV_POINT))
		continue;
	    if (!(Vect_cat_get(Cats, tfield, &cat)))
		continue;
	    Vect_write_line(&Out, ltype, Points, Cats);
	    G_debug(1, "node cat = %d", cat);
	    k++;
	}
    }

    Vect_build(&Out);

    G_message(n_("A Steiner tree with %d arc has been built",
            "A Steiner tree with %d arcs has been built", StArcs->n_values),
        StArcs->n_values);
    
    /* Free, ... */
    Vect_destroy_list(StArcs);
    Vect_destroy_list(StNodes);
    Vect_close(&Map);
    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
コード例 #14
0
ファイル: tests_sphere_3D.cpp プロジェクト: xclaeys/bemtool2
void fourier_harmonic_3D(std::vector<Real> harmonics, Real lc, Real R, std::string output_name,int verbose){
    
    ////=============================================================////
    ////=======================  Mesh building  =====================////
    ////=============================================================////
    if (verbose>0){
        std::cout<<"Construction du maillage"<<std::endl;
    }
    gmsh_sphere(("sphere_"+NbrToStr(lc)).c_str(),R,lc,verbose);
    
    ////=============================================================////
    ////=======================  Mesh loading  ======================////
    ////=============================================================////
    if (verbose>0){
        std::cout<<"Chargement du maillage"<<std::endl;
    }
    Real kappa=1.;
    geometry geom;
    load_node_gmsh(geom,("sphere_"+NbrToStr(lc)).c_str());
    
    mesh_2D Omega(geom);
    load_elt_gmsh(Omega,0);
    //gmsh_clean(("sphere_"+NbrToStr(lc)).c_str());
    ////=============================================================////
    ////================== Calcul de la normale =====================////
    ////=============================================================////
    
    nrml_2D n_(Omega);
    
    ////=============================================================////
    ////================ Assemblage de la matrice ===================////
    ////=============================================================////
    if (verbose>0){
        std::cout<<"Assemblage operateurs integraux"<<std::endl;
    }
    int nbelt = nb_elt(Omega);
    P1_2D dof(Omega);
    int nbdof = nb_dof(dof);

    if (verbose>0){
        std::cout<<"Matrice de taille: ";
        std::cout<<nbdof<< std::endl;
        std::cout<<"Nel: ";
        std::cout<<nbelt<< std::endl;
    }

    gmm_dense V(nbdof,nbdof),W(nbdof,nbdof),K(nbdof,nbdof),M(nbdof,nbdof);
    bem<P1_2D,P1_2D, SLP_3D>   Vop (kappa,n_,n_);
    bem<P1_2D,P1_2D, HSP_3D>   Wop (kappa,n_,n_);
    bem<P1_2D,P1_2D, DLP_3D>   Kop (kappa,n_,n_);
    
    progress bar("assembly", nbelt*nbelt,verbose);
    for(int j=0; j<nbelt; j++){
        const elt_2D& tj = Omega[j];
        const N3&     jj = dof[j];
        
        for(int k=0; k<nbelt; k++,bar++){
            const elt_2D& tk = Omega[k];
            const N3&     kk = dof[k];
            V (jj,kk) += Vop  (tj,tk);
            W (jj,kk) += Wop  (tj,tk);
            K (jj,kk) += Kop  (tj,tk);
    
        }
        
        M(jj,jj) += MassP1(tj);
    }
    bar.end();
    

    // for (int l=0;l<harmonics.size();l++){
    //     Real p = harmonics[l];
        
    //     ////=============================================================////
    //     ////================== Harmonique de Fourier ====================////
    //     ////=============================================================////
        
    //     vect<Cplx> Ep;resize(Ep,nbdof);fill(Ep,0.);
        
    //     for (int j=0 ; j<nbelt ; j++){
    //         const elt_2D& seg = Omega[j];
    //         const N3&     I   = dof[j];
                
    //         R3 X0; X0[0] =  seg[0][0];X0[1]=seg[0][1]; X0[2]=seg[0][2];
    //         R3 X1; X1[0] =  seg[1][0];X1[1]=seg[1][1]; X1[2]=seg[1][2];
    //         R3 X2; X2[0] =  seg[2][0];X2[1]=seg[2][1]; X2[2]=seg[2][2];

    //         Real phi0 = atan2(X0[1],X0[0]);
    //         Real phi1 = atan2(X1[1],X1[0]);
    //         Real phi2 = atan2(X2[1],X2[0]);

    //         Real theta0 = acos(X0[2]);
    //         Real theta1 = acos(X1[2]);
    //         Real theta2 = acos(X2[2]);

    //         if (phi0<0){
    //             phi0 += 2 * M_PI;
    //         }
    //         if (phi1<0){
    //             phi1 += 2 * M_PI;
    //         }
    //         if (phi2<0){
    //             phi2 += 2 * M_PI;
    //         }

    //         C3 Vinc;

    //         Vinc[0] =  boost::math::spherical_harmonic(p,p,theta0,phi0);
    //         Vinc[1] =  boost::math::spherical_harmonic(p,p,theta1,phi1);
    //         Vinc[2] =  boost::math::spherical_harmonic(p,p,theta2,phi2);

    //         Ep[I] = Vinc;   
    //     }

    //     vect<Cplx> Eph;resize(Eph,nbdof);fill(Eph,0.);
    //     mv_prod(Eph,M,Ep);


	
	
	
	
    // 	////=============================================================////
    //     ////================== Calcul valeurs propres ===================////
    //     ////=============================================================////
        
        
    //     ////===================================////
    //     ////===== Test avec orthogonalité =====////
        
    //     Cplx val =0;
    //     Cplx err =0;
    //     for(int j=0; j<nbdof; j++){
    //     	val += Ep[j]*conj(Eph[j]);
    //     }
    
    //     err = abs(val)-1;
    //     std::cout<<"PS : "<<err<<std::endl;

        
    //     ////===================================////
    //     ////=========== Test avec V ===========////
        
        
    //     val =0;
    //     Real err_V =0;
        
    //     Cplx j_p = boost::math::sph_bessel(p, kappa*R);
    //     Cplx y_p = boost::math::sph_neumann(p, kappa*R);
    //     Cplx h_p = boost::math::sph_hankel_1(p, kappa*R);
        
    //     Cplx j_p_prime = boost::math::sph_bessel_prime(p, kappa*R);
    //     Cplx y_p_prime = boost::math::sph_neumann_prime(p, kappa*R);
        
    //     Cplx h_p_prime = j_p_prime + iu * y_p_prime;
        
    //     Cplx ref = iu * kappa * j_p * h_p;


    //    vect<Cplx> Temp;resize(Temp,nbdof);fill(Temp,0.);
    //    mv_prod(Temp,V,Ep);
       
    //    for(int j=0; j<nbdof; j++){
    //        val    += conj(Ep[j])*Temp[j];
    //    }
    //    //
    //    err_V = abs(val-ref) /abs(ref);
    //    if (verbose>0){
    //        std::cout<<"V : "<<err_V<<std::endl;
    //    }

        
        
    //     ////===================================////
    //     ////=========== Test avec W ===========////
        
    //     val =0;
    //     Real err_W =0;
    //     ref = - iu * pow(kappa,3) * j_p_prime * h_p_prime;
        
    //     fill(Temp,0.);
    //     mv_prod(Temp,W,Ep);
    //     for(int j=0; j<nbdof; j++){
    //         val    += conj(Ep[j])*Temp[j];
    //     }
        
    //     err_W = abs(val-ref) /abs(ref);
    //     if (verbose>0){
    //         std::cout<<"W : "<<err_W<<std::endl;
    //     }
    //     ////===================================////
    //     ////=========== Test avec K ===========////
        
    //     val =0;
    //     Real err_K =0;
    //     ref = iu /2. * kappa*kappa * (j_p_prime * h_p + j_p * h_p_prime);


        
    //     fill(Temp,0.);
    //     mv_prod(Temp,K,Ep);

    //     for(int j=0; j<nbdof; j++){
    //         val    += conj(Ep[j])*Temp[j];
    //     }
    //     err_K = abs(val-ref) /abs(ref);
    //     if (verbose>0){
    //         std::cout<<"K : "<<err_K<<std::endl;
    //     }
        
    //     ////=============================================================////
    //     ////======================== Sauvegardes ========================////
    //     ////=============================================================////
    //     std::ofstream output((output_name+"_"+NbrToStr<Real>(p)+".txt").c_str(),std::ios::app);
    //     if (!output){
    //         std::cerr<<"Output file cannot be created"<<std::endl;
    //         exit(1);
    //     }
    //     else{
    //         output<<lc<<" "<<err_V<<" "<<err_W<<" "<<err_K<<std::endl;
    //     }

    //     output.close();
        
    
    // if (l == 0)
    // {
    //     std::cout << p << "P" << std::endl;
    // }
    // }




    
}
コード例 #15
0
ファイル: main.c プロジェクト: rashadkm/grass_cmake
/*----------------------------------------------------------------------------------------------------------*/
int main(int argc, char *argv[])
{
    /* Declarations */
    int dim_vect, nparameters, BW, npoints;
    int nsply, nsplx, nsplx_adj, nsply_adj;
    int nsubregion_col, nsubregion_row;
    int subregion = 0, nsubregions = 0;
    const char *dvr, *db, *mapset;
    char table_name[GNAME_MAX];
    char xname[GNAME_MAX], xmapset[GMAPSET_MAX];
    double lambda, mean, stepN, stepE, HighThresh,
	LowThresh;
    double N_extension, E_extension, edgeE, edgeN;

    int i, nterrain, count_terrain;

    int last_row, last_column, flag_auxiliar = FALSE;

    int *lineVect;
    double *TN, *Q, *parVect;	/* Interpolating and least-square vectors */
    double **N, **obsVect, **obsVect_all;	/* Interpolation and least-square matrix */

    struct Map_info In, Out, Terrain;
    struct Option *in_opt, *out_opt, *out_terrain_opt, *stepE_opt,
	*stepN_opt, *lambda_f_opt, *Thresh_A_opt, *Thresh_B_opt;
    struct Flag *spline_step_flag;
    struct GModule *module;

    struct Cell_head elaboration_reg, original_reg;
    struct Reg_dimens dims;
    struct bound_box general_box, overlap_box;

    struct Point *observ;
    struct lidar_cat *lcat;

    dbDriver *driver;

/*----------------------------------------------------------------------------------------------------------*/
    /* Options' declaration */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("LIDAR"));
    module->description =
	_("Corrects the v.lidar.growing output. It is the last of the three algorithms for LIDAR filtering.");

    spline_step_flag = G_define_flag();
    spline_step_flag->key = 'e';
    spline_step_flag->label = _("Estimate point density and distance");
    spline_step_flag->description =
	_("Estimate point density and distance for the input vector points within the current region extends and quit");

    in_opt = G_define_standard_option(G_OPT_V_INPUT);
    in_opt->description =
	_("Input observation vector map name (v.lidar.growing output)");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    out_opt->description = _("Output classified vector map name");

    out_terrain_opt = G_define_option();
    out_terrain_opt->key = "terrain";
    out_terrain_opt->type = TYPE_STRING;
    out_terrain_opt->key_desc = "name";
    out_terrain_opt->required = YES;
    out_terrain_opt->gisprompt = "new,vector,vector";
    out_terrain_opt->description =
	_("Only 'terrain' points output vector map");

    stepE_opt = G_define_option();
    stepE_opt->key = "ew_step";
    stepE_opt->type = TYPE_DOUBLE;
    stepE_opt->required = NO;
    stepE_opt->answer = "25";
    stepE_opt->description =
	_("Length of each spline step in the east-west direction");
    stepE_opt->guisection = _("Settings");

    stepN_opt = G_define_option();
    stepN_opt->key = "ns_step";
    stepN_opt->type = TYPE_DOUBLE;
    stepN_opt->required = NO;
    stepN_opt->answer = "25";
    stepN_opt->description =
	_("Length of each spline step in the north-south direction");
    stepN_opt->guisection = _("Settings");

    lambda_f_opt = G_define_option();
    lambda_f_opt->key = "lambda_c";
    lambda_f_opt->type = TYPE_DOUBLE;
    lambda_f_opt->required = NO;
    lambda_f_opt->description =
	_("Regularization weight in reclassification evaluation");
    lambda_f_opt->answer = "1";

    Thresh_A_opt = G_define_option();
    Thresh_A_opt->key = "tch";
    Thresh_A_opt->type = TYPE_DOUBLE;
    Thresh_A_opt->required = NO;
    Thresh_A_opt->description =
	_("High threshold for object to terrain reclassification");
    Thresh_A_opt->answer = "2";

    Thresh_B_opt = G_define_option();
    Thresh_B_opt->key = "tcl";
    Thresh_B_opt->type = TYPE_DOUBLE;
    Thresh_B_opt->required = NO;
    Thresh_B_opt->description =
	_("Low threshold for terrain to object reclassification");
    Thresh_B_opt->answer = "1";

    /* Parsing */
    G_gisinit(argv[0]);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    stepN = atof(stepN_opt->answer);
    stepE = atof(stepE_opt->answer);
    lambda = atof(lambda_f_opt->answer);
    HighThresh = atof(Thresh_A_opt->answer);
    LowThresh = atof(Thresh_B_opt->answer);

    if (!(db = G_getenv_nofatal2("DB_DATABASE", G_VAR_MAPSET)))
	G_fatal_error(_("Unable to read name of database"));

    if (!(dvr = G_getenv_nofatal2("DB_DRIVER", G_VAR_MAPSET)))
	G_fatal_error(_("Unable to read name of driver"));

    /* Setting auxiliar table's name */
    if (G_name_is_fully_qualified(out_opt->answer, xname, xmapset)) {
	sprintf(table_name, "%s_aux", xname);
    }
    else
	sprintf(table_name, "%s_aux", out_opt->answer);

    /* Something went wrong in a previous v.lidar.correction execution */
    if (db_table_exists(dvr, db, table_name)) {
	/* Start driver and open db */
	driver = db_start_driver_open_database(dvr, db);
	if (driver == NULL)
	    G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
			  dvr);
        db_set_error_handler_driver(driver);
        
	if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
	    G_fatal_error(_("Old auxiliar table could not be dropped"));
	db_close_database_shutdown_driver(driver);
    }

    /* Checking vector names */
    Vect_check_input_output_name(in_opt->answer, out_opt->answer,
				 G_FATAL_EXIT);

    /* Open input vector */
    if ((mapset = G_find_vector2(in_opt->answer, "")) == NULL)
	G_fatal_error(_("Vector map <%s> not found"), in_opt->answer);

    Vect_set_open_level(1);	/* without topology */
    if (1 > Vect_open_old(&In, in_opt->answer, mapset))
	G_fatal_error(_("Unable to open vector map <%s>"), in_opt->answer);

    /* Input vector must be 3D */
    if (!Vect_is_3d(&In))
	G_fatal_error(_("Input vector map <%s> is not 3D!"), in_opt->answer);

    /* Estimate point density and mean distance for current region */
    if (spline_step_flag->answer) {
	double dens, dist;
	if (P_estimate_splinestep(&In, &dens, &dist) == 0) {
	    G_message("Estimated point density: %.4g", dens);
	    G_message("Estimated mean distance between points: %.4g", dist);
	}
	else
	    G_warning(_("No points in current region!"));
	
	Vect_close(&In);
	exit(EXIT_SUCCESS);
    }

    /* Open output vector */
    if (0 > Vect_open_new(&Out, out_opt->answer, WITH_Z)) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);
    }

    if (0 > Vect_open_new(&Terrain, out_terrain_opt->answer, WITH_Z)) {
	Vect_close(&In);
	Vect_close(&Out);
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);
    }

    /* Copy vector Head File */
    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);
    Vect_copy_head_data(&In, &Terrain);
    Vect_hist_copy(&In, &Terrain);
    Vect_hist_command(&Terrain);

    /* Start driver and open db */
    driver = db_start_driver_open_database(dvr, db);
    if (driver == NULL)
	G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
		      dvr);
    db_set_error_handler_driver(driver);

    /* Create auxiliar table */
    if ((flag_auxiliar =
	 P_Create_Aux2_Table(driver, table_name)) == FALSE) {
	Vect_close(&In);
	Vect_close(&Out);
	Vect_close(&Terrain);
	exit(EXIT_FAILURE);
    }

    db_create_index2(driver, table_name, "ID");
    /* sqlite likes that ??? */
    db_close_database_shutdown_driver(driver);
    driver = db_start_driver_open_database(dvr, db);

    /* Setting regions and boxes */
    G_get_set_window(&original_reg);
    G_get_set_window(&elaboration_reg);
    Vect_region_box(&elaboration_reg, &overlap_box);
    Vect_region_box(&elaboration_reg, &general_box);

    /*------------------------------------------------------------------
      | Subdividing and working with tiles: 									
      | Each original region will be divided into several subregions. 
      | Each one will be overlaped by its neighbouring subregions. 
      | The overlapping is calculated as a fixed OVERLAP_SIZE times
      | the largest spline step plus 2 * edge
      ----------------------------------------------------------------*/

    /* Fixing parameters of the elaboration region */
    P_zero_dim(&dims);

    nsplx_adj = NSPLX_MAX;
    nsply_adj = NSPLY_MAX;
    if (stepN > stepE)
	dims.overlap = OVERLAP_SIZE * stepN;
    else
	dims.overlap = OVERLAP_SIZE * stepE;
    P_get_edge(P_BILINEAR, &dims, stepE, stepN);
    P_set_dim(&dims, stepE, stepN, &nsplx_adj, &nsply_adj);

    G_verbose_message(n_("adjusted EW spline %d",
                         "adjusted EW splines %d",
                         nsplx_adj), nsplx_adj);
    G_verbose_message(n_("adjusted NS spline %d",
                         "adjusted NS splines %d",
                         nsply_adj), nsply_adj);

    /* calculate number of subregions */
    edgeE = dims.ew_size - dims.overlap - 2 * dims.edge_v;
    edgeN = dims.sn_size - dims.overlap - 2 * dims.edge_h;

    N_extension = original_reg.north - original_reg.south;
    E_extension = original_reg.east - original_reg.west;

    nsubregion_col = ceil(E_extension / edgeE) + 0.5;
    nsubregion_row = ceil(N_extension / edgeN) + 0.5;

    if (nsubregion_col < 0)
	nsubregion_col = 0;
    if (nsubregion_row < 0)
	nsubregion_row = 0;

    nsubregions = nsubregion_row * nsubregion_col;

    elaboration_reg.south = original_reg.north;
    last_row = FALSE;

    while (last_row == FALSE) {	/* For each row */

	P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
		      GENERAL_ROW);

	if (elaboration_reg.north > original_reg.north) {	/* First row */
	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  FIRST_ROW);
	}

	if (elaboration_reg.south <= original_reg.south) {	/* Last row */
	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  LAST_ROW);
	    last_row = TRUE;
	}

	nsply =
	    ceil((elaboration_reg.north -
		  elaboration_reg.south) / stepN) + 0.5;
	/*
	if (nsply > NSPLY_MAX) {
	    nsply = NSPLY_MAX;
	}
	*/
	G_debug(1, _("nsply = %d"), nsply);

	elaboration_reg.east = original_reg.west;
	last_column = FALSE;

	while (last_column == FALSE) {	/* For each column */

	    subregion++;
	    if (nsubregions > 1)
		G_message(_("subregion %d of %d"), subregion, nsubregions);

	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  GENERAL_COLUMN);

	    if (elaboration_reg.west < original_reg.west) {	/* First column */
		P_set_regions(&elaboration_reg, &general_box, &overlap_box,
			      dims, FIRST_COLUMN);
	    }

	    if (elaboration_reg.east >= original_reg.east) {	/* Last column */
		P_set_regions(&elaboration_reg, &general_box, &overlap_box,
			      dims, LAST_COLUMN);
		last_column = TRUE;
	    }

	    nsplx =
		ceil((elaboration_reg.east - elaboration_reg.west) / stepE) +
		0.5;
	    /*
	    if (nsplx > NSPLX_MAX) {
		nsplx = NSPLX_MAX;
	    }
	    */
	    G_debug(1, _("nsplx = %d"), nsplx);

	    dim_vect = nsplx * nsply;
	    G_debug(1, _("read vector region map"));
	    observ =
		P_Read_Vector_Correction(&In, &elaboration_reg, &npoints,
					 &nterrain, dim_vect, &lcat);

	    G_debug(5, _("npoints = %d, nterrain = %d"), npoints, nterrain);
	    if (npoints > 0) {	/* If there is any point falling into elaboration_reg. */
		count_terrain = 0;
		nparameters = nsplx * nsply;

		/* Mean calculation */
		G_debug(3, _("Mean calculation"));
		mean = P_Mean_Calc(&elaboration_reg, observ, npoints);

		/*Least Squares system */
		BW = P_get_BandWidth(P_BILINEAR, nsply);	/* Bilinear interpolation */
		N = G_alloc_matrix(nparameters, BW);	/* Normal matrix */
		TN = G_alloc_vector(nparameters);	/* vector */
		parVect = G_alloc_vector(nparameters);	/* Bilinear parameters vector */
		obsVect = G_alloc_matrix(nterrain + 1, 3);	/* Observation vector with terrain points */
		obsVect_all = G_alloc_matrix(npoints + 1, 3);	/* Observation vector with all points */
		Q = G_alloc_vector(nterrain + 1);	/* "a priori" var-cov matrix */
		lineVect = G_alloc_ivector(npoints + 1);

		/* Setting obsVect vector & Q matrix */
		G_debug(3, _("Only TERRAIN points"));
		for (i = 0; i < npoints; i++) {
		    if (observ[i].cat == TERRAIN_SINGLE) {
			obsVect[count_terrain][0] = observ[i].coordX;
			obsVect[count_terrain][1] = observ[i].coordY;
			obsVect[count_terrain][2] = observ[i].coordZ - mean;
			Q[count_terrain] = 1;	/* Q=I */
			count_terrain++;
		    }
		    lineVect[i] = observ[i].lineID;
		    obsVect_all[i][0] = observ[i].coordX;
		    obsVect_all[i][1] = observ[i].coordY;
		    obsVect_all[i][2] = observ[i].coordZ - mean;
		}

		G_free(observ);

		G_verbose_message(_("Bilinear interpolation"));
		normalDefBilin(N, TN, Q, obsVect, stepE, stepN, nsplx,
			       nsply, elaboration_reg.west,
			       elaboration_reg.south, nterrain, nparameters,
			       BW);
		nCorrectGrad(N, lambda, nsplx, nsply, stepE, stepN);
		G_math_solver_cholesky_sband(N, parVect, TN, nparameters, BW);

		G_free_matrix(N);
		G_free_vector(TN);
		G_free_vector(Q);
		G_free_matrix(obsVect);

		G_verbose_message( _("Correction and creation of terrain vector"));
		P_Sparse_Correction(&In, &Out, &Terrain, &elaboration_reg,
				    general_box, overlap_box, obsVect_all, lcat,
				    parVect, lineVect, stepN, stepE,
				    dims.overlap, HighThresh, LowThresh,
				    nsplx, nsply, npoints, driver, mean, table_name);

		G_free_vector(parVect);
		G_free_matrix(obsVect_all);
		G_free_ivector(lineVect);
	    }
	    else {
		G_free(observ);
		G_warning(_("No data within this subregion. "
			    "Consider changing the spline step."));
	    }
	    G_free(lcat);
	}			/*! END WHILE; last_column = TRUE */
    }				/*! END WHILE; last_row = TRUE */

    /* Dropping auxiliar table */
    if (npoints > 0) {
	G_debug(1, _("Dropping <%s>"), table_name);
	if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
	    G_fatal_error(_("Auxiliar table could not be dropped"));
    }

    db_close_database_shutdown_driver(driver);

    Vect_close(&In);
    Vect_close(&Out);
    Vect_close(&Terrain);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}				/*! END MAIN */
コード例 #16
0
ファイル: area_area.c プロジェクト: rashadkm/grass_cmake
int area_area(struct Map_info *In, int *field, struct Map_info *Tmp,
	      struct Map_info *Out, struct field_info *Fi,
	      dbDriver * driver, int operator, int *ofield,
	      ATTRIBUTES * attr, struct ilist *BList, double snap)
{
    int ret, input, line, nlines, area, nareas;
    int in_area, in_centr, out_cat;
    struct line_pnts *Points;
    struct line_cats *Cats;
    CENTR *Centr;
    char buf[1000];
    dbString stmt;
    int nmodif;
    int verbose;

    verbose = G_verbose();

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    /* optional snap */
    if (snap > 0) {
	int i, j, snapped_lines = 0;
	struct bound_box box;
	struct boxlist *boxlist = Vect_new_boxlist(0);
	struct ilist *reflist = Vect_new_list();
	
	G_message(_("Snapping boundaries with %g ..."), snap);

	/* snap boundaries in B to boundaries in A,
	 * not modifying boundaries in A */

	if (BList->n_values > 1)
	    qsort(BList->value, BList->n_values, sizeof(int), cmp_int);

	snapped_lines = 0;
	nlines = BList->n_values;
	for (i = 0; i < nlines; i++) {
	    line = BList->value[i];
	    Vect_read_line(Tmp, Points, Cats, line);
	    /* select lines by box */
	    Vect_get_line_box(Tmp, line, &box);
	    box.E += snap;
	    box.W -= snap;
	    box.N += snap;
	    box.S -= snap;
	    box.T = 0.0;
	    box.B = 0.0;
	    Vect_select_lines_by_box(Tmp, &box, GV_BOUNDARY, boxlist);
	    
	    if (boxlist->n_values > 0) {
		Vect_reset_list(reflist);
		for (j = 0; j < boxlist->n_values; j++) {
		    int aline = boxlist->id[j];

		    if (!bsearch(&aline, BList->value, BList->n_values,
			sizeof(int), cmp_int)) {
			G_ilist_add(reflist, aline);
		    }
		}
		
		/* snap bline to alines */
		if (Vect_snap_line(Tmp, reflist, Points, snap, 0, NULL, NULL)) {
		    /* rewrite bline*/
		    Vect_delete_line(Tmp, line);
		    ret = Vect_write_line(Tmp, GV_BOUNDARY, Points, Cats);
		    G_ilist_add(BList, ret);
		    snapped_lines++;
		    G_debug(3, "line %d snapped", line);
		}
	    }
	}
	Vect_destroy_boxlist(boxlist);
	Vect_destroy_list(reflist);

	G_verbose_message(n_("%d boundary snapped",
                             "%d boundaries snapped",
                             snapped_lines), snapped_lines);
    }

    /* same procedure like for v.in.ogr:
     * Vect_clean_small_angles_at_nodes() can change the geometry so that new intersections
     * are created. We must call Vect_break_lines(), Vect_remove_duplicates()
     * and Vect_clean_small_angles_at_nodes() until no more small dangles are found */
    do {
	G_message(_("Breaking lines..."));
	Vect_break_lines_list(Tmp, NULL, BList, GV_BOUNDARY, NULL);

	/* Probably not necessary for LINE x AREA */
	G_message(_("Removing duplicates..."));
	Vect_remove_duplicates(Tmp, GV_BOUNDARY, NULL);

	G_message(_("Cleaning boundaries at nodes..."));
	nmodif =
	    Vect_clean_small_angles_at_nodes(Tmp, GV_BOUNDARY, NULL);
    } while (nmodif > 0);

    /* ?: May be result of Vect_break_lines() + Vect_remove_duplicates() any dangle or bridge?
     * In that case, calls to Vect_remove_dangles() and Vect_remove_bridges() would be also necessary */

    G_set_verbose(0);
    /* should be fast, be silent */
    Vect_build_partial(Tmp, GV_BUILD_AREAS);
    G_set_verbose(verbose);
    nlines = Vect_get_num_lines(Tmp);
    ret = 0;
    for (line = 1; line <= nlines; line++) {
	if (!Vect_line_alive(Tmp, line))
	    continue;
	if (Vect_get_line_type(Tmp, line) == GV_BOUNDARY) {
	    int left, rite;
	    
	    Vect_get_line_areas(Tmp, line, &left, &rite);
	    
	    if (left == 0 || rite == 0) {
		/* invalid boundary */
		ret = 1;
		break;
	    }
	}
    }
    if (ret) {
	Vect_remove_dangles(Tmp, GV_BOUNDARY, -1, NULL);
	Vect_remove_bridges(Tmp, NULL, NULL, NULL);
    }

    G_set_verbose(0);
    Vect_build_partial(Tmp, GV_BUILD_NONE);
    Vect_build_partial(Tmp, GV_BUILD_BASE);
    G_set_verbose(verbose);
    G_message(_("Merging lines..."));
    Vect_merge_lines(Tmp, GV_BOUNDARY, NULL, NULL);

    /* Attach islands */
    G_message(_("Attaching islands..."));
    /* can take some time, show messages */
    Vect_build_partial(Tmp, GV_BUILD_ATTACH_ISLES);

    /* Calculate new centroids for all areas */
    nareas = Vect_get_num_areas(Tmp);

    Centr = (CENTR *) G_malloc((nareas + 1) * sizeof(CENTR));	/* index from 1 ! */
    for (area = 1; area <= nareas; area++) {
	ret =
	    Vect_get_point_in_area(Tmp, area, &(Centr[area].x),
				   &(Centr[area].y));
	if (ret < 0) {
	    G_warning(_("Cannot calculate area centroid"));
	    Centr[area].valid = 0;
	}
	else {
	    Centr[area].valid = 1;
	}
    }

    /* Query input maps */
    for (input = 0; input < 2; input++) {
	G_message(_("Querying vector map <%s>..."),
		  Vect_get_full_name(&(In[input])));

	for (area = 1; area <= nareas; area++) {
	    Centr[area].cat[input] = Vect_new_cats_struct();

	    G_percent(area, nareas, 1);

	    in_area =
		Vect_find_area(&(In[input]), Centr[area].x, Centr[area].y);
	    if (in_area > 0) {
		in_centr = Vect_get_area_centroid(&(In[input]), in_area);
		if (in_centr > 0) {
		    int i;

		    Vect_read_line(&(In[input]), NULL, Cats, in_centr);
		    /* Add all cats with original field number */
		    for (i = 0; i < Cats->n_cats; i++) {
			if (Cats->field[i] == field[input]) {
			    ATTR *at;

			    Vect_cat_set(Centr[area].cat[input], ofield[input + 1],
					 Cats->cat[i]);

			    /* Mark as used */
			    at = find_attr(&(attr[input]), Cats->cat[i]);
			    if (!at)
				G_fatal_error(_("Attribute not found"));

			    at->used = 1;
			}
		    }
		}
	    }
	}
    }

    G_message(_("Writing centroids..."));

    db_init_string(&stmt);
    out_cat = 1;
    for (area = 1; area <= nareas; area++) {
	int i;

	G_percent(area, nareas, 1);

	/* check the condition */
	switch (operator) {
	case OP_AND:
	    if (!
		(Centr[area].cat[0]->n_cats > 0 &&
		 Centr[area].cat[1]->n_cats > 0))
		continue;
	    break;
	case OP_OR:
	    if (!
		(Centr[area].cat[0]->n_cats > 0 ||
		 Centr[area].cat[1]->n_cats > 0))
		continue;
	    break;
	case OP_NOT:
	    if (!
		(Centr[area].cat[0]->n_cats > 0 &&
		 !(Centr[area].cat[1]->n_cats > 0)))
		continue;
	    break;
	case OP_XOR:
	    if ((Centr[area].cat[0]->n_cats > 0 &&
		 Centr[area].cat[1]->n_cats > 0) ||
		(!(Centr[area].cat[0]->n_cats > 0) &&
		 !(Centr[area].cat[1]->n_cats > 0)))
		continue;
	    break;
	}

	Vect_reset_line(Points);
	Vect_reset_cats(Cats);

	Vect_append_point(Points, Centr[area].x, Centr[area].y, 0.0);

	if (ofield[0] > 0) {
	    /* Add new cats for all combinations of input cats (-1 in cycle for null) */
	    for (i = -1; i < Centr[area].cat[0]->n_cats; i++) {
		int j;

		if (i == -1 && Centr[area].cat[0]->n_cats > 0)
		    continue;	/* no need to make null */

		for (j = -1; j < Centr[area].cat[1]->n_cats; j++) {
		    if (j == -1 && Centr[area].cat[1]->n_cats > 0)
			continue;	/* no need to make null */

		    if (ofield[0] > 0)
			Vect_cat_set(Cats, ofield[0], out_cat);

		    /* attributes */
		    if (driver) {
			ATTR *at;

			sprintf(buf, "insert into %s values ( %d", Fi->table,
				out_cat);
			db_set_string(&stmt, buf);

			/* cata */
			if (i >= 0) {
			    if (attr[0].columns) {
				at = find_attr(&(attr[0]),
					       Centr[area].cat[0]->cat[i]);
				if (!at)
				    G_fatal_error(_("Attribute not found"));

				if (at->values)
				    db_append_string(&stmt, at->values);
				else
				    db_append_string(&stmt, attr[0].null_values);
			    }
			    else {
				sprintf(buf, ", %d", Centr[area].cat[0]->cat[i]);
				db_append_string(&stmt, buf);
			    }
			}
			else {
			    if (attr[0].columns) {
				db_append_string(&stmt, attr[0].null_values);
			    }
			    else {
				sprintf(buf, ", null");
				db_append_string(&stmt, buf);
			    }
			}

			/* catb */
			if (j >= 0) {
			    if (attr[1].columns) {
				at = find_attr(&(attr[1]),
					       Centr[area].cat[1]->cat[j]);
				if (!at)
				    G_fatal_error(_("Attribute not found"));

				if (at->values)
				    db_append_string(&stmt, at->values);
				else
				    db_append_string(&stmt, attr[1].null_values);
			    }
			    else {
				sprintf(buf, ", %d", Centr[area].cat[1]->cat[j]);
				db_append_string(&stmt, buf);
			    }
			}
			else {
			    if (attr[1].columns) {
				db_append_string(&stmt, attr[1].null_values);
			    }
			    else {
				sprintf(buf, ", null");
				db_append_string(&stmt, buf);
			    }
			}

			db_append_string(&stmt, " )");

			G_debug(3, "%s", db_get_string(&stmt));

			if (db_execute_immediate(driver, &stmt) != DB_OK)
			    G_warning(_("Unable to insert new record: '%s'"),
				      db_get_string(&stmt));
		    }
		    out_cat++;
		}
	    }
	}

	/* Add all cats from input vectors */
	if (ofield[1] > 0 && field[0] > 0) {
	    for (i = 0; i < Centr[area].cat[0]->n_cats; i++) {
		if (Centr[area].cat[0]->field[i] == field[0])
		    Vect_cat_set(Cats, ofield[1], Centr[area].cat[0]->cat[i]);
	    }
	}

	if (ofield[2] > 0 && field[1] > 0 && ofield[1] != ofield[2]) {
	    for (i = 0; i < Centr[area].cat[1]->n_cats; i++) {
		if (Centr[area].cat[1]->field[i] == field[1])
		    Vect_cat_set(Cats, ofield[2], Centr[area].cat[1]->cat[i]);
	    }
	}

	Vect_write_line(Tmp, GV_CENTROID, Points, Cats);
	Vect_write_line(Out, GV_CENTROID, Points, Cats);
    }

    G_set_verbose(0);
    /* should be fast, be silent */
    Vect_build_partial(Tmp, GV_BUILD_CENTROIDS);
    G_set_verbose(verbose);
    /* Copy valid boundaries to final output */
    nlines = Vect_get_num_lines(Tmp);

    for (line = 1; line <= nlines; line++) {
	int i, ltype, side[2], centr[2];

	G_percent(line, nlines, 1);	/* must be before any continue */

	if (!Vect_line_alive(Tmp, line))
	    continue;

	ltype = Vect_read_line(Tmp, Points, Cats, line);
	if (!(ltype & GV_BOUNDARY))
	    continue;

	Vect_get_line_areas(Tmp, line, &side[0], &side[1]);

	for (i = 0; i < 2; i++) {
	    if (side[i] == 0) {	/* This should not happen ! */
		centr[i] = 0;
		continue;
	    }

	    if (side[i] > 0) {
		area = side[i];
	    }
	    else {		/* island */
		area = Vect_get_isle_area(Tmp, abs(side[i]));
	    }

	    if (area > 0)
		centr[i] = Vect_get_area_centroid(Tmp, area);
	    else
		centr[i] = 0;
	}

	if (centr[0] || centr[1])
	    Vect_write_line(Out, GV_BOUNDARY, Points, Cats);
    }

    return 0;
}
コード例 #17
0
ファイル: input.c プロジェクト: rkrug/grass-ci
/* data preparations, sigma, shear, etc. */
int grad_check(void)
{
    int k, l;
    double zx, zy, zd2, zd4, sinsl;
    double cc, cmul2;
    double sheer;
    double vsum = 0.;
    double vmax = 0.;
    double chsum = 0.;
    double zmin = 1.e12;
    double zmax = -1.e12;
    double zd2min = 1.e12;
    double zd2max = -1.e12;
    double smin = 1.e12;
    double smax = -1.e12;
    double infmin = 1.e12;
    double infmax = -1.e12;
    double sigmax = -1.e12;
    double cchezmax = -1.e12;
    double rhow = 1000.;
    double gacc = 9.81;
    double hh = 1.;
    double deltaw = 1.e12;

    sisum = 0.;
    infsum = 0.;
    cmul2 = rhow * gacc;

    for (k = 0; k < my; k++) {
	for (l = 0; l < mx; l++) {
	    if (zz[k][l] != UNDEF) {
		zx = v1[k][l];
		zy = v2[k][l];
		zd2 = zx * zx + zy * zy;
		sinsl = sqrt(zd2) / sqrt(zd2 + 1);	/* sin(terrain slope) */
		/* Computing MIN */
		zd2 = sqrt(zd2);
		zd2min = amin1(zd2min, zd2);
		/* Computing MAX */
		zd2max = amax1(zd2max, zd2);
		zd4 = sqrt(zd2);	/* ^.25 */
		if (cchez[k][l] != 0.) {
		    cchez[k][l] = 1. / cchez[k][l];	/* 1/n */
		}
		else {
		    G_fatal_error(_("Zero value in Mannings n"));
		}
		if (zd2 == 0.) {
		    v1[k][l] = 0.;
		    v2[k][l] = 0.;
		    slope[k][l] = 0.;
		}
		else {
		    if (wdepth)
			hh = pow(gama[k][l], 2. / 3.);
		    /* hh = 1 if there is no water depth input */
		    v1[k][l] = (double)hh *cchez[k][l] * zx / zd4;
		    v2[k][l] = (double)hh *cchez[k][l] * zy / zd4;

		    slope[k][l] =
			sqrt(v1[k][l] * v1[k][l] + v2[k][l] * v2[k][l]);
		}
		if (wdepth) {
		    sheer = (double)(cmul2 * gama[k][l] * sinsl);	/* shear stress */
		    /* if critical shear stress >= shear then all zero */
		    if ((sheer <= tau[k][l]) || (ct[k][l] == 0.)) {
			si[k][l] = 0.;
			sigma[k][l] = 0.;
		    }
		    else {
			si[k][l] = (double)(dc[k][l] * (sheer - tau[k][l]));
			sigma[k][l] = (double)(dc[k][l] / ct[k][l]) * (sheer - tau[k][l]) / (pow(sheer, 1.5));	/* rill erosion=1.5, sheet = 1.1 */
		    }
		}
		sisum += si[k][l];
		smin = amin1(smin, si[k][l]);
		smax = amax1(smax, si[k][l]);
		if (inf) {
		    infsum += inf[k][l];
		    infmin = amin1(infmin, inf[k][l]);
		    infmax = amax1(infmax, inf[k][l]);
		}
		vmax = amax1(vmax, slope[k][l]);
		vsum += slope[k][l];
		chsum += cchez[k][l];
		zmin = amin1(zmin, (double)zz[k][l]);
		zmax = amax1(zmax, (double)zz[k][l]);	/* not clear were needed */
		if (wdepth)
		    sigmax = amax1(sigmax, sigma[k][l]);
		cchezmax = amax1(cchezmax, cchez[k][l]);
		/* saved sqrt(sinsl)*cchez to cchez array for output */
		cchez[k][l] *= sqrt(sinsl);
	    }			/* DEFined area */
	}
    }
    if (inf != NULL && smax < infmax)
	G_warning(_("Infiltration exceeds the rainfall rate everywhere! No overland flow."));

    cc = (double)mx *my;

    si0 = sisum / cc;
    vmean = vsum / cc;
    chmean = chsum / cc;

    if (inf)
	infmean = infsum / cc;

    if (wdepth)
	deltaw = 0.8 / (sigmax * vmax);	/*time step for sediment */
    deltap = 0.25 * sqrt(stepx * stepy) / vmean;	/*time step for water */

    if (deltaw > deltap)
	timec = 4.;
    else
	timec = 1.25;

    miter = (int)(timesec / (deltap * timec));	/* number of iterations = number of cells to pass */
    iterout = (int)(iterout / (deltap * timec));	/* number of cells to pass for time series output */

    fprintf(stderr, "\n");
    G_message(_("Min elevation \t= %.2f m\nMax elevation \t= %.2f m\n"), zmin,
	      zmax);
    G_message(_("Mean Source Rate (rainf. excess or sediment) \t= %f m/s or kg/m2s \n"),
	      si0);
    G_message(_("Mean flow velocity \t= %f m/s\n"), vmean);
    G_message(_("Mean Mannings \t= %f\n"), 1.0 / chmean);

    deltap = amin1(deltap, deltaw);

    G_message(n_("Number of iterations \t= %d cell\n", 
        "Number of iterations \t= %d cells\n", miter), miter);
    G_message(_("Time step \t= %.2f s\n"), deltap);
    if (wdepth) {
	G_message(_("Sigmax \t= %f\nMax velocity \t= %f m/s\n"), sigmax,
		  vmax);
	G_message(_("Time step used \t= %.2f s\n"), deltaw);
    }
    /*    if (wdepth) deltap = 0.1; 
     *    deltap for sediment is ar. average deltap and deltaw */
    /*    if (wdepth) deltap = (deltaw+deltap)/2.; 
     *    deltap for sediment is ar. average deltap and deltaw */


    /*! For each cell (k,l) compute the length s=(v1,v2) of the path 
     *  that the particle will travel per one time step
     *  \f$ s(k,l)=v(k,l)*dt \f$, [m]=[m/s]*[s]
     *  give warning if there is a cell that will lead to path longer than 2 cells 
     *
     *  if running erosion, compute sediment transport capacity for each cell si(k,l)
     *  \f$
     * T({\bf r})=K_t({\bf r}) \bigl[\tau({\bf r})\bigr]^p
     * =K_t({\bf r}) \bigl[\rho_w\, g h({\bf r}) \sin \beta ({\bf r}) \bigr]^p
     * \f$
     * [kg/ms]=...
     */
    for (k = 0; k < my; k++) {
	for (l = 0; l < mx; l++) {
	    if (zz[k][l] != UNDEF) {
		v1[k][l] *= deltap;
		v2[k][l] *= deltap;
		/*if(v1[k][l]*v1[k][l]+v2[k][l]*v2[k][l] > cellsize, warning, napocitaj
		 *ak viac ako 10%a*/
		/* THIS IS CORRECT SOLUTION currently commented out */
		if (inf)
		    inf[k][l] *= timesec;
		if (wdepth)
		    gama[k][l] = 0.;
		if (et) {
		    if (sigma[k][l] == 0. || slope[k][l] == 0.)
			si[k][l] = 0.;
		    else
			/* temp for transp. cap. erod */
			si[k][l] = si[k][l] / (slope[k][l] * sigma[k][l]);
		}
	    }			/* DEFined area */
	}
    }

    /*! compute transport capacity limted erosion/deposition et 
     *   as a divergence of sediment transport capacity
     *   \f$
     D_T({\bf r})= \nabla\cdot {\bf T}({\bf r})
     *   \f$
     */
    if (et) {
	erod(si);		/* compute divergence of t.capc */
	if (output_et() != 1)
	    G_fatal_error(_("Unable to write et file"));
    }

    /*! compute the inversion operator and store it in sigma - note that after this
     *   sigma does not store the first order reaction coefficient but the operator
     *   WRITE the equation here
     */
    if (wdepth) {
	for (k = 0; k < my; k++) {
	    for (l = 0; l < mx; l++) {
		if (zz[k][l] != UNDEF) {
		    /* get back from temp */
		    if (et)
			si[k][l] = si[k][l] * slope[k][l] * sigma[k][l];
		    if (sigma[k][l] != 0.)
			/* rate of weight loss - w=w*sigma ,
			 * vaha prechadzky po n-krokoch je sigma^n */

			/*!!!!! not clear what's here :-\ !!!!!*/

			sigma[k][l] =
			    exp(-sigma[k][l] * deltap * slope[k][l]);
		    /* if(sigma[k][l]<0.5) warning, napocitaj, 
		     * ak vacsie ako 50% skonci, zmensi deltap)*/
		}
	    }			/*DEFined area */
	}
    }
    return 1;
}
コード例 #18
0
ファイル: main.c プロジェクト: rashadkm/grass_cmake
int main(int argc, char *argv[])
{
    struct Map_info In, Out;
    static struct line_pnts *Points;
    struct line_cats *Cats;
    struct field_info *Fi;
    struct cat_list *Clist;
    int i, j, ret, option, otype, type, with_z, step, id;
    int n_areas, centr, new_centr, nmodified;
    int open_level;
    double x, y;
    int cat, ocat, scat, *fields, nfields, field;
    struct GModule *module;
    struct Option *in_opt, *out_opt, *option_opt, *type_opt;
    struct Option *cat_opt, *field_opt, *step_opt, *id_opt;
    struct Flag *shell, *notab;
    FREPORT **freps;
    int nfreps, rtype, fld;
    char *desc;

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("category"));
    G_add_keyword(_("layer"));
    module->description =
	_("Attaches, deletes or reports vector categories to map geometry.");

    in_opt = G_define_standard_option(G_OPT_V_INPUT);

    field_opt = G_define_standard_option(G_OPT_V_FIELD);
    field_opt->multiple = YES;
    field_opt->guisection = _("Selection");

    type_opt = G_define_standard_option(G_OPT_V3_TYPE);
    type_opt->answer = "point,line,centroid,face";
    type_opt->guisection = _("Selection");

    id_opt = G_define_standard_option(G_OPT_V_IDS);
    id_opt->label = _("Feature ids (by default all features are processed)");
    id_opt->guisection = _("Selection");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    out_opt->required = NO;

    option_opt = G_define_option();
    option_opt->key = "option";
    option_opt->type = TYPE_STRING;
    option_opt->required = YES;
    option_opt->multiple = NO;
    option_opt->options = "add,del,chlayer,sum,report,print,layers,transfer";
    option_opt->description = _("Action to be done");
    desc = NULL;
    G_asprintf(&desc,
	       "add;%s;"
	       "del;%s;"
	       "chlayer;%s;"
	       "sum;%s;"
	       "transfer;%s;"
	       "report;%s;"
	       "print;%s;"
	       "layers;%s",
	       _("add a category to features without category in the given layer"),
	       _("delete category (cat=-1 to delete all categories of given layer)"),
	       _("change layer number (e.g. layer=3,1 changes layer 3 to layer 1)"),
	       _("add the value specified by cat option to the current category value"),
	       _("copy values from one layer to another (e.g. layer=1,2,3 copies values from layer 1 to layer 2 and 3)"),
	       _("print report (statistics), in shell style: layer type count min max"),
	       _("print category values, layers are separated by '|', more cats in the same layer are separated by '/'"),
	       _("print only layer numbers"));
    option_opt->descriptions = desc;
    
    cat_opt = G_define_standard_option(G_OPT_V_CAT);
    cat_opt->answer = "1";

    step_opt = G_define_option();
    step_opt->key = "step";
    step_opt->type = TYPE_INTEGER;
    step_opt->required = NO;
    step_opt->multiple = NO;
    step_opt->answer = "1";
    step_opt->description = _("Category increment");

    shell = G_define_flag();
    shell->key = 'g';
    shell->label = _("Shell script style, currently only for report");
    shell->description = _("Format: layer type count min max");
    
    notab = G_define_standard_flag(G_FLG_V_TABLE);
    notab->description = _("Do not copy attribute table(s)");

    G_gisinit(argv[0]);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* read options */
    option = 0;
    switch (option_opt->answer[0]) {
    case ('a'):
	option = O_ADD;
	break;
    case ('d'):
	option = O_DEL;
	break;
    case ('c'):
	option = O_CHFIELD;
	G_warning(_("Database connection and attribute tables for concerned layers are not changed"));
	break;
    case ('s'):
	option = O_SUM;
	break;
    case ('t'):
        option = O_TRANS;
        break;
    case ('r'):
	option = O_REP;
	break;
    case ('p'):
	option = O_PRN;
	break;
    case ('l'):
	option = O_LYR;
	break;
    }

    if (option == O_LYR) {
	/* print vector layer numbers */
	/* open vector on level 2 head only, this is why this option
	 * is processed here, all other options need (?) to fully open 
	 * the input vector */
	Vect_set_open_level(2);
	if (Vect_open_old_head2(&In, in_opt->answer, "", field_opt->answer) < 2) {
	    G_fatal_error(_("Unable to open vector map <%s> at topological level %d"),
			  Vect_get_full_name(&In), 2);
	}
	if (In.format == GV_FORMAT_NATIVE) {
	    nfields = Vect_cidx_get_num_fields(&In);
	    for (i = 0; i < nfields; i++) {
		if ((field = Vect_cidx_get_field_number(&In, i)) > 0)
		    fprintf(stdout, "%d\n", field);
	    }
	}
	else
	    fprintf(stdout, "%s\n", field_opt->answer);

	Vect_close(&In);
	exit(EXIT_SUCCESS);
    }

    cat = atoi(cat_opt->answer);
    step = atoi(step_opt->answer);
    otype = Vect_option_to_types(type_opt);

    if (cat < 0 && option == O_ADD)
	G_fatal_error(_("Invalid category number (must be equal to or greater than 0). "
			"Normally category number starts at 1."));

    /* collect ids */
    if (id_opt->answer) {
	Clist = Vect_new_cat_list();
	Clist->field = atoi(field_opt->answer);
	ret = Vect_str_to_cat_list(id_opt->answer, Clist);
	if (ret > 0) {
	    G_warning(n_("%d error in id option",
                         "%d errors in id option",
                         ret), ret);
	}
    }
    else {
	Clist = NULL;
    }

    if ((option != O_REP) && (option != O_PRN) && (option != O_LYR)) {
	if (out_opt->answer == NULL)
	    G_fatal_error(_("Output vector wasn't entered"));

	Vect_check_input_output_name(in_opt->answer, out_opt->answer,
				     G_FATAL_EXIT);
    }

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    /* do we need topology ? */
    if ((option == O_ADD && (otype & GV_AREA)) ||
	(option == O_REP && (otype & GV_AREA)) ||
        (option == O_TRANS) || /* topo for cidx check */
        (option == O_LYR)) /* topo for cidx check */
	open_level = 2;
    else
	open_level = 1;

    /* open input vector */
    if (open_level > 1) {
	Vect_set_open_level(open_level);
	if (Vect_open_old2(&In, in_opt->answer, "", field_opt->answer) < open_level) {
	    G_warning(_("Unable to open vector map <%s> at topological level %d"),
			  Vect_get_full_name(&In), open_level);
	    open_level = 1;
	}
    }
    if (open_level == 1) {
	Vect_set_open_level(open_level);
	if (Vect_open_old2(&In, in_opt->answer, "", field_opt->answer) < open_level) {
	    G_fatal_error(_("Unable to open vector map <%s> at topological level %d"),
			  Vect_get_full_name(&In), open_level);
	}
    }

    /* read fields */
    i = nfields = 0;
    while (field_opt->answers[i++])
	nfields++;
    fields = (int *)G_malloc(nfields * sizeof(int));
    
    i = 0;
    while (field_opt->answers[i]) {
	fields[i] = Vect_get_field_number(&In, field_opt->answers[i]);
	i++;
    }
    if (nfields > 1 && option != O_PRN && option != O_CHFIELD && option != O_TRANS)
	G_fatal_error(_("Too many layers for this operation"));
    
    if (nfields != 2 && option == O_CHFIELD)
	G_fatal_error(_("2 layers must be specified"));

    if (option == O_TRANS && open_level == 1 && nfields < 2) {
	G_fatal_error(_("2 layers must be specified"));
    }

    if (option == O_TRANS && open_level > 1) {
	/* check if field[>0] already exists */
	if (nfields > 1) {
	    for(i = 1; i < nfields; i++) {
		if (Vect_cidx_get_field_index(&In, fields[i]) != -1)
		    G_warning(_("Categories already exist in layer %d"), fields[i]);
	    }
	}
	/* find next free layer number */
	else if (nfields == 1) {
	    int max = -1;
	    
	    for (i = 0; i < Vect_cidx_get_num_fields(&In); i++) {
		if (max < Vect_cidx_get_field_number(&In, i))
		    max = Vect_cidx_get_field_number(&In, i);
	    }
	    max++;

	    nfields++;
	    fields = (int *)G_realloc(fields, nfields * sizeof(int));
	    fields[nfields - 1] = max;
	}
    }

    if (otype & GV_AREA && option == O_TRANS && !(otype & GV_CENTROID))
	otype |= GV_CENTROID;

    /* open output vector if needed */
    if (option == O_ADD || option == O_DEL || option == O_CHFIELD ||
	option == O_SUM || option == O_TRANS) {
	with_z = Vect_is_3d(&In);

	if (0 > Vect_open_new(&Out, out_opt->answer, with_z)) {
	    Vect_close(&In);
	    exit(EXIT_FAILURE);
	}

	Vect_copy_head_data(&In, &Out);
	Vect_hist_copy(&In, &Out);
	Vect_hist_command(&Out);
    }

    id = 0;

    nmodified = 0;

    if (option == O_ADD || option == O_DEL || option == O_CHFIELD ||
	option == O_SUM || option == O_TRANS) {
	G_message(_("Processing features..."));
    }

    switch (option) {
    case (O_ADD):
	/* Lines */
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (type & otype && (!Clist ||
				 (Clist &&
				  Vect_cat_in_cat_list(id, Clist) == TRUE))) {
		if ((Vect_cat_get(Cats, fields[0], &ocat)) == 0) {
		    if (ocat < 0) {
			if (Vect_cat_set(Cats, fields[0], cat) > 0) {
			    nmodified++;
			}
			cat += step;
		    }
		}
	    }
	    Vect_write_line(&Out, type, Points, Cats);
	}
	/* Areas */
	if ((otype & GV_AREA) && open_level > 1) {
	    n_areas = Vect_get_num_areas(&In);
	    new_centr = 0;
	    for (i = 1; i <= n_areas; i++) {
		centr = Vect_get_area_centroid(&In, i);
		if (centr > 0)
		    continue;	/* Centroid exists and may be processed as line */
		ret = Vect_get_point_in_area(&In, i, &x, &y);
		if (ret < 0) {
		    G_warning(_("Unable to calculate area centroid"));
		    continue;
		}
		Vect_reset_line(Points);
		Vect_reset_cats(Cats);
		Vect_append_point(Points, x, y, 0.0);
		if (Vect_cat_set(Cats, fields[0], cat) > 0) {
		    nmodified++;
		}
		cat += step;
		Vect_write_line(&Out, GV_CENTROID, Points, Cats);
		new_centr++;
	    }
	    if (new_centr > 0) 
		G_message(n_("%d new centroid placed in output map",
                             "%d new centroids placed in output map",
                             new_centr), new_centr);
	}
	break;

    case (O_TRANS):
	/* Lines */
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (type & otype && (!Clist ||
				 (Clist &&
				  Vect_cat_in_cat_list(id, Clist) == TRUE))) {
		int n = Cats->n_cats;

		scat = -1;
		for (i = 0; i < n; i++) {
		    if (Cats->field[i] == fields[0]) {
			scat = Cats->cat[i];
			for (j = 1; j < nfields; j++) {
			    if (Vect_cat_set(Cats, fields[j], scat) > 0) {
				G_debug(4, "Copy cat %i of field %i to field %i", scat, fields[0], fields[j]);
			    }
			}
		    }
		}
		if (scat != -1)
		    nmodified++;
	    }
	    Vect_write_line(&Out, type, Points, Cats);
	}
	break;

    case (O_DEL):
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (type & otype && (!Clist ||
				 (Clist &&
				  Vect_cat_in_cat_list(id, Clist) == TRUE))) {
		ret = Vect_field_cat_del(Cats, fields[0], cat);
		if (ret > 0) {
		    nmodified++;
		}
	    }
	    Vect_write_line(&Out, type, Points, Cats);
	}
	break;

    case (O_CHFIELD):
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (type & otype && (!Clist ||
				 (Clist &&
				  Vect_cat_in_cat_list(id, Clist) == TRUE))) {
		i = 0;
		while (i < Cats->n_cats) {
		    if (Cats->field[i] == fields[0]) {
			int found = -1;
			
			/* check if cat already exists in layer fields[1] */
			for (j = 0; j < Cats->n_cats; j++) {
			    if (Cats->field[j] == fields[1] &&
				Cats->cat[j] == Cats->cat[i]) {
				found = j;
				break;
			    }
			}
			/* does not exist, change layer */
			if (found < 0) {
			    Cats->field[i] = fields[1];
			    i++;
			}
			/* exists already in fields[1], delete from fields[0] */
			else
			    Vect_field_cat_del(Cats, fields[0], Cats->cat[found]);
			nmodified++;
		    }
		}
	    }
	    Vect_write_line(&Out, type, Points, Cats);
	}
	break;

    case (O_SUM):
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (type & otype && (!Clist ||
				 (Clist &&
				  Vect_cat_in_cat_list(id, Clist) == TRUE))) {
		for (i = 0; i < Cats->n_cats; i++) {
		    if (Cats->field[i] == fields[0]) {
			Cats->cat[i] += cat;
		    }
		}
		nmodified++;
	    }
	    Vect_write_line(&Out, type, Points, Cats);
	}
	break;

    case (O_REP):
	nfreps = 0;
	freps = NULL;
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    if (Clist && Vect_cat_in_cat_list(id, Clist) == FALSE)
		continue;

	    switch (type) {
	    case (GV_POINT):
		rtype = FR_POINT;
		break;
	    case (GV_LINE):
		rtype = FR_LINE;
		break;
	    case (GV_BOUNDARY):
		rtype = FR_BOUNDARY;
		break;
	    case (GV_CENTROID):
		rtype = FR_CENTROID;
		break;
	    case (GV_FACE):
		rtype = FR_FACE;
		break;
	    case (GV_KERNEL):
		rtype = FR_KERNEL;
		break;
	    default:
		rtype = FR_UNKNOWN;
	    }

	    for (i = 0; i < Cats->n_cats; i++) {
		field = Cats->field[i];
		cat = Cats->cat[i];


		ret = FALSE;
		for (j = 0; j < nfreps; j++) {
		    if (freps[j]->field == field) {
			fld = j;
			ret = TRUE;
			break;
		    }
		}
		if (!ret) {	/* field report doesn't exist */
		    nfreps++;
		    freps =
			(FREPORT **) G_realloc(freps,
					       nfreps * sizeof(FREPORT *));
		    fld = nfreps - 1;
		    freps[fld] = (FREPORT *) G_calloc(1, sizeof(FREPORT));
		    freps[fld]->field = field;
		    for (j = 0; j < FRTYPES; j++) {
			/* cat '0' is valid category number */
			freps[fld]->min[j] = -1;
		    }
		    if ((Fi = Vect_get_field(&In, field)) != NULL) {
			freps[fld]->table = G_store(Fi->table);
		    }
		    else {
			freps[fld]->table = '\0';
		    }
		}

		freps[fld]->count[rtype]++;
		freps[fld]->count[FR_ALL]++;

		if (freps[fld]->min[rtype] == -1 ||
		    freps[fld]->min[rtype] > cat)
		    freps[fld]->min[rtype] = cat;

		if ((freps[fld]->max[rtype] == 0) ||
		    freps[fld]->max[rtype] < cat)
		    freps[fld]->max[rtype] = cat;

		if (freps[fld]->min[FR_ALL] == -1 ||
		    freps[fld]->min[FR_ALL] > cat)
		    freps[fld]->min[FR_ALL] = cat;

		if ((freps[fld]->max[FR_ALL] == 0) ||
		    freps[fld]->max[FR_ALL] < cat)
		    freps[fld]->max[FR_ALL] = cat;
	    }
	}
	/* Areas */
	if ((otype & GV_AREA) && open_level > 1 && !Clist) {
	    n_areas = Vect_get_num_areas(&In);
	    for (i = 1; i <= n_areas; i++) {
		int k;

		centr = Vect_get_area_centroid(&In, i);
		if (centr <= 0)
		    continue;	/* Area without centroid */
		    
		Vect_read_line(&In, NULL, Cats, centr);
		for (j = 0; j < Cats->n_cats; j++) {
		    field = Cats->field[j];
		    cat = Cats->cat[j];


		    ret = FALSE;
		    for (k = 0; k < nfreps; k++) {
			if (freps[k]->field == field) {
			    fld = k;
			    ret = TRUE;
			    break;
			}
		    }
		    if (!ret) {	/* field report doesn't exist */
			nfreps++;
			freps =
			    (FREPORT **) G_realloc(freps,
						   nfreps * sizeof(FREPORT *));
			fld = nfreps - 1;
			freps[fld] = (FREPORT *) G_calloc(1, sizeof(FREPORT));
			freps[fld]->field = field;
			for (j = 0; j < FRTYPES; j++) {
			    /* cat '0' is valid category number */
			    freps[fld]->min[k] = -1;
			}
			if ((Fi = Vect_get_field(&In, field)) != NULL) {
			    freps[fld]->table = G_store(Fi->table);
			}
			else {
			    freps[fld]->table = '\0';
			}
		    }

		    freps[fld]->count[FR_AREA]++;

		    if (freps[fld]->min[FR_AREA] == -1 ||
			freps[fld]->min[FR_AREA] > cat)
			freps[fld]->min[FR_AREA] = cat;

		    if ((freps[fld]->max[FR_AREA] == 0) ||
			freps[fld]->max[FR_AREA] < cat)
			freps[fld]->max[FR_AREA] = cat;
		}
	    }
	}
	for (i = 0; i < nfreps; i++) {
	    if (shell->answer) {
		if (freps[i]->count[FR_POINT] > 0)
		    fprintf(stdout, "%d point %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_POINT],
			    (freps[i]->min[FR_POINT] < 0 ? 0 : freps[i]->min[FR_POINT]),
			    freps[i]->max[FR_POINT]);

		if (freps[i]->count[FR_LINE] > 0)
		    fprintf(stdout, "%d line %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_LINE],
			    (freps[i]->min[FR_LINE] < 0 ? 0 : freps[i]->min[FR_LINE]),
			    freps[i]->max[FR_LINE]);

		if (freps[i]->count[FR_BOUNDARY] > 0)
		    fprintf(stdout, "%d boundary %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_BOUNDARY],
			    (freps[i]->min[FR_BOUNDARY] < 0 ? 0 : freps[i]->min[FR_BOUNDARY]),
			    freps[i]->max[FR_BOUNDARY]);

		if (freps[i]->count[FR_CENTROID] > 0)
		    fprintf(stdout, "%d centroid %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_CENTROID],
			    (freps[i]->min[FR_BOUNDARY] < 0 ? 0 : freps[i]->min[FR_BOUNDARY]),
			    freps[i]->max[FR_CENTROID]);

		if (freps[i]->count[FR_AREA] > 0)
		    fprintf(stdout, "%d area %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_AREA],
			    (freps[i]->min[FR_AREA] < 0 ? 0 : freps[i]->min[FR_AREA]),
			    freps[i]->max[FR_AREA]);

		if (freps[i]->count[FR_FACE] > 0)
		    fprintf(stdout, "%d face %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_FACE],
			    (freps[i]->min[FR_FACE] < 0 ? 0 : freps[i]->min[FR_FACE]),
			    freps[i]->max[FR_FACE]);

		if (freps[i]->count[FR_KERNEL] > 0)
		    fprintf(stdout, "%d kernel %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_KERNEL],
			    (freps[i]->min[FR_KERNEL] < 0 ? 0 : freps[i]->min[FR_KERNEL]),
			    freps[i]->max[FR_KERNEL]);

		if (freps[i]->count[FR_ALL] > 0)
		    fprintf(stdout, "%d all %d %d %d\n", freps[i]->field,
			    freps[i]->count[FR_ALL],
			    (freps[i]->min[FR_ALL] < 0 ? 0 : freps[i]->min[FR_ALL]),
			    freps[i]->max[FR_ALL]);
	    }
	    else {
		if (freps[i]->table != '\0') {
		    fprintf(stdout, "%s: %d/%s\n", _("Layer/table"),
			    freps[i]->field, freps[i]->table);
		}
		else {
		    fprintf(stdout, "%s: %d\n", _("Layer"), freps[i]->field);
		}
		fprintf(stdout, _("type       count        min        max\n"));
		fprintf(stdout, "%s    %7d %10d %10d\n", _("point"),
			freps[i]->count[FR_POINT],
			(freps[i]->min[FR_POINT] < 0) ? 0 : freps[i]->min[FR_POINT],
			freps[i]->max[FR_POINT]);
		fprintf(stdout, "%s     %7d %10d %10d\n", _("line"),
			freps[i]->count[FR_LINE],
			(freps[i]->min[FR_LINE] < 0) ? 0 : freps[i]->min[FR_LINE],
			freps[i]->max[FR_LINE]);
		fprintf(stdout, "%s %7d %10d %10d\n", _("boundary"),
			freps[i]->count[FR_BOUNDARY],
			(freps[i]->min[FR_BOUNDARY] < 0) ? 0 : freps[i]->min[FR_BOUNDARY],
			freps[i]->max[FR_BOUNDARY]);
		fprintf(stdout, "%s %7d %10d %10d\n", _("centroid"),
			freps[i]->count[FR_CENTROID],
			(freps[i]->min[FR_CENTROID] < 0) ? 0 : freps[i]->min[FR_CENTROID],
			freps[i]->max[FR_CENTROID]);
		fprintf(stdout, "%s     %7d %10d %10d\n", _("area"),
			freps[i]->count[FR_AREA],
			(freps[i]->min[FR_AREA] < 0) ? 0 : freps[i]->min[FR_AREA],
			freps[i]->max[FR_AREA]);
		fprintf(stdout, "%s     %7d %10d %10d\n", _("face"),
			freps[i]->count[FR_FACE],
			(freps[i]->min[FR_FACE] < 0) ? 0 : freps[i]->min[FR_FACE],
			freps[i]->max[FR_FACE]);
		fprintf(stdout, "%s   %7d %10d %10d\n", _("kernel"),
			freps[i]->count[FR_KERNEL],
			(freps[i]->min[FR_KERNEL] < 0) ? 0 : freps[i]->min[FR_KERNEL],
			freps[i]->max[FR_KERNEL]);
		fprintf(stdout, "%s      %7d %10d %10d\n", _("all"),
			freps[i]->count[FR_ALL],
			(freps[i]->min[FR_ALL] < 0) ? 0 : freps[i]->min[FR_ALL],
			freps[i]->max[FR_ALL]);
	    }
	}
	break;

    case (O_PRN):
	while ((type = Vect_read_next_line(&In, Points, Cats)) > 0) {
	    id++;
	    int has = 0;

	    if (!(type & otype))
		continue;

	    if (Clist && Vect_cat_in_cat_list(id, Clist) == FALSE)
		continue;

	    /* Check if the line has at least one cat */
	    for (i = 0; i < nfields; i++) {
		for (j = 0; j < Cats->n_cats; j++) {
		    if (Cats->field[j] == fields[i]) {
			has = 1;
			break;
		    }
		}
	    }

	    if (!has)
		continue;

	    for (i = 0; i < nfields; i++) {
		int first = 1;

		if (i > 0)
		    fprintf(stdout, "|");
		for (j = 0; j < Cats->n_cats; j++) {
		    if (Cats->field[j] == fields[i]) {
			if (!first)
			    fprintf(stdout, "/");
			fprintf(stdout, "%d", Cats->cat[j]);
			first = 0;
		    }
		}
	    }
	    fprintf(stdout, "\n");
	}
	break;
    }

    if (option == O_ADD || option == O_DEL || option == O_CHFIELD ||
        option == O_SUM || option == O_TRANS){
        if (!notab->answer){
	    G_message(_("Copying attribute table(s)..."));
            if (Vect_copy_tables(&In, &Out, 0))
                G_warning(_("Failed to copy attribute table to output map"));
	}
	Vect_build(&Out);
	Vect_close(&Out);
    }

    if (option == O_TRANS && nmodified > 0)
        for(i = 1; i < nfields; i++)
	    G_important_message(_("Categories copied from layer %d to layer %d"),
		                  fields[0], fields[i]);

    if (option != O_REP && option != O_PRN) 
        G_done_msg(n_("%d feature modified.",
                      "%d features modified.",
                      nmodified), nmodified);
    
    Vect_close(&In);

    exit(EXIT_SUCCESS);
}
コード例 #19
0
ファイル: info.c プロジェクト: rkd77/elinks-tv
static unsigned char *
get_resource_info(struct terminal *term, void *data)
{
	struct string info;
	long val;
	unsigned longlong bigval;

	if (!init_string(&info))
		return NULL;

#define val_add(text) \
	add_format_to_string(&info, (const char *)text, val);

	add_to_string(&info, _("Resources", term));
	add_to_string(&info, (const unsigned char *)": ");

	val = get_file_handles_count();
	val_add(n_((unsigned char *)"%ld handle", (unsigned char *)"%ld handles", val, term));
	add_to_string(&info, (const unsigned char *)", ");

	val = get_timers_count();
	val_add(n_((unsigned char *)"%ld timer", (unsigned char *)"%ld timers", val, term));
	add_to_string(&info, (const unsigned char *)".\n");

	add_to_string(&info, _("Connections", term));
	add_to_string(&info, (const unsigned char *)": ");

	val = get_connections_count();
	val_add(n_((unsigned char *)"%ld connection", (unsigned char *)"%ld connections", val, term));
	add_to_string(&info, (const unsigned char *)", ");

	val = get_connections_connecting_count();
	val_add(n_((unsigned char *)"%ld connecting", (unsigned char *)"%ld connecting", val, term));
	add_to_string(&info, (const unsigned char *)", ");

	val = get_connections_transfering_count();
	val_add(n_((unsigned char *)"%ld transferring", (unsigned char *)"%ld transferring", val, term));
	add_to_string(&info, (const unsigned char *)", ");

	val = get_keepalive_connections_count();
	val_add(n_((unsigned char *)"%ld keepalive", (unsigned char *)"%ld keepalive", val, term));
	add_to_string(&info, (const unsigned char *)".\n");

	add_to_string(&info, _("Memory cache", term));
	add_to_string(&info, (const unsigned char *)": ");

	/* What about just using Kibi/Mebi representation here? --jonas */
	bigval = get_cache_size();
	add_format_to_string(&info, (const char *)n_((unsigned char *)"%ld byte", (unsigned char *)"%ld bytes", bigval, term), bigval);
	add_to_string(&info, (const unsigned char *)", ");

	val = get_cache_entry_count();
	val_add(n_((unsigned char *)"%ld file", (unsigned char *)"%ld files", val, term));
	add_to_string(&info, (const unsigned char *)", ");

	val = get_cache_entry_used_count();
	val_add(n_((unsigned char *)"%ld in use", (unsigned char *)"%ld in use", val, term));
	add_to_string(&info, (const unsigned char *)", ");

	val = get_cache_entry_loading_count();
	val_add(n_((unsigned char *)"%ld loading", (unsigned char *)"%ld loading", val, term));
	add_to_string(&info, (const unsigned char *)".\n");

	add_to_string(&info, _("Document cache", term));
	add_to_string(&info, (const unsigned char *)": ");

	val = get_format_cache_size();
	val_add(n_((unsigned char *)"%ld formatted", (unsigned char *)"%ld formatted", val, term));
	add_to_string(&info, (const unsigned char *)", ");

	val = get_format_cache_used_count();
	val_add(n_((unsigned char *)"%ld in use", (unsigned char *)"%ld in use", val, term));
	add_to_string(&info, (const unsigned char *)", ");

	val = get_format_cache_refresh_count();
	val_add(n_((unsigned char *)"%ld refreshing", (unsigned char *)"%ld refreshing", val, term));
	add_to_string(&info, (const unsigned char *)".\n");

#ifdef CONFIG_ECMASCRIPT
	add_to_string(&info, _("ECMAScript", term));
	add_to_string(&info, (const unsigned char *)": ");

	val = ecmascript_get_interpreter_count();
	val_add(n_((unsigned char *)"%ld interpreter", (unsigned char *)"%ld interpreters", val, term));
	add_to_string(&info, (const unsigned char *)".\n");
#endif

	add_to_string(&info, _("Interlinking", term));
	add_to_string(&info, (const unsigned char *)": ");
	if (term->master)
		add_to_string(&info, _("master terminal", term));
	else
		add_to_string(&info, _("slave terminal", term));
	add_to_string(&info, (const unsigned char *)", ");

	val = list_size(&terminals);
	val_add(n_((unsigned char *)"%ld terminal", (unsigned char *)"%ld terminals", val, term));
	add_to_string(&info, (const unsigned char *)", ");

	val = list_size(&sessions);
	val_add(n_((unsigned char *)"%ld session", (unsigned char *)"%ld sessions", val, term));
	add_char_to_string(&info, '.');

#ifdef DEBUG_MEMLEAK
	add_char_to_string(&info, '\n');
	add_to_string(&info, _("Memory allocated", term));
	add_to_string(&info, (const unsigned char *)": ");

	val = mem_stats.amount;
	val_add(n_((unsigned char *)"%ld byte", (unsigned char *)"%ld bytes", val, term));
	add_to_string(&info, ", ");

	val = mem_stats.true_amount - mem_stats.amount;
	val_add(n_((unsigned char *)"%ld byte overhead", (unsigned char *)"%ld bytes overhead", val, term));

	add_format_to_string(&info, " (%0.2f%%).",
		(double) (mem_stats.true_amount - mem_stats.amount) / (double) mem_stats.amount * 100);
#endif /* DEBUG_MEMLEAK */

#undef val_add

	return info.source;
}
コード例 #20
0
ファイル: main.c プロジェクト: rkrug/grass-ci
int main(int argc, char *argv[])
{
    int fd, maskfd;
    CELL *mask;
    DCELL *dcell;
    struct GModule *module;
    struct History history;
    int row, col;
    int searchrow, searchcolumn, pointsfound;
    int *shortlistrows = NULL, *shortlistcolumns = NULL;
    long ncells = 0;
    double north, east;
    double dist;
    double sum1, sum2, interp_value;
    int n;
    double p;
    struct
    {
        struct Option *input, *npoints, *power, *output, *dfield, *col;
    } parm;
    struct
    {
        struct Flag *noindex;
    } flag;
    struct cell_list
    {
        int row, column;
        struct cell_list *next;
    };
    struct cell_list **search_list = NULL, **search_list_start = NULL;
    int max_radius, radius;
    int searchallpoints = 0;
    char *tmpstr1, *tmpstr2;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("surface"));
    G_add_keyword(_("interpolation"));
    G_add_keyword(_("IDW"));
    module->description =
        _("Provides surface interpolation from vector point data by Inverse "
          "Distance Squared Weighting.");

    parm.input = G_define_standard_option(G_OPT_V_INPUT);

    parm.dfield = G_define_standard_option(G_OPT_V_FIELD);

    parm.col = G_define_standard_option(G_OPT_DB_COLUMN);
    parm.col->required = NO;
    parm.col->label = _("Name of attribute column with values to interpolate");
    parm.col->description = _("If not given and input is 2D vector map then category values are used. "
                              "If input is 3D vector map then z-coordinates are used.");
    parm.col->guisection = _("Values");

    parm.output = G_define_standard_option(G_OPT_R_OUTPUT);

    parm.npoints = G_define_option();
    parm.npoints->key = "npoints";
    parm.npoints->key_desc = "count";
    parm.npoints->type = TYPE_INTEGER;
    parm.npoints->required = NO;
    parm.npoints->description = _("Number of interpolation points");
    parm.npoints->answer = "12";
    parm.npoints->guisection = _("Settings");

    parm.power = G_define_option();
    parm.power->key = "power";
    parm.power->type = TYPE_DOUBLE;
    parm.power->answer = "2.0";
    parm.power->label = _("Power parameter");
    parm.power->description =
        _("Greater values assign greater influence to closer points");
    parm.power->guisection = _("Settings");

    flag.noindex = G_define_flag();
    flag.noindex->key = 'n';
    flag.noindex->label = _("Don't index points by raster cell");
    flag.noindex->description = _("Slower but uses"
                                  " less memory and includes points from outside region"
                                  " in the interpolation");
    flag.noindex->guisection = _("Settings");

    if (G_parser(argc, argv))
        exit(EXIT_FAILURE);

    if (sscanf(parm.npoints->answer, "%d", &search_points) != 1 ||
            search_points < 1)
        G_fatal_error(_("Illegal number (%s) of interpolation points"),
                      parm.npoints->answer);

    list =
        (struct list_Point *) G_calloc((size_t) search_points,
                                       sizeof(struct list_Point));

    p = atof(parm.power->answer);

    /* get the window, dimension arrays */
    G_get_window(&window);

    if (!flag.noindex->answer) {
        npoints_currcell = (long **)G_malloc(window.rows * sizeof(long *));
        points =
            (struct Point ***)G_malloc(window.rows * sizeof(struct Point **));


        for (row = 0; row < window.rows; row++) {
            npoints_currcell[row] =
                (long *)G_malloc(window.cols * sizeof(long));
            points[row] =
                (struct Point **)G_malloc(window.cols *
                                          sizeof(struct Point *));

            for (col = 0; col < window.cols; col++) {
                npoints_currcell[row][col] = 0;
                points[row][col] = NULL;
            }
        }
    }

    /* read the elevation points from the input sites file */
    read_sites(parm.input->answer, parm.dfield->answer,
               parm.col->answer, flag.noindex->answer);

    if (npoints == 0)
        G_fatal_error(_("No points found"));
    nsearch = npoints < search_points ? npoints : search_points;

    if (!flag.noindex->answer) {
        /* Arbitrary point to switch between searching algorithms. Could do
         * with refinement PK */
        if ((window.rows * window.cols) / npoints > 400) {
            /* Using old algorithm.... */
            searchallpoints = 1;
            ncells = 0;

            /* Make an array to contain the row and column indices that have
             * sites in them; later will just search through all these. */
            for (searchrow = 0; searchrow < window.rows; searchrow++)
                for (searchcolumn = 0; searchcolumn < window.cols;
                        searchcolumn++)
                    if (npoints_currcell[searchrow][searchcolumn] > 0) {
                        shortlistrows = (int *)G_realloc(shortlistrows,
                                                         (1 +
                                                          ncells) *
                                                         sizeof(int));
                        shortlistcolumns =
                            (int *)G_realloc(shortlistcolumns,
                                             (1 + ncells) * sizeof(int));
                        shortlistrows[ncells] = searchrow;
                        shortlistcolumns[ncells] = searchcolumn;
                        ncells++;
                    }
        }
        else {
            /* Fill look-up table of row and column offsets for
             * doing a circular region growing search looking for sites */
            /* Use units of column width */
            max_radius = (int)(0.5 + sqrt(window.cols * window.cols +
                                          (window.rows * window.ns_res /
                                           window.ew_res) * (window.rows *
                                                   window.ns_res /
                                                   window.ew_res)));

            search_list =
                (struct cell_list **)G_malloc(max_radius *
                                              sizeof(struct cell_list *));
            search_list_start =
                (struct cell_list **)G_malloc(max_radius *
                                              sizeof(struct cell_list *));

            for (radius = 0; radius < max_radius; radius++)
                search_list[radius] = NULL;

            for (row = 0; row < window.rows; row++)
                for (col = 0; col < window.cols; col++) {
                    radius = (int)sqrt(col * col +
                                       (row * window.ns_res / window.ew_res) *
                                       (row * window.ns_res / window.ew_res));
                    if (search_list[radius] == NULL)
                        search_list[radius] =
                            search_list_start[radius] =
                                G_malloc(sizeof(struct cell_list));
                    else
                        search_list[radius] =
                            search_list[radius]->next =
                                G_malloc(sizeof(struct cell_list));

                    search_list[radius]->row = row;
                    search_list[radius]->column = col;
                    search_list[radius]->next = NULL;
                }
        }
    }

    /* allocate buffers, etc. */

    dcell = Rast_allocate_d_buf();

    if ((maskfd = Rast_maskfd()) >= 0)
        mask = Rast_allocate_c_buf();
    else
        mask = NULL;


    fd = Rast_open_new(parm.output->answer, DCELL_TYPE);

    /* GTC Count of window rows */
    G_asprintf(&tmpstr1, n_("%d row", "%d rows", window.rows), window.rows);
    /* GTC Count of window columns */
    G_asprintf(&tmpstr2, n_("%d column", "%d columns", window.cols), window.cols);
    /* GTC First argument is map name, second - message about number of rows, third - columns. */
    G_important_message(_("Interpolating raster map <%s> (%s, %s)..."),
                        parm.output->answer, tmpstr1, tmpstr2);
    G_free(tmpstr1);
    G_free(tmpstr2);

    north = window.north + window.ns_res / 2.0;
    for (row = 0; row < window.rows; row++) {
        G_percent(row, window.rows, 1);

        if (mask)
            Rast_get_c_row(maskfd, mask, row);

        north -= window.ns_res;
        east = window.west - window.ew_res / 2.0;
        for (col = 0; col < window.cols; col++) {
            east += window.ew_res;
            /* don't interpolate outside of the mask */
            if (mask && mask[col] == 0) {
                Rast_set_d_null_value(&dcell[col], 1);
                continue;
            }

            /* If current cell contains more than nsearch points just average
             * all the points in this cell and don't look in any others */

            if (!(flag.noindex->answer) && npoints_currcell[row][col] >= nsearch) {
                sum1 = 0.0;
                for (i = 0; i < npoints_currcell[row][col]; i++)
                    sum1 += points[row][col][i].z;

                interp_value = sum1 / npoints_currcell[row][col];
            }
            else {
                if (flag.noindex->answer)
                    calculate_distances_noindex(north, east);
                else {
                    pointsfound = 0;
                    i = 0;

                    if (searchallpoints == 1) {
                        /* If there aren't many sites just check them all to find
                         * the nearest */
                        for (n = 0; n < ncells; n++)
                            calculate_distances(shortlistrows[n],
                                                shortlistcolumns[n], north,
                                                east, &pointsfound);
                    }
                    else {
                        radius = 0;
                        while (pointsfound < nsearch) {
                            /* Keep widening the search window until we find
                             * enough points */
                            search_list[radius] = search_list_start[radius];
                            while (search_list[radius] != NULL) {
                                /* Always */
                                if (row <
                                        (window.rows - search_list[radius]->row)
                                        && col <
                                        (window.cols -
                                         search_list[radius]->column)) {
                                    searchrow =
                                        row + search_list[radius]->row;
                                    searchcolumn =
                                        col + search_list[radius]->column;
                                    calculate_distances(searchrow,
                                                        searchcolumn, north,
                                                        east, &pointsfound);
                                }

                                /* Only if at least one offset is not 0 */
                                if ((search_list[radius]->row > 0 ||
                                        search_list[radius]->column > 0) &&
                                        row >= search_list[radius]->row &&
                                        col >= search_list[radius]->column) {
                                    searchrow =
                                        row - search_list[radius]->row;
                                    searchcolumn =
                                        col - search_list[radius]->column;
                                    calculate_distances(searchrow,
                                                        searchcolumn, north,
                                                        east, &pointsfound);
                                }

                                /* Only if both offsets are not 0 */
                                if (search_list[radius]->row > 0 &&
                                        search_list[radius]->column > 0) {
                                    if (row <
                                            (window.rows -
                                             search_list[radius]->row) &&
                                            col >= search_list[radius]->column) {
                                        searchrow =
                                            row + search_list[radius]->row;
                                        searchcolumn =
                                            col - search_list[radius]->column;
                                        calculate_distances(searchrow,
                                                            searchcolumn,
                                                            north, east,
                                                            &pointsfound);
                                    }
                                    if (row >= search_list[radius]->row &&
                                            col <
                                            (window.cols -
                                             search_list[radius]->column)) {
                                        searchrow =
                                            row - search_list[radius]->row;
                                        searchcolumn =
                                            col + search_list[radius]->column;
                                        calculate_distances(searchrow,
                                                            searchcolumn,
                                                            north, east,
                                                            &pointsfound);
                                    }
                                }

                                search_list[radius] =
                                    search_list[radius]->next;
                            }
                            radius++;
                        }
                    }
                }

                /* interpolate */
                sum1 = 0.0;
                sum2 = 0.0;
                for (n = 0; n < nsearch; n++) {
                    if ((dist = sqrt(list[n].dist))) {
                        sum1 += list[n].z / pow(dist, p);
                        sum2 += 1.0 / pow(dist, p);
                    }
                    else {
                        /* If one site is dead on the centre of the cell, ignore
                         * all the other sites and just use this value.
                         * (Unlikely when using floating point numbers?) */
                        sum1 = list[n].z;
                        sum2 = 1.0;
                        break;
                    }
                }
                interp_value = sum1 / sum2;
            }
            dcell[col] = (DCELL) interp_value;
        }
        Rast_put_d_row(fd, dcell);
    }
    G_percent(1, 1, 1);

    Rast_close(fd);

    /* writing history file */
    Rast_short_history(parm.output->answer, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(parm.output->answer, &history);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
コード例 #21
0
ファイル: main.c プロジェクト: rashadkm/grass_cmake
int main(int argc, char *argv[])
{
    int i, j, centroid, otype, count;
    int nlines, nareas;
    int field;
    struct GModule *module;
    struct Option *in_opt, *field_opt, *out_opt, *type_opt;
    struct Option *size_opt, *zmod_opt, *objmod_opt;
    FILE *fd;

    /* Vector */
    struct Map_info In;
    struct line_pnts *Points;
    struct line_cats *Cats;
    int type;

    G_gisinit(argv[0]);

    /* Module options */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("export"));
    module->description =
	_("Converts GRASS x,y,z points to POV-Ray x,z,y format.");

    in_opt = G_define_standard_option(G_OPT_V_INPUT);

    field_opt = G_define_standard_option(G_OPT_V_FIELD_ALL);
    
    type_opt = G_define_standard_option(G_OPT_V3_TYPE);
    type_opt->answer = "point,line,area,face";

    out_opt = G_define_standard_option(G_OPT_F_OUTPUT);
    out_opt->required = YES;
    out_opt->description = _("Name for output POV file");

    size_opt = G_define_option();
    size_opt->key = "size";
    size_opt->type = TYPE_STRING;
    size_opt->required = NO;
    size_opt->answer = "10";
    size_opt->label = _("Radius of sphere for points and tube for lines");
    size_opt->description = _("May be also variable, e.g. grass_r.");

    zmod_opt = G_define_option();
    zmod_opt->key = "zmod";
    zmod_opt->type = TYPE_STRING;
    zmod_opt->required = NO;
    zmod_opt->description = _("Modifier for z coordinates");
    zmod_opt->description = _("This string is appended to each z coordinate. "
			      "Examples: '*10', '+1000', '*10+100', '*exaggeration'");

    objmod_opt = G_define_option();
    objmod_opt->key = "objmod";
    objmod_opt->type = TYPE_STRING;
    objmod_opt->required = NO;
    objmod_opt->label = _("Object modifier (OBJECT_MODIFIER in POV-Ray documentation)");
    objmod_opt->description = _("Example: \"pigment { color red 0 green 1 blue 0 }\"");
    
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* Check output type */
    otype = Vect_option_to_types(type_opt);

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    /* open input vector */
    Vect_set_open_level(2);
    if (Vect_open_old2(&In, in_opt->answer, "", field_opt->answer) < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), in_opt->answer);
    
    field = Vect_get_field_number(&In, field_opt->answer);
    
    /* Open output file */
    if ((fd = fopen(out_opt->answer, "w")) == NULL) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create output file <%s>"), out_opt->answer);
    }

    if (zmod_opt->answer == NULL)
	    zmod_opt->answer = G_store("");
    if (objmod_opt->answer == NULL)
	    objmod_opt->answer = G_store("");

    nlines = Vect_get_num_lines(&In);
    nareas = Vect_get_num_areas(&In);
    count = 0;
    /* Lines */
    if ((otype &
	 (GV_POINTS | GV_LINES | GV_BOUNDARY | GV_CENTROID | GV_FACE |
	  GV_KERNEL))) {
	for (i = 1; i <= nlines; i++) {
	    G_percent(i, nlines, 2);
	    type = Vect_read_line(&In, Points, Cats, i);
	    G_debug(2, "line = %d type = %d", i, type);
	    
	    if (field != -1 && Vect_cat_get(Cats, field, NULL) == 0)
		continue;
	    
	    if (!(otype & type)) {
		continue;
	    }
	    
	    switch (type) {
	    case GV_POINT:
	    case GV_CENTROID:
	    case GV_KERNEL:
		fprintf(fd, "sphere { <%f, %f %s, %f>, %s\n%s\n}\n",
			Points->x[0], Points->z[0], zmod_opt->answer,
			Points->y[0], size_opt->answer, objmod_opt->answer);
		count++;
		break;
	    case GV_LINE:
	    case GV_BOUNDARY:
		if (Points->n_points < 2)
		    break;	/* At least 2 points */

		fprintf(fd, "sphere_sweep { linear_spline %d,\n",
			Points->n_points);
		for (j = 0; j < Points->n_points; j++) {
		    fprintf(fd, " <%f, %f %s, %f>, %s\n",
			    Points->x[j], Points->z[j], zmod_opt->answer,
			    Points->y[j], size_opt->answer);
		}
		fprintf(fd, " %s\n}\n", objmod_opt->answer);
		count++;
		break;
	    case GV_FACE:
		if (Points->n_points < 3)
		    break;	/* At least 3 points */

		Vect_append_point(Points, Points->x[0], Points->y[0], Points->z[0]);	/* close */
		fprintf(fd, "polygon { %d, \n", Points->n_points);
		for (j = 0; j < Points->n_points; j++) {
		    fprintf(fd, " <%f, %f %s, %f>\n",
			    Points->x[j], Points->z[j], zmod_opt->answer,
			    Points->y[j]);
		}
		fprintf(fd, " %s\n}\n", objmod_opt->answer);
		count++;
		break;
	    }
	}
    }

    /* Areas (run always to count features of different type) */
    if (otype & GV_AREA && nareas > 0) {
	G_message(_("Processing areas..."));
	for (i = 1; i <= nareas; i++) {
	    G_percent(i, nareas, 2);
	    /* TODO : Use this later for attributes from database: */
	    centroid = Vect_get_area_centroid(&In, i);
	    if (centroid > 0) {
		Vect_read_line(&In, NULL, Cats, centroid);
		if (field != -1 && Vect_cat_get(Cats, field, NULL) < 0)
		    continue;
	    }
	    G_debug(2, "area = %d centroid = %d", i, centroid);

	    /* Geometry */
	    /* Area */
	    Vect_get_area_points(&In, i, Points);
	    if (Points->n_points > 2) {
		for (j = 0; j < Points->n_points; j++) {
		    fprintf(fd, "polygon { %d, \n", Points->n_points);
		    for (j = 0; j < Points->n_points; j++) {
			fprintf(fd, " <%f, %f %s, %f>\n",
				Points->x[j], Points->z[j], zmod_opt->answer,
				Points->y[j]);
		    }
		    fprintf(fd, " %s\n}\n", objmod_opt->answer);
		}

		/* TODO: Isles */
		/*
		   for ( k = 0; k < Vect_get_area_num_isles (&In, i); k++ ) {
		   Vect_get_isle_points ( &In, Vect_get_area_isle (&In, i, k), Points );
		   for ( j = 0; j < Points->n_points; j++ ) {
		   }
		   }
		 */
		count++;
	    }
	}
    }

    fclose(fd);
    Vect_close(&In);

    /* Summary */
    G_done_msg(n_("%d feature written.",
                  "%d features written.",
                  count), count);

    exit(EXIT_SUCCESS);
}
コード例 #22
0
ファイル: main.c プロジェクト: rashadkm/grass_cmake
int main(int argc, char *argv[])
{
    int m1;
    struct FPRange range;
    DCELL cellmin, cellmax;
    FCELL *cellrow, fcellmin;

    struct GModule *module;
    struct
    {
	struct Option *input, *elev, *slope, *aspect, *pcurv, *tcurv, *mcurv,
	    *smooth, *maskmap, *zmult, *fi, *segmax, *npmin, *res_ew, *res_ns,
	    *overlap, *theta, *scalex;
    } parm;
    struct
    {
	struct Flag *deriv, *cprght;
    } flag;


    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("resample"));
    module->description =
	_("Reinterpolates and optionally computes topographic analysis from "
	  "input raster map to a new raster map (possibly with "
	  "different resolution) using regularized spline with "
	  "tension and smoothing.");

    parm.input = G_define_standard_option(G_OPT_R_INPUT);

    parm.res_ew = G_define_option();
    parm.res_ew->key = "ew_res";
    parm.res_ew->type = TYPE_DOUBLE;
    parm.res_ew->required = YES;
    parm.res_ew->description = _("Desired east-west resolution");

    parm.res_ns = G_define_option();
    parm.res_ns->key = "ns_res";
    parm.res_ns->type = TYPE_DOUBLE;
    parm.res_ns->required = YES;
    parm.res_ns->description = _("Desired north-south resolution");

    parm.elev = G_define_standard_option(G_OPT_R_ELEV);
    parm.elev->required = NO;
    parm.elev->gisprompt = "new,cell,raster";
    parm.elev->description = _("Name for output elevation raster map");
    parm.elev->guisection = _("Output");

    parm.slope = G_define_standard_option(G_OPT_R_OUTPUT);
    parm.slope->key = "slope";
    parm.slope->required = NO;
    parm.slope->description = _("Name for output slope map (or fx)");
    parm.slope->guisection = _("Output");

    parm.aspect = G_define_standard_option(G_OPT_R_OUTPUT);
    parm.aspect->key = "aspect";
    parm.aspect->required = NO;
    parm.aspect->description = _("Name for output aspect map (or fy)");
    parm.aspect->guisection = _("Output");

    parm.pcurv = G_define_standard_option(G_OPT_R_OUTPUT);
    parm.pcurv->key = "pcurvature";
    parm.pcurv->required = NO;
    parm.pcurv->description = _("Name for output profile curvature map (or fxx)");
    parm.pcurv->guisection = _("Output");

    parm.tcurv = G_define_standard_option(G_OPT_R_OUTPUT);
    parm.tcurv->key = "tcurvature";
    parm.tcurv->required = NO;
    parm.tcurv->description = _("Name for output tangential curvature map (or fyy)");
    parm.tcurv->guisection = _("Output");

    parm.mcurv = G_define_standard_option(G_OPT_R_OUTPUT);
    parm.mcurv->key = "mcurvature";
    parm.mcurv->required = NO;
    parm.mcurv->description = _("Name for output mean curvature map (or fxy)");
    parm.mcurv->guisection = _("Output");

    parm.smooth = G_define_standard_option(G_OPT_R_INPUT);
    parm.smooth->key = "smooth";
    parm.smooth->required = NO;
    parm.smooth->description = _("Name of input raster map containing smoothing");
    parm.smooth->guisection = _("Settings");

    parm.maskmap = G_define_standard_option(G_OPT_R_INPUT);
    parm.maskmap->key = "maskmap";
    parm.maskmap->required = NO;
    parm.maskmap->description = _("Name of input raster map to be used as mask");
    parm.maskmap->guisection = _("Settings");

    parm.overlap = G_define_option();
    parm.overlap->key = "overlap";
    parm.overlap->type = TYPE_INTEGER;
    parm.overlap->required = NO;
    parm.overlap->answer = OVERLAP;
    parm.overlap->description = _("Rows/columns overlap for segmentation");
    parm.overlap->guisection = _("Settings");

    parm.zmult = G_define_option();
    parm.zmult->key = "zscale";
    parm.zmult->type = TYPE_DOUBLE;
    parm.zmult->answer = ZMULT;
    parm.zmult->required = NO;
    parm.zmult->description = _("Multiplier for z-values");
    parm.zmult->guisection = _("Settings");

    parm.fi = G_define_option();
    parm.fi->key = "tension";
    parm.fi->type = TYPE_DOUBLE;
    parm.fi->answer = TENSION;
    parm.fi->required = NO;
    parm.fi->description = _("Spline tension value");
    parm.fi->guisection = _("Settings");

    parm.theta = G_define_option();
    parm.theta->key = "theta";
    parm.theta->type = TYPE_DOUBLE;
    parm.theta->required = NO;
    parm.theta->description = _("Anisotropy angle (in degrees counterclockwise from East)");
    parm.theta->guisection = _("Anisotropy");

    parm.scalex = G_define_option();
    parm.scalex->key = "scalex";
    parm.scalex->type = TYPE_DOUBLE;
    parm.scalex->required = NO;
    parm.scalex->description = _("Anisotropy scaling factor");
    parm.scalex->guisection = _("Anisotropy");

    flag.cprght = G_define_flag();
    flag.cprght->key = 't';
    flag.cprght->description = _("Use dnorm independent tension");

    flag.deriv = G_define_flag();
    flag.deriv->key = 'd';
    flag.deriv->description =
	_("Output partial derivatives instead of topographic parameters");
    flag.deriv->guisection = _("Output");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    G_get_set_window(&winhd);

    inp_ew_res = winhd.ew_res;
    inp_ns_res = winhd.ns_res;
    inp_cols = winhd.cols;
    inp_rows = winhd.rows;
    inp_x_orig = winhd.west;
    inp_y_orig = winhd.south;

    input = parm.input->answer;
    smooth = parm.smooth->answer;
    maskmap = parm.maskmap->answer;

    elev = parm.elev->answer;
    slope = parm.slope->answer;
    aspect = parm.aspect->answer;
    pcurv = parm.pcurv->answer;
    tcurv = parm.tcurv->answer;
    mcurv = parm.mcurv->answer;

    cond2 = ((pcurv != NULL) || (tcurv != NULL) || (mcurv != NULL));
    cond1 = ((slope != NULL) || (aspect != NULL) || cond2);
    deriv = flag.deriv->answer;
    dtens = flag.cprght->answer;

    ertre = 0.1;

    if (!G_scan_resolution(parm.res_ew->answer, &ew_res, winhd.proj))
	G_fatal_error(_("Unable to read ew_res value"));

    if (!G_scan_resolution(parm.res_ns->answer, &ns_res, winhd.proj))
	G_fatal_error(_("Unable to read ns_res value"));

    if (sscanf(parm.fi->answer, "%lf", &fi) != 1)
	G_fatal_error(_("Invalid value for tension"));

    if (sscanf(parm.zmult->answer, "%lf", &zmult) != 1)
	G_fatal_error(_("Invalid value for zmult"));

    if (sscanf(parm.overlap->answer, "%d", &overlap) != 1)
	G_fatal_error(_("Invalid value for overlap"));

    if (parm.theta->answer) {
	if (sscanf(parm.theta->answer, "%lf", &theta) != 1)
	    G_fatal_error(_("Invalid value for theta"));
    }
    if (parm.scalex->answer) {
	if (sscanf(parm.scalex->answer, "%lf", &scalex) != 1)
	    G_fatal_error(_("Invalid value for scalex"));
	if (!parm.theta->answer)
	    G_fatal_error(_("When using anisotropy both theta and scalex must be specified"));
    }

    /*
     * G_set_embedded_null_value_mode(1);
     */
    outhd.ew_res = ew_res;
    outhd.ns_res = ns_res;
    outhd.east = winhd.east;
    outhd.west = winhd.west;
    outhd.north = winhd.north;
    outhd.south = winhd.south;
    outhd.proj = winhd.proj;
    outhd.zone = winhd.zone;
    G_adjust_Cell_head(&outhd, 0, 0);
    ew_res = outhd.ew_res;
    ns_res = outhd.ns_res;
    nsizc = outhd.cols;
    nsizr = outhd.rows;
    disk = (off_t)nsizc * nsizr * sizeof(int);

    az = G_alloc_vector(nsizc + 1);

    if (cond1) {
	adx = G_alloc_vector(nsizc + 1);
	ady = G_alloc_vector(nsizc + 1);
	if (cond2) {
	    adxx = G_alloc_vector(nsizc + 1);
	    adyy = G_alloc_vector(nsizc + 1);
	    adxy = G_alloc_vector(nsizc + 1);
	}
    }

    if (smooth != NULL) {

	Rast_get_cellhd(smooth, "", &smhd);

	if ((winhd.ew_res != smhd.ew_res) || (winhd.ns_res != smhd.ns_res))
	    G_fatal_error(_("Map <%s> is the wrong resolution"), smooth);

	if (Rast_read_fp_range(smooth, "", &range) >= 0)
	    Rast_get_fp_range_min_max(&range, &cellmin, &cellmax);

	fcellmin = (float)cellmin;

	if (Rast_is_f_null_value(&fcellmin) || fcellmin < 0.0)
	    G_fatal_error(_("Smoothing values can not be negative or NULL"));
    }

    Rast_get_cellhd(input, "", &inphd);

    if ((winhd.ew_res != inphd.ew_res) || (winhd.ns_res != inphd.ns_res))
	G_fatal_error(_("Input map resolution differs from current region resolution!"));

    sdisk = 0;
    if (elev != NULL)
	sdisk += disk;
    if (slope != NULL)
	sdisk += disk;
    if (aspect != NULL)
	sdisk += disk;
    if (pcurv != NULL)
	sdisk += disk;
    if (tcurv != NULL)
	sdisk += disk;
    if (mcurv != NULL)
	sdisk += disk;

    G_message(_("Processing all selected output files will require"));
    if (sdisk > 1024) {
	if (sdisk > 1024 * 1024) {
	    if (sdisk > 1024 * 1024 * 1024) {
		G_message(_("%.2f GB of disk space for temp files."), sdisk / (1024. * 1024. * 1024.));
	    }
	    else
		G_message(_("%.2f MB of disk space for temp files."), sdisk / (1024. * 1024.));
	}
	else
	    G_message(_("%.2f KB of disk space for temp files."), sdisk / 1024.);
    }
    else
	G_message(n_("%d byte of disk space for temp files.", 
        "%d bytes of disk space for temp files.", (int)sdisk), (int)sdisk);


    fstar2 = fi * fi / 4.;
    tfsta2 = fstar2 + fstar2;
    deltx = winhd.east - winhd.west;
    delty = winhd.north - winhd.south;
    xmin = winhd.west;
    xmax = winhd.east;
    ymin = winhd.south;
    ymax = winhd.north;
    if (smooth != NULL)
	smc = -9999;
    else
	smc = 0.01;


    if (Rast_read_fp_range(input, "", &range) >= 0) {
	Rast_get_fp_range_min_max(&range, &cellmin, &cellmax);
    }
    else {
	fdinp = Rast_open_old(input, "");

	cellrow = Rast_allocate_f_buf();
	for (m1 = 0; m1 < inp_rows; m1++) {
	    Rast_get_f_row(fdinp, cellrow, m1);
	    Rast_row_update_fp_range(cellrow, m1, &range, FCELL_TYPE);
	}
	Rast_get_fp_range_min_max(&range, &cellmin, &cellmax);

	Rast_close(fdinp);
    }

    fcellmin = (float)cellmin;
    if (Rast_is_f_null_value(&fcellmin))
	G_fatal_error(_("Maximum value of a raster map is NULL."));

    zmin = (double)cellmin *zmult;
    zmax = (double)cellmax *zmult;

    G_debug(1, "zmin=%f, zmax=%f", zmin, zmax);

    if (fd4 != NULL)
	fprintf(fd4, "deltx,delty %f %f \n", deltx, delty);
    create_temp_files();

    IL_init_params_2d(&params, NULL, 1, 1, zmult, KMIN, KMAX, maskmap,
		      outhd.rows, outhd.cols, az, adx, ady, adxx, adyy, adxy,
		      fi, MAXPOINTS, SCIK1, SCIK2, SCIK3, smc, elev, slope,
		      aspect, pcurv, tcurv, mcurv, dmin, inp_x_orig,
		      inp_y_orig, deriv, theta, scalex, Tmp_fd_z, Tmp_fd_dx,
		      Tmp_fd_dy, Tmp_fd_xx, Tmp_fd_yy, Tmp_fd_xy, NULL, NULL,
		      0, NULL);

    /*  In the above line, the penultimate argument is supposed to be a 
     * deviations file pointer.  None is obvious, so I used NULL. */
    /*  The 3rd and 4th argument are int-s, elatt and smatt (from the function
     * definition.  The value 1 seemed like a good placeholder...  or not. */

    IL_init_func_2d(&params, IL_grid_calc_2d, IL_matrix_create,
		    IL_check_at_points_2d,
		    IL_secpar_loop_2d, IL_crst, IL_crstg, IL_write_temp_2d);

    G_message(_("Temporarily changing the region to desired resolution ..."));
    Rast_set_window(&outhd);

    bitmask = IL_create_bitmask(&params);
    /* change region to initial region */
    G_message(_("Changing back to the original region ..."));
    Rast_set_window(&winhd);

    fdinp = Rast_open_old(input, "");
    if (smooth != NULL)
	fdsmooth = Rast_open_old(smooth, "");

    ertot = 0.;
    cursegm = 0;
    G_message(_("Percent complete: "));


    NPOINT =
	IL_resample_interp_segments_2d(&params, bitmask, zmin, zmax, &zminac,
				       &zmaxac, &gmin, &gmax, &c1min, &c1max,
				       &c2min, &c2max, &ertot, nsizc, &dnorm,
				       overlap, inp_rows, inp_cols, fdsmooth,
				       fdinp, ns_res, ew_res, inp_ns_res,
				       inp_ew_res, dtens);


    G_message(_("dnorm in mainc after grid before out1= %f"), dnorm);

    if (NPOINT < 0) {
	clean();
	G_fatal_error(_("split_and_interpolate() failed"));
    }

    if (fd4 != NULL)
	fprintf(fd4, "max. error found = %f \n", ertot);
    G_free_vector(az);
    if (cond1) {
	G_free_vector(adx);
	G_free_vector(ady);
	if (cond2) {
	    G_free_vector(adxx);
	    G_free_vector(adyy);
	    G_free_vector(adxy);
	}
    }
    G_message(_("dnorm in mainc after grid before out2= %f"), dnorm);

    if (IL_resample_output_2d(&params, zmin, zmax, zminac, zmaxac, c1min,
			      c1max, c2min, c2max, gmin, gmax, ertot, input,
			      &dnorm, &outhd, &winhd, smooth, NPOINT) < 0) {
	clean();
	G_fatal_error(_("Unable to write raster maps -- try increasing cell size"));
    }

    G_free(zero_array_cell);
    clean();
    if (fd4)
	fclose(fd4);
    Rast_close(fdinp);
    if (smooth != NULL)
	Rast_close(fdsmooth);

    G_done_msg(" ");
    exit(EXIT_SUCCESS);
}
コード例 #23
0
ファイル: main.c プロジェクト: felipebetancur/grass-ci
int main(int argc, char **argv)
{
    double xoffset;		/* offset for x-axis */
    double yoffset;		/* offset for y-axis */
    double text_height;
    double text_width;
    int i;
    int j;
    int c;
    int tic_every;
    int max_tics;
    int title_color;
    int num_y_files;
    int tic_unit;
    double t, b, l, r;
    double tt, tb, tl, tr;
    double prev_x, prev_y[11];
    double new_x, new_y[11];
    int line;
    double x_line[3];
    double y_line[3];
    int err;

    struct in_file
    {
	int num_pnts;		/* number of lines in file  */
	int color;		/* color to use for y lines */
	float max;		/* maximum value in file    */
	float min;		/* minimum value in file    */
	float value;		/* current value read in    */
	char name[1024];	/* name of file      */
	char full_name[1024];	/* path/name of file    */
	FILE *fp;		/* pointer to file        */
    };

    struct in_file in[12];
    struct GModule *module;

    float max_y;
    float min_y;
    float height, width;
    float xscale;
    float yscale;

    char txt[1024], xlabel[512];
    char tic_name[1024];
    char *name;
    char color_name[20];

    FILE *fopen();

    struct Option *dir_opt, *x_opt, *y_opt;
    struct Option *y_color_opt;
    struct Option *title[3];
    struct Option *t_color_opt;

    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    /* Set description */
    module = G_define_module();
    G_add_keyword(_("display"));
    G_add_keyword(_("cartography"));
    module->description =
	_("Generates and displays simple line graphs in the active graphics monitor display frame.");

    x_opt = G_define_option();
    x_opt->key = "x_file";
    x_opt->description = _("Name of data file for X axis of graph");
    x_opt->type = TYPE_STRING;
    x_opt->required = YES;

    y_opt = G_define_option();
    y_opt->key = "y_file";
    y_opt->description = _("Name of data file(s) for Y axis of graph");
    y_opt->type = TYPE_STRING;
    y_opt->required = YES;
    y_opt->multiple = YES;

    dir_opt = G_define_option();
    dir_opt->key = "directory";
    dir_opt->description = _("Path to file location");
    dir_opt->type = TYPE_STRING;
    dir_opt->required = NO;
    /* Remove answer because create problem with full path */
    /* dir_opt->answer = "."; */

    y_color_opt = G_define_option();
    y_color_opt->key = "y_color";
    y_color_opt->description = _("Color for Y data");
    y_color_opt->type = TYPE_STRING;
    y_color_opt->required = NO;
    y_color_opt->multiple = YES;
    y_color_opt->gisprompt = "old_color,color,color";
    y_color_opt->answers = NULL;

    t_color_opt = G_define_option();
    t_color_opt->key = "title_color";
    t_color_opt->description = _("Color for axis, tics, numbers, and title");
    t_color_opt->type = TYPE_STRING;
    t_color_opt->required = NO;
    t_color_opt->gisprompt = "old_color,color,color";
    t_color_opt->answer = DEFAULT_FG_COLOR;

    title[0] = G_define_option();
    title[0]->key = "x_title";
    title[0]->description = _("Title for X data");
    title[0]->type = TYPE_STRING;
    title[0]->required = NO;
    title[0]->answer = "";

    title[1] = G_define_option();
    title[1]->key = "y_title";
    title[1]->description = _("Title for Y data");
    title[1]->type = TYPE_STRING;
    title[1]->required = NO;
    title[1]->answer = "";

    title[2] = G_define_option();
    title[2]->key = "title";
    title[2]->description = _("Title for Graph");
    title[2]->type = TYPE_STRING;
    title[2]->required = NO;
    title[2]->answer = "";


    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    for (i = 0; i < 3; i++) {
	for (j = 0; j < strlen(title[i]->answer); j++)
	    if (title[i]->answer[j] == '_')
		title[i]->answer[j] = ' ';
    }

    /* build path to X data file and open for reading
       notice that in[0] will be the X file, and in[1-10]
       will be the Y file(s) */

    if (dir_opt->answer != NULL) {
	sprintf(in[0].full_name, "%s/%s", dir_opt->answer, x_opt->answer);
    } else {
	sprintf(in[0].full_name, "%s", x_opt->answer);
    }
    sprintf(in[0].name, "%s", x_opt->answer);

    if ((in[0].fp = fopen(in[0].full_name, "r")) == NULL)
	G_fatal_error(_("Unable to open input file <%s>"), in[0].full_name);

    num_y_files = 0;

    /* open all Y data files */

    for (i = 0, j = 1; (name = y_opt->answers[i]); i++, j++) {
      
	if (dir_opt->answer != NULL) {
	    sprintf(in[j].full_name, "%s/%s", dir_opt->answer, name);
	} else {
	    sprintf(in[j].full_name, "%s", name);
	}
	sprintf(in[j].name, "%s", name);

	if ((in[j].fp = fopen(in[j].full_name, "r")) == NULL)
	    G_fatal_error(_("Unable to open input file <%s>"),
			  in[j].full_name);

	num_y_files++;
	if (num_y_files > 10)
	    G_fatal_error(_("Maximum of 10 Y data files exceeded"));
    }

    /* set colors  */

    title_color = D_translate_color(t_color_opt->answer);

    /* I had an argument with the parser, and couldn't get a neat list of
       the input colors as I thought I should. I did a quick hack to get
       my list from the answer var, which gives us the colors input
       separated by commas. at least we know that they have been checked against
       the list of possibles */
    c = 0;
    j = 1;
    if (y_color_opt->answer != NULL) {
	for (i = 0; i <= (strlen(y_color_opt->answer)); i++) {
	    if ((y_color_opt->answer[i] == ',') ||
		(i == (strlen(y_color_opt->answer)))) {
		color_name[c] = '\0';
		in[j].color = D_translate_color(color_name);
		j++;
		c = 0;
	    }
	    else {
		color_name[c++] = y_color_opt->answer[i];
	    }
	}
	/* this is lame. I could come up with a color or prompt for one or something */
	if (j < num_y_files)
	    G_fatal_error(_("Only <%d> colors given for <%d> lines"), j,
			  num_y_files);
    }
    else
	/* no colors given on command line, use default list */
    {
	for (i = 1; i <= num_y_files; i++) {
	    in[i].color = default_y_colors[i];
	}
    }

    /* get coordinates of current screen window, in pixels */
    D_open_driver();
    
    D_setup_unity(0);
    D_get_src(&t, &b, &l, &r);

    /* create axis lines, to be drawn later */
    height = b - t;
    width = r - l;
    x_line[0] = x_line[1] = l + (ORIGIN_X * width);
    x_line[2] = l + (XAXIS_END * width);
    y_line[0] = b - (YAXIS_END * height);
    y_line[1] = y_line[2] = b - (ORIGIN_Y * height);
    text_height = (b - t) * TEXT_HEIGHT;
    text_width = (r - l) * TEXT_WIDTH;
    D_text_size(text_width, text_height);

    /* read thru each data file in turn, find max and min values for
       each, count lines, find x min and max, find overall y min and
       max */

    max_y = -99999.9;
    min_y = 99999.9;

    for (i = 0; i <= num_y_files; i++) {

	in[i].min = 99999.9;
	in[i].max = -99999.9;
	in[i].value = 0.0;
	in[i].num_pnts = 0;

	while ((err = fscanf(in[i].fp, "%f", &in[i].value)) != EOF) {
	    in[i].num_pnts++;
	    in[i].max = MAX(in[i].max, in[i].value);
	    in[i].min = MIN(in[i].min, in[i].value);
	    if (i > 0) {	/* if we have a y file */
		min_y = MIN(min_y, in[i].value);
		max_y = MAX(max_y, in[i].value);
	    }
	}
	if ((i > 0) && (in[0].num_pnts != in[i].num_pnts)) {
        if (in[i].num_pnts < in[0].num_pnts) {
            G_warning(_("Y input file <%s> contains fewer data points than the X input file"),
		      in[i].name);
        }
        else {
            G_warning(_("Y input file <%s> contains more data points than the X input file"),
		      in[i].name);
        }
        
	    if (in[i].num_pnts > in[0].num_pnts)
		G_message(n_("The last point will be ignored", 
                     "The last %d points will be ignored",
                     (in[i].num_pnts - in[0].num_pnts)),
			  (in[i].num_pnts - in[0].num_pnts));
	}
    }

    /* close all files */

    for (i = 0; i <= num_y_files; i++)
	fclose(in[i].fp);

    /* figure scaling factors and offsets */

    xscale = ((double)(x_line[2] - x_line[1]) / (double)(in[0].num_pnts));
    yscale = ((double)(y_line[1] - y_line[0]) / (max_y - min_y));
    yoffset = (double)(y_line[1]);
    xoffset = (double)(x_line[1]);

    /* figure tic_every and tic_units for the x-axis of the bar-chart.
       tic_every tells how often to place a tic-number.  tic_unit tells
       the unit to use in expressing tic-numbers. */

    if (xscale < XTIC_DIST) {
	max_tics = (x_line[2] - x_line[1]) / XTIC_DIST;
	i = 1;
	while (((in[0].max - in[0].min) / tics[i].every) > max_tics)
	    i++;
	tic_every = tics[i].every;
	tic_unit = tics[i].unit;
	strcpy(tic_name, tics[i].name);
    }
    else {
	tic_every = 1;
	tic_unit = 1;
	strcpy(tic_name, "");
    }


    /* open all the data files again */

    for (i = 0; i <= num_y_files; i++) {
	if ((in[i].fp = fopen(in[i].full_name, "r")) == NULL) {
	    D_close_driver();
	    G_fatal_error(_("Unable to open input file <%s>"), in[i].full_name);
	}
    }

    /* loop through number of lines in x data file, 
       then loop thru for each y file, drawing a piece of each line and a
       legend bar on each iteration evenly divisible, a tic-mark
       on those evenly divisible by tic_unit, and a tic_mark
       number on those evenly divisible by tic_every   */

    /* read the info from the inputs */

    for (line = 0; line < in[0].num_pnts; line++) {
	/* scan in an X value */
	err = fscanf(in[0].fp, "%f", &in[0].value);

	/* didn't find a number or hit EOF before our time */
	if ((err != 1) || (err == EOF)) {
	    D_close_driver();
	    G_fatal_error(_("Problem reading X data file at line %d"), line);
	}

	/* for each Y data file, get a value and compute where to draw it */
	for (i = 1; i <= num_y_files; i++) {
	    /* check to see that we do indeed have data for this point */
	    if (line < in[i].num_pnts) {
		err = fscanf(in[i].fp, "%f", &in[i].value);
		if ((in[i].num_pnts >= line) && (err != 1)) {
		    D_close_driver();
		    G_fatal_error(_("Problem reading <%s> data file at line %d"),
				  in[i].name, line);
		}

		/* in case the Y file has fewer lines than the X file, we will skip
		   trying to draw when we run out of data */

		/* draw increment of each Y file's data */

		D_use_color(in[i].color);

		/* find out position of where Y should be drawn. */
		/* if our minimum value of y is not negative, this is easy */

		if (min_y >= 0)
		    new_y[i] =
			(yoffset - yscale * (in[i].value - min_y));

		/* if our minimum value of y is negative, then we have two
		   cases:  our current value to plot is pos or neg */

		else {
		    if (in[i].value < 0)
			new_y[i] = (yoffset - yscale * (-1 *
							     (min_y -
							      in[i].value)));
		    else
			new_y[i] = (yoffset - yscale * (in[i].value +
							     (min_y * -1)));
		}

		new_x = xoffset + (line * xscale);
		if (line == 0) {
		    prev_x = xoffset;
		    prev_y[i] = yoffset;
		}
		D_line_abs(prev_x, prev_y[i], new_x, new_y[i]);
		prev_y[i] = new_y[i];
	    }
	}
	prev_x = new_x;

	/* draw x-axis tic-marks and numbers */

	if (rem((long int)in[0].value, tic_every) == 0.0) {

	    /* draw a numbered tic-mark */

	    D_use_color(title_color);
	    D_begin();
	    D_move_abs(xoffset + line * xscale, b - ORIGIN_Y * (b - t));
	    D_cont_rel(0, BIG_TIC * (b - t));
	    D_end();
	    D_stroke();

	    if ((in[0].value >= 1) || (in[0].value <= -1) ||
		(in[0].value == 0))
		sprintf(txt, "%.0f", (in[0].value / tic_unit));
	    else
		sprintf(txt, "%.2f", (in[0].value));
	    text_height = (b - t) * TEXT_HEIGHT;
	    text_width = (r - l) * TEXT_WIDTH;
	    D_text_size(text_width, text_height);
	    D_get_text_box(txt, &tt, &tb, &tl, &tr);
	    while ((tr - tl) > XTIC_DIST) {
		text_width *= 0.75;
		text_height *= 0.75;
		D_text_size(text_width, text_height);
		D_get_text_box(txt, &tt, &tb, &tl, &tr);
	    }
	    D_pos_abs((xoffset + (line * xscale - (tr - tl) / 2)),
		       (b - XNUMS_Y * (b - t)));
	    D_text(txt);
	}
	else if (rem(line, tic_unit) == 0.0) {

	    /* draw a tic-mark */

	    D_use_color(title_color);
	    D_begin();
	    D_move_abs(xoffset + line * xscale,
		       b - ORIGIN_Y * (b - t));
	    D_cont_rel(0, SMALL_TIC * (b - t));
	    D_end();
	    D_stroke();
	}
    }

    /* close all input files */
    for (i = 0; i <= num_y_files; i++) {
	fclose(in[i].fp);
    }

    /* draw the x-axis label */
    if ((strcmp(title[0]->answer, "") == 0) && (strcmp(tic_name, "") == 0))
	*xlabel = '\0';
    else
	sprintf(xlabel, "X: %s %s", title[0]->answer, tic_name);
    text_height = (b - t) * TEXT_HEIGHT;
    text_width = (r - l) * TEXT_WIDTH * 1.5;
    D_text_size(text_width, text_height);
    D_get_text_box(xlabel, &tt, &tb, &tl, &tr);
    D_pos_abs((l + (r - l) / 2 - (tr - tl) / 2),
	      (b - LABEL_1 * (b - t)));
    D_use_color(title_color);
    D_text(xlabel);

    /* DRAW Y-AXIS TIC-MARKS AND NUMBERS
       first, figure tic_every and tic_units for the x-axis of the bar-chart.
       tic_every tells how often to place a tic-number.  tic_unit tells
       the unit to use in expressing tic-numbers. */

    if (yscale < YTIC_DIST) {
	max_tics = (y_line[1] - y_line[0]) / YTIC_DIST;
	i = 1;
	while (((max_y - min_y) / tics[i].every) > max_tics)
	    i++;
	tic_every = tics[i].every;
	tic_unit = tics[i].unit;
	strcpy(tic_name, tics[i].name);
    }
    else {
	tic_every = 1;
	tic_unit = 1;
	strcpy(tic_name, "");
    }

    /* Y-AXIS LOOP */

    for (i = (int)min_y; i <= (int)max_y; i += tic_unit) {
	if (rem(i, tic_every) == 0.0) {
	    /* draw a tic-mark */

	    D_begin();
	    D_move_abs(x_line[0], yoffset - yscale * (i - min_y));
	    D_cont_rel(-(r - l) * BIG_TIC, 0);
	    D_end();
	    D_stroke();

	    /* draw a tic-mark number */

	    sprintf(txt, "%d", (i / tic_unit));
	    text_height = (b - t) * TEXT_HEIGHT;
	    text_width = (r - l) * TEXT_WIDTH;
	    D_text_size(text_width, text_height);
	    D_get_text_box(txt, &tt, &tb, &tl, &tr);
	    while ((tt - tb) > YTIC_DIST) {
		text_width *= 0.75;
		text_height *= 0.75;
		D_text_size(text_width, text_height);
		D_get_text_box(txt, &tt, &tb, &tl, &tr);
	    }
	    D_pos_abs(l + (r - l) * YNUMS_X - (tr - tl) / 2,
		      yoffset - (yscale * (i - min_y) + 0.5 * (tt - tb)));
	    D_text(txt);
	}
	else if (rem(i, tic_unit) == 0.0) {
	    /* draw a tic-mark */
	    D_begin();
	    D_move_abs(x_line[0], (yoffset - yscale * (i - min_y)));
	    D_cont_rel(-(r - l) * SMALL_TIC, 0);
	    D_end();
	    D_stroke();
	}
    }

    /* draw the y-axis label */
    if ((strcmp(title[1]->answer, "") == 0) && (strcmp(tic_name, "") == 0))
	*xlabel = '\0';
    else
	sprintf(xlabel, "Y: %s %s", title[1]->answer, tic_name);
    text_height = (b - t) * TEXT_HEIGHT;
    text_width = (r - l) * TEXT_WIDTH * 1.5;
    D_text_size(text_width, text_height);
    D_get_text_box(xlabel, &tt, &tb, &tl, &tr);
    D_pos_abs(l + (r - l) / 2 - (tr - tl) / 2, b - LABEL_2 * (b - t));
    D_use_color(title_color);
    D_text(xlabel);

    /* top label */
    sprintf(xlabel, "%s", title[2]->answer);
    text_height = (b - t) * TEXT_HEIGHT;
    text_width = (r - l) * TEXT_WIDTH * 2.0;
    D_text_size(text_width, text_height);
    D_get_text_box(xlabel, &tt, &tb, &tl, &tr);
    /*
       D_move_abs((int)(((r-l)/2)-(tr-tl)/2),
       (int) (t+ (b-t)*.07) );
     */
    D_pos_abs(l + (r - l) / 2 - (tr - tl) / 2, t + (b - t) * .07);
    D_use_color(title_color);
    D_text(xlabel);

    /* draw x and y axis lines */
    D_use_color(title_color);
    D_polyline_abs(x_line, y_line, 3);

    D_save_command(G_recreate_command());
    D_close_driver();
    
    exit(EXIT_SUCCESS);
}
コード例 #24
0
ファイル: main.c プロジェクト: GRASS-GIS/grass-ci
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct GParams params;
    struct Map_info Map;
    struct Map_info **BgMap;	/* background vector maps */
    int nbgmaps;		/* number of registrated background maps */
    enum mode action_mode;
    FILE *ascii;

    int i;
    int move_first, snap;
    int ret, layer;
    double move_x, move_y, move_z, thresh[3];

    struct line_pnts *coord;

    struct ilist *List;

    struct cat_list *Clist;

    ascii = NULL;
    List = NULL;
    BgMap = NULL;
    nbgmaps = 0;
    coord = NULL;
    Clist = NULL;

    G_gisinit(argv[0]);

    module = G_define_module();
    module->overwrite = TRUE;
    G_add_keyword(_("vector"));
    G_add_keyword(_("geometry"));
    G_add_keyword(_("editing"));
    G_add_keyword(_("line"));
    G_add_keyword(_("node"));
    G_add_keyword(_("point"));
    G_add_keyword(_("vertex"));
    module->description = _("Edits a vector map, allows adding, deleting "
			    "and modifying selected vector features.");

    if (!parser(argc, argv, &params, &action_mode))
	exit(EXIT_FAILURE);

    /* get list of categories */
    Clist = Vect_new_cat_list();
    if (params.cat->answer && Vect_str_to_cat_list(params.cat->answer, Clist)) {
	G_fatal_error(_("Unable to get category list <%s>"),
		      params.cat->answer);
    }

    /* open input file */
    if (params.in->answer) {
	if (strcmp(params.in->answer, "-") != 0) {
	    ascii = fopen(params.in->answer, "r");
	    if (ascii == NULL)
		G_fatal_error(_("Unable to open file <%s>"),
			      params.in->answer);
	}
	else {
	    ascii = stdin;
	}
    }
    if (!ascii && action_mode == MODE_ADD)
	G_fatal_error(_("Required parameter <%s> not set"), params.in->key);
    
    if (action_mode == MODE_CREATE) {
	int overwrite, map_type;
	
	overwrite = G_check_overwrite(argc, argv);
	if (G_find_vector2(params.map->answer, G_mapset()) &&
	    (!G_find_file("", "OGR", G_mapset()) &&
	     !G_find_file("", "PG", G_mapset()))) {
	    if (!overwrite)
		G_fatal_error(_("Vector map <%s> already exists"),
			      params.map->answer);
	}

	/* 3D vector maps? */
        putenv("GRASS_VECTOR_EXTERNAL_IMMEDIATE=1");
	ret = Vect_open_new(&Map, params.map->answer, WITHOUT_Z);
	if (ret == -1) {
	    G_fatal_error(_("Unable to create vector map <%s>"),
			  params.map->answer);
	}
	Vect_set_error_handler_io(NULL, &Map);

	/* native or external data source ? */
	map_type = Vect_maptype(&Map);
	if (map_type != GV_FORMAT_NATIVE) {
	    int type;
	    type = Vect_option_to_types(params.type);
	    if (type != GV_POINT && !(type & GV_LINES))
		G_fatal_error("%s: point,line,boundary",
                              _("Supported feature types for non-native formats:"));
            /* create OGR or PostGIS layer */
            if (Vect_write_line(&Map, type, NULL, NULL) < 0)
                G_fatal_error(_("Unable to create vector map <%s>"),
			      params.map->answer);
	}
	
	G_debug(1, "Map created");

	if (ascii) {
	    /* also add new vector features */
	    action_mode = MODE_ADD;
	}
    }
    else {			/* open selected vector file */
	if (action_mode == MODE_ADD)	/* write */
	    ret = Vect_open_update2(&Map, params.map->answer, G_mapset(), params.fld->answer);
	else			/* read-only -- select features */
	    ret = Vect_open_old2(&Map, params.map->answer, G_mapset(), params.fld->answer);
	
	if (ret < 2)
	    G_fatal_error(_("Unable to open vector map <%s> on topological level. "
			    "Try to rebuild vector topology by v.build."),
			  params.map->answer);
    }

    G_debug(1, "Map opened");
    
    /* open background maps */
    if (params.bmaps->answer) {
	i = 0;

	while (params.bmaps->answers[i]) {
	    const char *bmap = params.bmaps->answers[i];
	    const char *mapset = G_find_vector2(bmap, "");
	    if (!mapset)
		G_fatal_error(_("Vector map <%s> not found"), bmap);

	    if (strcmp(
		    G_fully_qualified_name(params.map->answer, G_mapset()),
		    G_fully_qualified_name(bmap, mapset)) == 0) {
		G_fatal_error(_("Unable to open vector map <%s> as the background map. "
			       "It is given as vector map to be edited."),
			      bmap);
	    }
	    nbgmaps++;
	    BgMap = (struct Map_info **)G_realloc(
		BgMap, nbgmaps * sizeof(struct Map_info *));
	    BgMap[nbgmaps - 1] =
		(struct Map_info *)G_malloc(sizeof(struct Map_info));
	    if (Vect_open_old(BgMap[nbgmaps - 1], bmap, "") == -1)
		G_fatal_error(_("Unable to open vector map <%s>"), bmap);
	    G_verbose_message(_("Background vector map <%s> registered"), bmap);
	    i++;
	}
    }

    layer = Vect_get_field_number(&Map, params.fld->answer);
    i = 0;
    while (params.maxdist->answers[i]) {
	switch (i) {
	case THRESH_COORDS:
	    thresh[THRESH_COORDS] =
		max_distance(atof(params.maxdist->answers[THRESH_COORDS]));
	    thresh[THRESH_SNAP] = thresh[THRESH_QUERY] =
		thresh[THRESH_COORDS];
	    break;
	case THRESH_SNAP:
	    thresh[THRESH_SNAP] =
		max_distance(atof(params.maxdist->answers[THRESH_SNAP]));
	    break;
	case THRESH_QUERY:
	    thresh[THRESH_QUERY] =
		atof(params.maxdist->answers[THRESH_QUERY]);
	    break;
	default:
	    break;
	}
	i++;
    }

    move_first = params.move_first->answer ? 1 : 0;
    snap = NO_SNAP;
    if (strcmp(params.snap->answer, "node") == 0)
	snap = SNAP;
    else if (strcmp(params.snap->answer, "vertex") == 0)
	snap = SNAPVERTEX;
    if (snap != NO_SNAP && thresh[THRESH_SNAP] <= 0) {
	G_warning(_("Threshold for snapping must be > 0. No snapping applied."));
	snap = NO_SNAP;
    }
    
    if (action_mode != MODE_CREATE && action_mode != MODE_ADD) {
	/* select lines */
	List = Vect_new_list();
	G_message(_("Selecting features..."));
	if (action_mode == MODE_COPY && BgMap && BgMap[0]) {
	    List = select_lines(BgMap[0], action_mode, &params, thresh, List);
	}
	else {
	    List = select_lines(&Map, action_mode, &params, thresh, List);
	}
    }

    if ((action_mode != MODE_CREATE && action_mode != MODE_ADD &&
	 action_mode != MODE_SELECT)) {
	if (List->n_values < 1) {
	    G_warning(_("No features selected, nothing to edit"));
	    action_mode = MODE_NONE;
	    ret = 0;
	}
	else {
	    /* reopen the map for updating */
	    if (action_mode == MODE_ZBULK && !Vect_is_3d(&Map)) {
		Vect_close(&Map);
		G_fatal_error(_("Vector map <%s> is not 3D. Tool '%s' requires 3D vector map. "
			       "Please convert the vector map "
			       "to 3D using e.g. %s."), params.map->answer,
			      params.tool->answer, "v.extrude");
	    }
	    Vect_close(&Map);

	    if (Vect_open_update2(&Map, params.map->answer, G_mapset(), params.fld->answer) < 0)
		G_fatal_error(_("Unable to open vector map <%s>"),
				params.map->answer);
	}
    }

    /* coords option -> array */
    if (params.coord->answers) {
	coord = Vect_new_line_struct();
	int i = 0;
	double east, north;

	while (params.coord->answers[i]) {
	    east = atof(params.coord->answers[i]);
	    north = atof(params.coord->answers[i + 1]);
	    Vect_append_point(coord, east, north, 0.0);
	    i += 2;
	}
    }

    /* perform requested editation */
    switch (action_mode) {
    case MODE_CREATE:
	break;
    case MODE_ADD:
	if (!params.header->answer)
	    Vect_read_ascii_head(ascii, &Map);
	int num_lines;
	num_lines = Vect_get_num_lines(&Map);
	
	ret = Vect_read_ascii(ascii, &Map);
	if (ret > 0) {
	    int iline;
	    struct ilist *List_added;
	    
	    G_message(n_("%d feature added",
                         "%d features added",
                         ret), ret);
	    
	    List_added = Vect_new_list();
	    for (iline = num_lines + 1; iline <= Vect_get_num_lines(&Map); iline++)
		Vect_list_append(List_added, iline);
	    
	    G_verbose_message(_("Threshold value for snapping is %.2f"),
			      thresh[THRESH_SNAP]);
	    if (snap != NO_SNAP) { /* apply snapping */
		/* snap to vertex ? */
		Vedit_snap_lines(&Map, BgMap, nbgmaps, List_added,
				 thresh[THRESH_SNAP],
				 snap == SNAP ? FALSE : TRUE); 
	    }
	    if (params.close->answer) {	/* close boundaries */
		int nclosed;

		nclosed = close_lines(&Map, GV_BOUNDARY, thresh[THRESH_SNAP]);
		G_message(n_("%d boundary closed",
                             "%d boundaries closed",
                             nclosed), nclosed);
	    }
	    Vect_destroy_list(List_added);
	}
	break;
    case MODE_DEL:
	ret = Vedit_delete_lines(&Map, List);
	G_message(n_("%d feature deleted",
                     "%d features deleted",
                     ret), ret);
	break;
    case MODE_MOVE:
	move_x = atof(params.move->answers[0]);
	move_y = atof(params.move->answers[1]);
	move_z = atof(params.move->answers[2]);
	G_verbose_message(_("Threshold value for snapping is %.2f"),
			  thresh[THRESH_SNAP]);
	ret = Vedit_move_lines(&Map, BgMap, nbgmaps, List, move_x, move_y, move_z, snap, thresh[THRESH_SNAP]);
	G_message(n_("%d feature moved",
                     "%d features moved",
                     ret), ret);
	break;
    case MODE_VERTEX_MOVE:
	move_x = atof(params.move->answers[0]);
	move_y = atof(params.move->answers[1]);
	move_z = atof(params.move->answers[2]);
	G_verbose_message(_("Threshold value for snapping is %.2f"),
			  thresh[THRESH_SNAP]);
	ret = Vedit_move_vertex(&Map, BgMap, nbgmaps, List, coord, thresh[THRESH_COORDS], thresh[THRESH_SNAP], move_x, move_y, move_z, move_first, snap);
	G_message(n_("%d vertex moved",
                     "%d vertices moved",
                     ret), ret);
	break;
    case MODE_VERTEX_ADD:
	ret = Vedit_add_vertex(&Map, List, coord, thresh[THRESH_COORDS]);
	G_message(n_("%d vertex added",
                     "%d vertices added",
                     ret), ret);
	break;
    case MODE_VERTEX_DELETE:
	ret = Vedit_remove_vertex(&Map, List, coord, thresh[THRESH_COORDS]);
	G_message(n_("%d vertex removed",
                     "%d vertices removed",
                     ret), ret);
	break;
    case MODE_BREAK:
	if (params.coord->answer) {
	    ret = Vedit_split_lines(&Map, List,
				    coord, thresh[THRESH_COORDS], NULL);
	}
	else {
	    ret = Vect_break_lines_list(&Map, List, NULL, GV_LINES, NULL);
	}
	G_message(n_("%d line broken",
                     "%d lines broken",
                     ret), ret);
	break;
    case MODE_CONNECT:
	G_verbose_message(_("Threshold value for snapping is %.2f"),
			  thresh[THRESH_SNAP]);
	ret = Vedit_connect_lines(&Map, List, thresh[THRESH_SNAP]);
	G_message(n_("%d line connected",
                     "%d lines connected",
                     ret), ret);
	break;
    case MODE_MERGE:
	ret = Vedit_merge_lines(&Map, List);
	G_message(n_("%d line merged",
                     "%d lines merged",
                     ret), ret);
	break;
    case MODE_SELECT:
	ret = print_selected(List);
	break;
    case MODE_CATADD:
	ret = Vedit_modify_cats(&Map, List, layer, 0, Clist);
	G_message(n_("%d feature modified",
                     "%d features modified",
                     ret), ret);
	break;
    case MODE_CATDEL:
	ret = Vedit_modify_cats(&Map, List, layer, 1, Clist);
	G_message(n_("%d feature modified",
                     "%d features modified",
                     ret), ret);
	break;
    case MODE_COPY:
	if (BgMap && BgMap[0]) {
	    if (nbgmaps > 1)
		G_warning(_("Multiple background maps were given. "
			    "Selected features will be copied only from "
			    "vector map <%s>."),
			  Vect_get_full_name(BgMap[0]));

	    ret = Vedit_copy_lines(&Map, BgMap[0], List);
	}
	else {
	    ret = Vedit_copy_lines(&Map, NULL, List);
	}
	G_message(n_("%d feature copied",
                     "%d features copied",
                     ret), ret);
	break;
    case MODE_SNAP:
	G_verbose_message(_("Threshold value for snapping is %.2f"),
			  thresh[THRESH_SNAP]);
	ret = snap_lines(&Map, List, thresh[THRESH_SNAP]);
	break;
    case MODE_FLIP:
	ret = Vedit_flip_lines(&Map, List);
	G_message(n_("%d line flipped",
                     "%d lines flipped",
                     ret), ret);
	break;
    case MODE_NONE:
	break;
    case MODE_ZBULK: {
	double start, step;
	double x1, y1, x2, y2;
	
	start = atof(params.zbulk->answers[0]);
	step = atof(params.zbulk->answers[1]);
	
	x1 = atof(params.bbox->answers[0]);
	y1 = atof(params.bbox->answers[1]);
	x2 = atof(params.bbox->answers[2]);
	y2 = atof(params.bbox->answers[3]);
	
	ret = Vedit_bulk_labeling(&Map, List,
				  x1, y1, x2, y2, start, step);
	
	G_message(n_("%d line labeled",
                     "%d lines labeled",
                     ret), ret);
	break;
    }
    case MODE_CHTYPE:
	ret = Vedit_chtype_lines(&Map, List);
	
	if (ret > 0) {
	    G_message(n_("%d feature converted",
                         "%d features converted",
                         ret), ret);
	}
	else {
	    G_message(_("No feature modified"));
	}
	break;
    case MODE_AREA_DEL: {
	ret = 0;
	for (i = 0; i < List->n_values; i++) {
	    if (Vect_get_line_type(&Map, List->value[i]) != GV_CENTROID) {
		G_warning(_("Select feature %d is not centroid, ignoring..."),
			  List->value[i]);
		continue;
	    }
	    
	    ret += Vedit_delete_area_centroid(&Map, List->value[i]);
	}
	G_message(n_("%d area removed",
                     "%d areas removed",
                     ret), ret);
	break;
    }
    default:
	G_warning(_("Operation not implemented"));
	ret = -1;
	break;
    }
    
    Vect_hist_command(&Map);

    /* build topology only if requested or if tool!=select */
    if (action_mode != MODE_SELECT && action_mode != MODE_NONE &&
		    params.topo->answer != 1) {
	Vect_build_partial(&Map, GV_BUILD_NONE);
	Vect_build(&Map);
    }

    if (List)
	Vect_destroy_list(List);

    Vect_close(&Map);

    G_debug(1, "Map closed");

    /* close background maps */
    for (i = 0; i < nbgmaps; i++) {
	Vect_close(BgMap[i]);
	G_free((void *)BgMap[i]);
    }
    G_free((void *)BgMap);

    if (coord)
	Vect_destroy_line_struct(coord);

    if (Clist)
	Vect_destroy_cat_list(Clist);

    G_done_msg(" ");

    if (ret > -1) {
	exit(EXIT_SUCCESS);
    }
    else {
	exit(EXIT_FAILURE);
    }
}
コード例 #25
0
ファイル: main.c プロジェクト: GRASS-GIS/grass-ci
int main(int argc, char **argv)
{
    int ret, level;
    int stat, type, display;
    int chcat;
    int has_color, has_fcolor;
    struct color_rgb color, fcolor;
    double size;
    int default_width;
    double width_scale;
    double minreg, maxreg, reg;
    char map_name[GNAME_MAX];
    
    struct GModule *module;
    struct Option *map_opt;
    struct Option *color_opt, *fcolor_opt, *rgbcol_opt, *zcol_opt;
    struct Option *type_opt, *display_opt;
    struct Option *icon_opt, *size_opt, *sizecolumn_opt, *rotcolumn_opt;
    struct Option *where_opt;
    struct Option *field_opt, *cat_opt, *lfield_opt;
    struct Option *lcolor_opt, *bgcolor_opt, *bcolor_opt;
    struct Option *lsize_opt, *font_opt, *enc_opt, *xref_opt, *yref_opt;
    struct Option *attrcol_opt, *maxreg_opt, *minreg_opt;
    struct Option *width_opt, *wcolumn_opt, *wscale_opt;
    struct Option *leglab_opt;
    struct Option *icon_line_opt, *icon_area_opt;
    struct Flag *id_flag, *cats_acolors_flag, *sqrt_flag, *legend_flag;
    char *desc;
    
    struct cat_list *Clist;
    LATTR lattr;
    struct Map_info Map;
    struct Cell_head window;
    struct bound_box box;
    double overlap;

    stat = 0;
    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("display"));
    G_add_keyword(_("graphics"));
    G_add_keyword(_("vector"));
    module->description = _("Displays user-specified vector map "
			    "in the active graphics frame.");
    
    map_opt = G_define_standard_option(G_OPT_V_MAP);

    field_opt = G_define_standard_option(G_OPT_V_FIELD_ALL);
    field_opt->answer = "1";
    field_opt->guisection = _("Selection");

    display_opt = G_define_option();
    display_opt->key = "display";
    display_opt->type = TYPE_STRING;
    display_opt->required = YES;
    display_opt->multiple = YES;
    display_opt->answer = "shape";
    display_opt->options = "shape,cat,topo,vert,dir,zcoor";
    display_opt->description = _("Display");
    desc = NULL;
    G_asprintf(&desc,
	       "shape;%s;cat;%s;topo;%s;vert;%s;dir;%s;zcoor;%s",
	       _("Display geometry of features"),
	       _("Display category numbers of features"),
	       _("Display topology information (nodes, edges)"),
               _("Display vertices of features"),
	       _("Display direction of linear features"),
	       _("Display z-coordinate of features (only for 3D vector maps)"));
    display_opt->descriptions = desc;
    
    /* Query */
    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->answer = "point,line,area,face";
    type_opt->options = "point,line,boundary,centroid,area,face";
    type_opt->guisection = _("Selection");
    
    cat_opt = G_define_standard_option(G_OPT_V_CATS);
    cat_opt->guisection = _("Selection");

    where_opt = G_define_standard_option(G_OPT_DB_WHERE);
    where_opt->guisection = _("Selection");


    /* Colors */
    color_opt = G_define_standard_option(G_OPT_CN);
    color_opt->label = _("Feature color");
    color_opt->guisection = _("Colors");
    
    fcolor_opt = G_define_standard_option(G_OPT_CN);
    fcolor_opt->key = "fill_color";
    fcolor_opt->answer = "200:200:200";
    fcolor_opt->label = _("Area fill color");
    fcolor_opt->guisection = _("Colors");

    rgbcol_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    rgbcol_opt->key = "rgb_column";
    rgbcol_opt->guisection = _("Colors");
    rgbcol_opt->label = _("Colorize features according color definition column");
    rgbcol_opt->description = _("Color definition in R:G:B form");
    
    zcol_opt = G_define_standard_option(G_OPT_M_COLR);
    zcol_opt->key = "zcolor";
    zcol_opt->description = _("Colorize point or area features according to z-coordinate");
    zcol_opt->guisection = _("Colors");

    /* Lines */
    width_opt = G_define_option();
    width_opt->key = "width";
    width_opt->type = TYPE_INTEGER;
    width_opt->answer = "0";
    width_opt->guisection = _("Lines");
    width_opt->description = _("Line width");

    wcolumn_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    wcolumn_opt->key = "width_column";
    wcolumn_opt->guisection = _("Lines");
    wcolumn_opt->label = _("Name of numeric column containing line width");
    wcolumn_opt->description = _("These values will be scaled by width_scale");

    wscale_opt = G_define_option();
    wscale_opt->key = "width_scale";
    wscale_opt->type = TYPE_DOUBLE;
    wscale_opt->answer = "1";
    wscale_opt->guisection = _("Lines");
    wscale_opt->description = _("Scale factor for width_column");

    /* Symbols */
    icon_opt = G_define_option();
    icon_opt->key = "icon";
    icon_opt->type = TYPE_STRING;
    icon_opt->required = NO;
    icon_opt->multiple = NO;
    icon_opt->guisection = _("Symbols");
    icon_opt->answer = "basic/x";
    /* This could also use ->gisprompt = "old,symbol,symbol" instead of ->options */
    icon_opt->options = icon_files();
    icon_opt->description = _("Point and centroid symbol");

    size_opt = G_define_option();
    size_opt->key = "size";
    size_opt->type = TYPE_DOUBLE;
    size_opt->answer = "5";
    size_opt->guisection = _("Symbols");
    size_opt->label = _("Symbol size");
    size_opt->description =
	_("When used with the size_column option this becomes the scale factor");

    sizecolumn_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    sizecolumn_opt->key = "size_column";
    sizecolumn_opt->guisection = _("Symbols");
    sizecolumn_opt->description =
	_("Name of numeric column containing symbol size");

    rotcolumn_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    rotcolumn_opt->key = "rotation_column";
    rotcolumn_opt->guisection = _("Symbols");
    rotcolumn_opt->label =
	_("Name of numeric column containing symbol rotation angle");
    rotcolumn_opt->description =
	_("Measured in degrees CCW from east");

    icon_area_opt = G_define_option();
    icon_area_opt->key = "icon_area";
    icon_area_opt->type = TYPE_STRING;
    icon_area_opt->required = NO;
    icon_area_opt->multiple = NO;
    icon_area_opt->guisection = _("Legend");
    icon_area_opt->answer = "legend/area";
    icon_area_opt->options = icon_files();
    icon_area_opt->description = _("Area/boundary symbol for legend");

    icon_line_opt = G_define_option();
    icon_line_opt->key = "icon_line";
    icon_line_opt->type = TYPE_STRING;
    icon_line_opt->required = NO;
    icon_line_opt->multiple = NO;
    icon_line_opt->guisection = _("Legend");
    icon_line_opt->answer = "legend/line";
    icon_line_opt->options = icon_files();
    icon_line_opt->description = _("Line symbol for legend");

    leglab_opt = G_define_option();
    leglab_opt->key = "legend_label";
    leglab_opt->type = TYPE_STRING;
    leglab_opt->guisection = _("Legend");
    leglab_opt->description = _("Label to display after symbol in vector legend");

    /* Labels */
    lfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    lfield_opt->key = "label_layer";
    lfield_opt->required = NO;
    lfield_opt->guisection = _("Labels");
    lfield_opt->label =
	_("Layer number for labels (default: the given layer number)");
    
    attrcol_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    attrcol_opt->key = "attribute_column";
    attrcol_opt->multiple = NO;	/* or fix attr.c, around line 102 */
    attrcol_opt->guisection = _("Labels");
    attrcol_opt->description = _("Name of column to be displayed as a label");

    lcolor_opt = G_define_standard_option(G_OPT_C);
    lcolor_opt->key = "label_color";
    lcolor_opt->answer = "red";
    lcolor_opt->label = _("Label color");
    lcolor_opt->guisection = _("Labels");

    bgcolor_opt = G_define_standard_option(G_OPT_CN);
    bgcolor_opt->key = "label_bgcolor";
    bgcolor_opt->answer = "none";
    bgcolor_opt->guisection = _("Labels");
    bgcolor_opt->label = _("Label background color");

    bcolor_opt = G_define_standard_option(G_OPT_CN);
    bcolor_opt->key = "label_bcolor";
    bcolor_opt->type = TYPE_STRING;
    bcolor_opt->answer = "none";
    bcolor_opt->guisection = _("Labels");
    bcolor_opt->label = _("Label border color");

    lsize_opt = G_define_option();
    lsize_opt->key = "label_size";
    lsize_opt->type = TYPE_INTEGER;
    lsize_opt->answer = "8";
    lsize_opt->guisection = _("Labels");
    lsize_opt->description = _("Label size (pixels)");

    font_opt = G_define_option();
    font_opt->key = "font";
    font_opt->type = TYPE_STRING;
    font_opt->guisection = _("Labels");
    font_opt->description = _("Font name");

    enc_opt = G_define_option();
    enc_opt->key = "encoding";
    enc_opt->type = TYPE_STRING;
    enc_opt->guisection = _("Labels");
    enc_opt->description = _("Text encoding");

    xref_opt = G_define_option();
    xref_opt->key = "xref";
    xref_opt->type = TYPE_STRING;
    xref_opt->guisection = _("Labels");
    xref_opt->answer = "left";
    xref_opt->options = "left,center,right";
    xref_opt->description = _("Label horizontal justification");

    yref_opt = G_define_option();
    yref_opt->key = "yref";
    yref_opt->type = TYPE_STRING;
    yref_opt->guisection = _("Labels");
    yref_opt->answer = "center";
    yref_opt->options = "top,center,bottom";
    yref_opt->description = _("Label vertical justification");

    minreg_opt = G_define_option();
    minreg_opt->key = "minreg";
    minreg_opt->type = TYPE_DOUBLE;
    minreg_opt->required = NO;
    minreg_opt->description =
	_("Minimum region size (average from height and width) "
	  "when map is displayed");

    maxreg_opt = G_define_option();
    maxreg_opt->key = "maxreg";
    maxreg_opt->type = TYPE_DOUBLE;
    maxreg_opt->required = NO;
    maxreg_opt->description =
	_("Maximum region size (average from height and width) "
	  "when map is displayed");

    /* Colors */
    cats_acolors_flag = G_define_flag();
    cats_acolors_flag->key = 'c';
    cats_acolors_flag->guisection = _("Colors");
    cats_acolors_flag->description =
	_("Random colors according to category number "
	  "(or layer number if 'layer=-1' is given)");

    /* Query */
    id_flag = G_define_flag();
    id_flag->key = 'i';
    id_flag->guisection = _("Selection");
    id_flag->description = _("Use values from 'cats' option as feature id");

    sqrt_flag = G_define_flag();
    sqrt_flag->key = 'r';
    sqrt_flag->label = _("Use square root of the value of size_column");
    sqrt_flag->description =
	_("This makes circle areas proportionate to the size_column values "
	  "instead of circle radius");
    sqrt_flag->guisection = _("Symbols");

    legend_flag = G_define_flag();
    legend_flag->key = 's';
    legend_flag->label = _("Do not show this layer in vector legend");
    legend_flag->guisection = _("Legend");

    /* Check command line */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    D_open_driver();
    
    G_get_set_window(&window);
    
    /* Check min/max region */
    reg = ((window.east - window.west) + (window.north - window.south)) / 2;
    if (minreg_opt->answer) {
	minreg = atof(minreg_opt->answer);

	if (reg < minreg) {
	    G_important_message(_("Region size is lower than minreg, nothing displayed"));
	    exit(EXIT_SUCCESS);
	}
    }
    if (maxreg_opt->answer) {
	maxreg = atof(maxreg_opt->answer);

	if (reg > maxreg) {
	    G_important_message(_("Region size is greater than maxreg, nothing displayed"));
	    exit(EXIT_SUCCESS);
	}
    }

    strcpy(map_name, map_opt->answer);

    default_width = atoi(width_opt->answer);
    if (default_width < 0)
	default_width = 0;
    width_scale = atof(wscale_opt->answer);

    if (cats_acolors_flag->answer && rgbcol_opt->answer) {
	G_warning(_("The -%c flag and <%s> option cannot be used together, "
		    "the -%c flag will be ignored!"), 
                  cats_acolors_flag->key, rgbcol_opt->key, cats_acolors_flag->key);
        cats_acolors_flag->answer = FALSE;
    }

    color = G_standard_color_rgb(WHITE);
    has_color = option_to_color(&color, color_opt->answer);
    fcolor = G_standard_color_rgb(WHITE);
    has_fcolor = option_to_color(&fcolor, fcolor_opt->answer);
    
    size = atof(size_opt->answer);

    /* if where_opt was specified select categories from db 
     * otherwise parse cat_opt */
    Clist = Vect_new_cat_list();
    Clist->field = atoi(field_opt->answer);

    /* open vector */
    level = Vect_open_old2(&Map, map_name, "", field_opt->answer);

    chcat = 0;
    if (where_opt->answer) {
	if (Clist->field < 1)
	    G_fatal_error(_("Option <%s> must be > 0"), field_opt->key);
	chcat = 1;
	option_to_where(&Map, Clist, where_opt->answer);
    }
    else if (cat_opt->answer) {
	if (Clist->field < 1 && !id_flag->answer)
	    G_fatal_error(_("Option <%s> must be > 0"), field_opt->key);
	chcat = 1;
	ret = Vect_str_to_cat_list(cat_opt->answer, Clist);
	if (ret > 0)
	    G_warning(n_("%d error in cat option", "%d errors in cat option", ret), ret);
    }
    
    type = Vect_option_to_types(type_opt);
    
    display = option_to_display(display_opt);

    /* labels */
    options_to_lattr(&lattr, lfield_opt->answer,
		     lcolor_opt->answer, bgcolor_opt->answer, bcolor_opt->answer,
		     atoi(lsize_opt->answer), font_opt->answer, enc_opt->answer,
		     xref_opt->answer, yref_opt->answer);

    D_setup(0);
    D_set_reduction(1.0);

    G_verbose_message(_("Plotting..."));

    if (level >= 2)
	Vect_get_map_box(&Map, &box);

    if (level >= 2 && (window.north < box.S || window.south > box.N ||
		       window.east < box.W ||
		       window.west > G_adjust_easting(box.E, &window))) {
	G_warning(_("The bounding box of the map is outside the current region, "
		    "nothing drawn"));
    }
    else {
	overlap = G_window_percentage_overlap(&window, box.N, box.S,
					      box.E, box.W);
	G_debug(1, "overlap = %f \n", overlap);
	if (overlap < 1)
	    Vect_set_constraint_region(&Map, window.north, window.south,
				       window.east, window.west,
				       PORT_DOUBLE_MAX, -PORT_DOUBLE_MAX);

	/* default line width */
	if (!wcolumn_opt->answer)
	    D_line_width(default_width);

	if (display & DISP_SHAPE) {
	    stat += display_shape(&Map, type, Clist, &window,
				  has_color ? &color : NULL, has_fcolor ? &fcolor : NULL, chcat,
				  icon_opt->answer, size, sizecolumn_opt->answer,
				  sqrt_flag->answer ? TRUE : FALSE, rotcolumn_opt->answer,
				  id_flag->answer ? TRUE : FALSE, 
				  cats_acolors_flag->answer ? TRUE : FALSE, rgbcol_opt->answer,
				  default_width,  wcolumn_opt->answer, width_scale,
				  zcol_opt->answer);
	    
	    if (wcolumn_opt->answer)
		D_line_width(default_width);
	}

	if (has_color) {
	    D_RGB_color(color.r, color.g, color.b);
	    if (display & DISP_DIR)
		stat += display_dir(&Map, type, Clist, chcat, size);
	}

	if (!legend_flag->answer) {
		write_into_legfile(&Map, type, leglab_opt->answer, map_name,
			   icon_opt->answer, size_opt->answer, 
			   color_opt->answer, fcolor_opt->answer, 
			   width_opt->answer, icon_area_opt->answer,
			   icon_line_opt->answer, sizecolumn_opt->answer);
	}

	/* reset line width: Do we need to get line width from display
	 * driver (not implemented)?  It will help restore previous line
	 * width (not just 0) determined by another module (e.g.,
	 * d.linewidth). */
	if (!wcolumn_opt->answer)
	    D_line_width(0);
	
	if (display & DISP_CAT)
	    stat += display_label(&Map, type, Clist, &lattr, chcat);

	if (attrcol_opt->answer)
	    stat += display_attr(&Map, type, attrcol_opt->answer, Clist, &lattr, chcat);

	if (display & DISP_ZCOOR)
	    stat += display_zcoor(&Map, type, &lattr);

	if (display & DISP_VERT)
            stat += display_vert(&Map, type, &lattr, size);

	if (display & DISP_TOPO)
            stat += display_topo(&Map, type, &lattr, size);
    }

    D_save_command(G_recreate_command());
    D_close_driver();

    Vect_close(&Map);
    Vect_destroy_cat_list(Clist);

    if (stat != 0) {
	G_fatal_error(_("Rendering failed"));
    }
    
    G_done_msg(" ");
    exit(EXIT_SUCCESS);
}
コード例 #26
0
    void AnalyticCompoundOptionEngine::calculate() const {

        QL_REQUIRE(strikeDaughter()>0.0,
                   "Daughter strike must be positive");

        QL_REQUIRE(strikeMother()>0.0,
                   "Mother strike must be positive");

        QL_REQUIRE(spot() >= 0.0, "negative or null underlying given");

        /* Solver Setup ***************************************************/
        Date helpDate(process_->riskFreeRate()->referenceDate());
        Date helpMaturity=helpDate+(maturityDaughter()-maturityMother())*Days;
        Real vol =process_->blackVolatility()->blackVol(helpMaturity,
                                                        strikeDaughter());

        Time helpTimeToMat=process_->time(helpMaturity);
        vol=vol*std::sqrt(helpTimeToMat);

        DiscountFactor dividendDiscount =
            process_->dividendYield()->discount(helpMaturity);

        DiscountFactor riskFreeDiscount =
            process_->riskFreeRate()->discount(helpMaturity);


        boost::shared_ptr<ImpliedSpotHelper> f(
                new ImpliedSpotHelper(dividendDiscount, riskFreeDiscount,
                                      vol, payoffDaughter(), strikeMother()));

        Brent solver;
        solver.setMaxEvaluations(1000);
        Real accuracy = 1.0e-6;

        Real X=0.0;
        Real sSolved=0.0;
        sSolved=solver.solve(*f, accuracy, strikeDaughter(), 1.0e-6, strikeDaughter()*1000.0);
        X=transformX(sSolved); // transform stock to return as in Wystup's book
        /* Solver Setup Finished*****************************************/

        Real phi=typeDaughter(); // -1 or 1
        Real w=typeMother(); // -1 or 1

        Real rho=std::sqrt(residualTimeMother()/residualTimeDaughter());
        BivariateCumulativeNormalDistributionDr78 N2(w*rho) ;

        DiscountFactor ddD=dividendDiscountDaughter();
        DiscountFactor rdD=riskFreeDiscountDaughter();
        //DiscountFactor ddM=dividendDiscountMother();
        DiscountFactor rdM=riskFreeDiscountMother();

        Real XmSM=X-stdDeviationMother();
        Real S=spot();
        Real dP=dPlus();
        Real dPT12=dPlusTau12(sSolved);
        Real vD=volatilityDaughter();

        Real dM=dMinus();
        Real strD=strikeDaughter();
        Real strM=strikeMother();
        Real rTM=residualTimeMother();
        Real rTD=residualTimeDaughter();

        Real rD=riskFreeRateDaughter();
        Real dD=dividendRateDaughter();

        Real tempRes=0.0;
        Real tempDelta=0.0;
        Real tempGamma=0.0;
        Real tempVega=0.0;
        Real tempTheta=0.0;
        Real N2XmSM=N2(-phi*w*XmSM,phi*dP);
        Real N2X=N2(-phi*w*X,phi*dM);
        Real NeX=N_(-phi*w*e(X));
        Real NX=N_(-phi*w*X);
        Real NT12=N_(phi*dPT12);
        Real ndP=n_(dP);
        Real nXm=n_(XmSM);
        Real invMTime=1/std::sqrt(rTM);
        Real invDTime=1/std::sqrt(rTD);

        tempRes=phi*w*S*ddD*N2XmSM-phi*w*strD*rdD*N2X-w*strM*rdM*NX;
        tempDelta=phi*w*ddD*N2XmSM;
        tempGamma=(ddD/(vD*S))*(invMTime*nXm*NT12+w*invDTime*ndP*NeX);
        tempVega=ddD*S*((1/invMTime)*nXm*NT12+w*(1/invDTime)*ndP*NeX);

        tempTheta+=phi*w*dD*S*ddD*N2XmSM-phi*w*rD*strD*rdD*N2X-w*rD*strM*rdM*NX;
        tempTheta-=0.5*vD*S*ddD*(invMTime*nXm*NT12+w*invDTime*ndP*NeX);

        results_.value=tempRes;
        results_.delta=tempDelta;
        results_.gamma=tempGamma;
        results_.vega=tempVega;
        results_.theta=tempTheta;
    }
コード例 #27
0
ファイル: main.c プロジェクト: rashadkm/grass_cmake
int main(int argc, char **argv)
{
    int line;
    struct line_pnts *points;
    struct line_cats *Cats;

    struct Map_info map, Out;
    struct GModule *module;
    struct Option *input;
    struct Option *output;
    struct Option *cats;
    struct Option *type_opt;
    char *desc;

    int polyline;
    int *lines_visited;
    int points_in_polyline;
    int start_line;
    int nlines;
    int write_cats, copy_tables;

    int type, ltype;

    /*  Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("topology"));
    G_add_keyword(_("geometry"));
    G_add_keyword(_("line"));
    G_add_keyword(_("node"));
    G_add_keyword(_("vertex"));
    module->description = _("Builds polylines from lines or boundaries.");

    /* Define the options */

    input = G_define_standard_option(G_OPT_V_INPUT);
    output = G_define_standard_option(G_OPT_V_OUTPUT);

    cats = G_define_option();
    cats->key = "cats";
    cats->type = TYPE_STRING;
    cats->description = _("Category number mode");
    cats->options = "no,first,multi,same";
    desc = NULL;
    G_asprintf(&desc,
	       "no;%s;first;%s;multi;%s;same;%s",
	       _("Do not assign any category number to polyline"),
	       _("Assign category number of first line to polyline"),
	       _("Assign multiple category numbers to polyline"),
	       _("Create polyline from lines with same categories"));
    cats->descriptions = desc;
    cats->answer = "no";

    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->options = "line,boundary";
    type_opt->answer = "line,boundary";

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    Vect_check_input_output_name(input->answer, output->answer,
				 G_FATAL_EXIT);

    /* Open binary vector map at level 2 */
    Vect_set_open_level(2);
    if (Vect_open_old(&map, input->answer, "") < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), input->answer);

    /* Open new vector */
    G_find_vector2(output->answer, "");
    if (Vect_open_new(&Out, output->answer, Vect_is_3d(&map)) < 0)
	G_fatal_error(_("Unable to create vector map <%s>"), output->answer);

    /* Copy header info. */
    Vect_copy_head_data(&map, &Out);

    /* History */
    Vect_hist_copy(&map, &Out);
    Vect_hist_command(&Out);

    /* Get the number of lines in the binary map and set up record of lines visited */

    lines_visited =
	(int *)G_calloc(Vect_get_num_lines(&map) + 1, sizeof(int));

    /* Set up points structure and coordinate arrays */
    points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    /* Write cats */
    if (strcmp(cats->answer, "no") == 0)
	write_cats = NO_CATS;
    else if (strcmp(cats->answer, "first") == 0)
	write_cats = ONE_CAT;
    else
	write_cats = MULTI_CATS;

    if (type_opt->answer)
	type = Vect_option_to_types(type_opt);
    else
	type = GV_LINES;

    /* Step over all lines in binary map */
    polyline = 0;
    nlines = 0;

    copy_tables = (write_cats != NO_CATS);

    for (line = 1; line <= Vect_get_num_lines(&map); line++) {
	Vect_reset_cats(Cats);
	ltype = Vect_read_line(&map, NULL, NULL, line);

	if ((ltype & GV_LINES) && (ltype & type))
	    nlines++;
	else {
	    /* copy points to output as they are, with cats */
	    Vect_read_line(&map, points, Cats, line);
	    Vect_write_line(&Out, ltype, points, Cats);
	    if (Cats->n_cats > 0)
		copy_tables = 1;
	    continue;
	}

	/* Skip line if already visited from another */
	if (lines_visited[line])
	    continue;

	/* Only get here if line is not previously visited */

	/* Find start of this polyline */
	start_line = walk_back(&map, line, ltype);

	G_debug(1, "Polyline %d: start line = %d", polyline, start_line);

	/* Walk forward and pick up coordinates */
	points_in_polyline =
	    walk_forward_and_pick_up_coords(&map, start_line, ltype, points,
					    lines_visited, Cats, write_cats);

	/* Write the line (type of the first line is used) */
	Vect_write_line(&Out, ltype, points, Cats);

	polyline++;
    }

    G_verbose_message(n_("%d line or boundaries found in input vector map",
                         "%d lines or boundaries found in input vector map",
                         nlines),
		      nlines, Vect_get_name(&map), Vect_get_mapset(&map));
    G_verbose_message(n_("%d polyline stored in output vector map",
                         "%d polylines stored in output vector map",
                         polyline),
		      polyline, Vect_get_name(&Out), Vect_get_mapset(&Out));

    /* Copy (all linked) tables if needed */
    if (copy_tables) {
        if (Vect_copy_tables(&map, &Out, 0))
            G_warning(_("Failed to copy attribute table to output map"));
    }

    /* Tidy up */
    Vect_destroy_line_struct(points);
    Vect_destroy_cats_struct(Cats);
    G_free(lines_visited);
    Vect_close(&map);

    Vect_build(&Out);
    Vect_close(&Out);

    exit(EXIT_SUCCESS);
}
コード例 #28
0
ファイル: main.c プロジェクト: rkrug/grass-ci
int main(int argc, char *argv[])
{
    struct Map_info In, Out;
    static struct line_pnts *Points, *PPoints;
    struct line_cats *Cats, *TCats;
    struct ilist *slist;
    struct GModule *module;	/* GRASS module for parsing arguments */
    struct Option *map_in, *map_out;
    struct Option *catf_opt, *fieldf_opt, *wheref_opt;
    struct Option *catt_opt, *fieldt_opt, *wheret_opt, *typet_opt;
    struct Option *afield_opt, *nfield_opt, *abcol, *afcol, *ncol, *atype_opt;
    struct Flag *geo_f, *segments_f;
    int with_z, geo, segments;
    int atype, ttype;
    struct varray *varrayf, *varrayt;
    int flayer, tlayer;
    int afield, nfield;
    dglGraph_s *graph;
    struct ilist *nodest;
    int i, j, nnodes, nlines;
    int *dst, *nodes_to_features;
    int from_nr;			/* 'from' features not reachable */
    dglInt32_t **nxt;
    struct line_cats **on_path;
    char *segdir;
    char buf[2000];

    /* Attribute table */
    dbString sql;
    dbDriver *driver;
    struct field_info *Fi;

    /* initialize GIS environment */
    G_gisinit(argv[0]);		/* reads grass env, stores program name to G_program_name() */

    /* initialize module */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("network"));
    G_add_keyword(_("shortest path"));
    module->label = _("Computes shortest distance via the network between "
		      "the given sets of features.");
    module->description =
	_("Finds the shortest paths from each 'from' point to the nearest 'to' feature "
	 "and various information about this relation are uploaded to the attribute table.");

    /* Define the different options as defined in gis.h */
    map_in = G_define_standard_option(G_OPT_V_INPUT);
    map_out = G_define_standard_option(G_OPT_V_OUTPUT);

    afield_opt = G_define_standard_option(G_OPT_V_FIELD);
    afield_opt->key = "arc_layer";
    afield_opt->answer = "1";
    afield_opt->label = _("Arc layer");
    afield_opt->guisection = _("Cost");

    atype_opt = G_define_standard_option(G_OPT_V_TYPE);
    atype_opt->key = "arc_type";
    atype_opt->options = "line,boundary";
    atype_opt->answer = "line,boundary";
    atype_opt->label = _("Arc type");
    atype_opt->guisection = _("Cost");

    nfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    nfield_opt->key = "node_layer";
    nfield_opt->answer = "2";
    nfield_opt->label = _("Node layer");
    nfield_opt->guisection = _("Cost");

    fieldf_opt = G_define_standard_option(G_OPT_V_FIELD);
    fieldf_opt->key = "from_layer";
    fieldf_opt->label = _("From layer number or name");
    fieldf_opt->guisection = _("From");

    catf_opt = G_define_standard_option(G_OPT_V_CATS);
    catf_opt->key = "from_cats";
    catf_opt->label = _("From category values");
    catf_opt->guisection = _("From");

    wheref_opt = G_define_standard_option(G_OPT_DB_WHERE);
    wheref_opt->key = "from_where";
    wheref_opt->label =
	_("From WHERE conditions of SQL statement without 'where' keyword");
    wheref_opt->guisection = _("From");

    fieldt_opt = G_define_standard_option(G_OPT_V_FIELD);
    fieldt_opt->key = "to_layer";
    fieldt_opt->description = _("To layer number or name");
    fieldt_opt->guisection = _("To");

    typet_opt = G_define_standard_option(G_OPT_V_TYPE);
    typet_opt->key = "to_type";
    typet_opt->options = "point,line,boundary";
    typet_opt->answer = "point";
    typet_opt->description = _("To feature type");
    typet_opt->guisection = _("To");

    catt_opt = G_define_standard_option(G_OPT_V_CATS);
    catt_opt->key = "to_cats";
    catt_opt->label = _("To category values");
    catt_opt->guisection = _("To");

    wheret_opt = G_define_standard_option(G_OPT_DB_WHERE);
    wheret_opt->key = "to_where";
    wheret_opt->label =
	_("To WHERE conditions of SQL statement without 'where' keyword");
    wheret_opt->guisection = _("To");

    afcol = G_define_standard_option(G_OPT_DB_COLUMN);
    afcol->key = "arc_column";
    afcol->required = NO;
    afcol->description =
	_("Arc forward/both direction(s) cost column (number)");
    afcol->guisection = _("Cost");

    abcol = G_define_standard_option(G_OPT_DB_COLUMN);
    abcol->key = "arc_backward_column";
    abcol->required = NO;
    abcol->description = _("Arc backward direction cost column (number)");
    abcol->guisection = _("Cost");

    ncol = G_define_standard_option(G_OPT_DB_COLUMN);
    ncol->key = "node_column";
    ncol->required = NO;
    ncol->description = _("Node cost column (number)");
    ncol->guisection = _("Cost");

    geo_f = G_define_flag();
    geo_f->key = 'g';
    geo_f->description =
	_("Use geodesic calculation for longitude-latitude locations");

    segments_f = G_define_flag();
#if 0
    /* use this to sync with v.net.path */
    segments_f->key = 's';
    segments_f->description = _("Write output as original input segments, "
				"not each path as one line.");
#else
    segments_f->key = 'l';
    segments_f->description = _("Write each output path as one line, "
				"not as original input segments.");
#endif

    /* options and flags parser */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    atype = Vect_option_to_types(atype_opt);
    ttype = Vect_option_to_types(typet_opt);

    Points = Vect_new_line_struct();
    PPoints = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();
    TCats = Vect_new_cats_struct();
    slist = G_new_ilist();

    Vect_check_input_output_name(map_in->answer, map_out->answer,
				 G_FATAL_EXIT);

    Vect_set_open_level(2);

    if (1 > Vect_open_old(&In, map_in->answer, ""))
	G_fatal_error(_("Unable to open vector map <%s>"), map_in->answer);

    with_z = Vect_is_3d(&In);

    if (0 > Vect_open_new(&Out, map_out->answer, with_z)) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"), map_out->answer);
    }


    if (geo_f->answer) {
	geo = 1;
	if (G_projection() != PROJECTION_LL)
	    G_warning(_("The current projection is not longitude-latitude"));
    }
    else
	geo = 0;

#if 0
    /* use this to sync with v.net.path */
    segments = segments_f->answer;
#else
    segments = !segments_f->answer;
#endif

    nnodes = Vect_get_num_nodes(&In);
    nlines = Vect_get_num_lines(&In);

    dst = (int *)G_calloc(nnodes + 1, sizeof(int));
    nxt = (dglInt32_t **) G_calloc(nnodes + 1, sizeof(dglInt32_t *));
    nodes_to_features = (int *)G_calloc(nnodes + 1, sizeof(int));
    on_path =
	(struct line_cats **)G_calloc(nlines + 1, sizeof(struct line_cats *));
    segdir = (char *)G_calloc(nlines + 1, sizeof(char));

    if (!dst || !nxt || !nodes_to_features || !on_path || !segdir)
	G_fatal_error(_("Out of memory"));

    for (i = 1; i <= nlines; i++) {
	on_path[i] = Vect_new_cats_struct();
	segdir[i] = 0;
    }

    /*initialise varrays and nodes list appropriatelly */
    afield = Vect_get_field_number(&In, afield_opt->answer);
    nfield = Vect_get_field_number(&In, nfield_opt->answer);

    flayer = atoi(fieldf_opt->answer);
    tlayer = atoi(fieldt_opt->answer);

    if (NetA_initialise_varray(&In, flayer, GV_POINT, wheref_opt->answer,
			   catf_opt->answer, &varrayf) <= 0) {
	G_fatal_error(_("No 'from' features selected. "
			"Please check options '%s', '%s', '%s'."),
			fieldf_opt->key, wheref_opt->key, catf_opt->key);
    }

    if (NetA_initialise_varray(&In, tlayer, ttype, wheret_opt->answer,
			   catt_opt->answer, &varrayt) <= 0) {
	G_fatal_error(_("No 'to' features selected. "
			"Please check options '%s', '%s', '%s'."),
			fieldt_opt->key, wheret_opt->key, catt_opt->key);
    }

    nodest = Vect_new_list();
    NetA_varray_to_nodes(&In, varrayt, nodest, nodes_to_features);
    
    if (nodest->n_values == 0)
	G_fatal_error(_("No 'to' features"));
    
    if (0 != Vect_net_build_graph(&In, atype, afield, nfield, afcol->answer, abcol->answer,
                                   ncol->answer, geo, 2))
        G_fatal_error(_("Unable to build graph for vector map <%s>"), Vect_get_full_name(&In));

    graph = Vect_net_get_graph(&In);

    G_message(_("Distances to 'to' features ..."));

    NetA_distance_to_points(graph, nodest, dst, nxt);

    /* Create table */
    Fi = Vect_default_field_info(&Out, 1, NULL, GV_1TABLE);
    Vect_map_add_dblink(&Out, 1, NULL, Fi->table, GV_KEY_COLUMN, Fi->database,
			Fi->driver);
    db_init_string(&sql);
    driver = db_start_driver_open_database(Fi->driver, Fi->database);
    if (driver == NULL)
	G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
		      Fi->database, Fi->driver);
    db_set_error_handler_driver(driver);

    sprintf(buf,
	    "create table %s ( cat integer, tcat integer, dist double precision)",
	    Fi->table);

    db_set_string(&sql, buf);
    G_debug(2, "%s", db_get_string(&sql));

    if (db_execute_immediate(driver, &sql) != DB_OK) {
	G_fatal_error(_("Unable to create table: '%s'"), db_get_string(&sql));
    }

    if (db_create_index2(driver, Fi->table, GV_KEY_COLUMN) != DB_OK)
	G_warning(_("Cannot create index"));

    if (db_grant_on_table
	(driver, Fi->table, DB_PRIV_SELECT, DB_GROUP | DB_PUBLIC) != DB_OK)
	G_fatal_error(_("Cannot grant privileges on table <%s>"), Fi->table);

    db_begin_transaction(driver);

    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);

    G_message(_("Tracing paths from 'from' features ..."));
    from_nr = 0;
    for (i = 1; i <= nlines; i++) {
	if (varrayf->c[i]) {
	    int type = Vect_read_line(&In, Points, Cats, i);
	    int node, tcat, cat;
	    double cost;
	    dglInt32_t *vertex, vertex_id;

	    if (!Vect_cat_get(Cats, flayer, &cat))
		continue;
		
	    if (type & GV_POINTS) {
		node = Vect_find_node(&In, Points->x[0], Points->y[0], Points->z[0], 0, 0);
	    }
	    else {
		Vect_get_line_nodes(&In, i, &node, NULL);
	    }
	    if (node < 1)
		continue;
	    if (dst[node] < 0) {
		/* unreachable */
		from_nr++;
 		continue;
	    }
	    cost = dst[node] / (double)In.dgraph.cost_multip;
	    vertex = dglGetNode(graph, node);
	    vertex_id = node;
	    slist->n_values = 0;
	    while (nxt[vertex_id] != NULL) {
		int edge_id;

		edge_id = (int) dglEdgeGet_Id(graph, nxt[vertex_id]);
		if (segments) {
		    Vect_cat_set(on_path[abs(edge_id)], 1, cat);
		    if (edge_id < 0) {
			segdir[abs(edge_id)] = 1;
		    }
		}
		else
		    G_ilist_add(slist, edge_id);

		vertex = dglEdgeGet_Tail(graph, nxt[vertex_id]);
		vertex_id = dglNodeGet_Id(graph, vertex);
	    }
	    G_debug(3, "read line %d, vertex id %d", nodes_to_features[vertex_id], (int)vertex_id);
	    Vect_read_line(&In, NULL, TCats, nodes_to_features[vertex_id]);
	    if (!Vect_cat_get(TCats, tlayer, &tcat))
		continue;

	    Vect_write_line(&Out, type, Points, Cats);
	    sprintf(buf, "insert into %s values (%d, %d, %f)", Fi->table, cat,
		    tcat, cost);
	    db_set_string(&sql, buf);
	    G_debug(3, "%s", db_get_string(&sql));
	    if (db_execute_immediate(driver, &sql) != DB_OK) {
		G_fatal_error(_("Cannot insert new record: %s"),
			      db_get_string(&sql));
	    };

	    if (!segments) {
		Vect_reset_line(PPoints);
		for (j = 0; j < slist->n_values; j++) {
		    Vect_read_line(&In, Points, NULL, abs(slist->value[j]));
		    if (slist->value[j] > 0)
			Vect_append_points(PPoints, Points,
					   GV_FORWARD);
		    else
			Vect_append_points(PPoints, Points,
					   GV_BACKWARD);
		    PPoints->n_points--;
		}
		PPoints->n_points++;
		Vect_reset_cats(Cats);
		Vect_cat_set(Cats, 1, cat);
		Vect_write_line(&Out, GV_LINE, PPoints, Cats);
	    }

	}
    }

    if (segments) {
	for (i = 1; i <= nlines; i++) {
	    if (on_path[i]->n_cats > 0) {
		int type; 
		
		if (segdir[i]) {
		    type = Vect_read_line(&In, PPoints, NULL, i);
		    Vect_reset_line(Points);
		    Vect_append_points(Points, PPoints, GV_BACKWARD);
		}
		else
		    type = Vect_read_line(&In, Points, NULL, i);

		Vect_write_line(&Out, type, Points, on_path[i]);
	    }
	}
    }

    db_commit_transaction(driver);
    db_close_database_shutdown_driver(driver);

    Vect_build(&Out);

    Vect_close(&In);
    Vect_close(&Out);

    for (i = 1; i <= nlines; i++)
	Vect_destroy_cats_struct(on_path[i]);
    G_free(on_path);
    G_free(nodes_to_features);
    G_free(dst);
    G_free(nxt);
    G_free(segdir);

    if (from_nr)
	G_warning(n_("%d 'from' feature was not reachable",
                     "%d 'from' features were not reachable",
                     from_nr), from_nr);

    exit(EXIT_SUCCESS);
}
コード例 #29
0
ファイル: variates.hpp プロジェクト: paulkoerbitz/uncert
 double operator()() {
    return n_();
 } 
コード例 #30
0
ファイル: select.c プロジェクト: rashadkm/grass_cmake
/**
   \brief Select vector features

   \param[in] Map vector map
   \param[in] action_mode tool
   \param[in] params GRASS parameters
   \param[in] List list of selected features
   
   \return list of newly selected features
*/
struct ilist *select_lines(struct Map_info *Map, enum mode action_mode,
			   struct GParams *params, double *thresh,
			   struct ilist *List)
{
    int layer, type;

    layer = Vect_get_field_number(Map, params->fld->answer);
    type = Vect_option_to_types(params->type);

    /* select by id's */
    if (params->id->answer != NULL) {
	sel_by_id(Map, type, params->id->answer, List);
    }

    /* select by category (ignore tools catdel and catadd) */
    if ((action_mode != MODE_CATADD && action_mode != MODE_CATDEL) &&
	params->cat->answer != NULL) {
	sel_by_cat(Map, NULL, layer, type, params->cat->answer, List);
    }

    /* select by coordinates (+threshold) */
    if (params->coord->answer != NULL) {
	int i;
	double east, north;
	struct line_pnts *coords;

	coords = Vect_new_line_struct();
	i = 0;
	while (params->coord->answers[i]) {
	    east = atof(params->coord->answers[i]);
	    north = atof(params->coord->answers[i + 1]);
	    Vect_append_point(coords, east, north, 0.0);
	    i += 2;
	}

	G_verbose_message(_("Threshold value for coordinates is %.2f"),
			  thresh[THRESH_COORDS]);
	sel_by_coordinates(Map, type, coords, thresh[THRESH_COORDS], List);

	Vect_destroy_line_struct(coords);
    }

    /* select by bbox */
    if (params->bbox->answer != NULL) {
	struct line_pnts *bbox;
	double x1, y1, x2, y2;

	bbox = Vect_new_line_struct();

	x1 = atof(params->bbox->answers[0]);
	y1 = atof(params->bbox->answers[1]);
	x2 = atof(params->bbox->answers[2]);
	y2 = atof(params->bbox->answers[3]);

	Vect_append_point(bbox, x1, y1, -PORT_DOUBLE_MAX);
	Vect_append_point(bbox, x2, y1, PORT_DOUBLE_MAX);
	Vect_append_point(bbox, x2, y2, -PORT_DOUBLE_MAX);
	Vect_append_point(bbox, x1, y2, PORT_DOUBLE_MAX);
	Vect_append_point(bbox, x1, y1, -PORT_DOUBLE_MAX);

	/* sel_by_bbox not used */
	/*
	   sel_by_bbox(Map,
	   type, x1, y1, x2, y2,
	   List);
	 */
	sel_by_polygon(Map, type, bbox, List);

	Vect_destroy_line_struct(bbox);
    }

    /* select by polygon  */
    if (params->poly->answer != NULL) {
	int i;
	struct line_pnts *Polygon;

	Polygon = Vect_new_line_struct();

	for (i = 0; params->poly->answers[i]; i += 2) {
	    Vect_append_point(Polygon,
			      atof(params->poly->answers[i]),
			      atof(params->poly->answers[i + 1]), 0.0);
	}

	/* if first and last point of polygon does not match */
	if (atof(params->poly->answers[i - 1]) !=
	    atof(params->poly->answers[0])) {
	    Vect_append_point(Polygon, atof(params->poly->answers[0]),
			      atof(params->poly->answers[1]), 0.0);
	}

	sel_by_polygon(Map, type, Polygon, List);

	Vect_destroy_line_struct(Polygon);
    }

    /* select by where statement */
    if (params->where->answer != NULL) {
	sel_by_where(Map, layer, type, params->where->answer, List);
    }

    /* selecy by query */
    if (params->query->answer != NULL) {
	int query_type;
	struct ilist *List_tmp;

	if (first_selection) {
	    List_tmp = List;
	    first_selection = 0;
	}
	else {
	    List_tmp = Vect_new_list();
	}

	query_type = QUERY_UNKNOWN;
	if (strcmp(params->query->answer, "length") == 0) {
	    query_type = QUERY_LENGTH;
	}
	else if (strcmp(params->query->answer, "dangle") == 0) {
	    query_type = QUERY_DANGLE;
	}

	G_verbose_message(_("Threshold value for querying is %.2f"),
			  thresh[THRESH_QUERY]);
	Vedit_select_by_query(Map, type, layer, thresh[THRESH_QUERY],
			      query_type, List_tmp);

	/* merge lists (only duplicate items) */
	if (List_tmp != List) {
	    merge_lists(List, List_tmp);
	    Vect_destroy_list(List_tmp);
	}
    }

    if (params->reverse->answer) {
	reverse_selection(Map, type, &List);
    }

    G_message(n_("%d of %d feature selected from vector map <%s>",
                 "%d of %d features selected from vector map <%s>",
                 Vect_get_num_lines(Map)
    ),
	      List->n_values,
	      Vect_get_num_lines(Map), Vect_get_full_name(Map));

    return List;
}