/* * Initialize mips and configure to run kernel */ void mips_proc0_init(void) { #ifdef SMP if (platform_processor_id() != 0) panic("BSP must be processor number 0"); #endif proc_linkup0(&proc0, &thread0); KASSERT((kstack0 & PAGE_MASK) == 0, ("kstack0 is not aligned on a page boundary: 0x%0lx", (long)kstack0)); thread0.td_kstack = kstack0; thread0.td_kstack_pages = KSTACK_PAGES; /* * Do not use cpu_thread_alloc to initialize these fields * thread0 is the only thread that has kstack located in KSEG0 * while cpu_thread_alloc handles kstack allocated in KSEG2. */ thread0.td_pcb = (struct pcb *)(thread0.td_kstack + thread0.td_kstack_pages * PAGE_SIZE) - 1; thread0.td_frame = &thread0.td_pcb->pcb_regs; /* Steal memory for the dynamic per-cpu area. */ dpcpu_init((void *)pmap_steal_memory(DPCPU_SIZE), 0); PCPU_SET(curpcb, thread0.td_pcb); /* * There is no need to initialize md_upte array for thread0 as it's * located in .bss section and should be explicitly zeroed during * kernel initialization. */ }
static void init_proc0(vm_offset_t kstack) { pcpup = &__pcpu[0]; proc_linkup0(&proc0, &thread0); thread0.td_kstack = kstack; thread0.td_pcb = (struct pcb *)(thread0.td_kstack) - 1; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; }
static void init_proc0(vm_offset_t kstack) { struct pcpu *pcpup = &__pcpu[0]; proc_linkup0(&proc0, &thread0); thread0.td_kstack = kstack; thread0.td_pcb = (struct pcb *)(thread0.td_kstack) - 1; thread0.td_pcb->pcb_fpflags = 0; thread0.td_pcb->pcb_vfpcpu = UINT_MAX; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; }
void * initarm(void *arg, void *arg2) { struct pcpu *pc; struct pv_addr kernel_l1pt; struct pv_addr md_addr; struct pv_addr md_bla; struct pv_addr dpcpu; int loop; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t lastalloced; vm_offset_t lastaddr; uint32_t memsize = 32 * 1024 * 1024; sa1110_uart_vaddr = SACOM1_VBASE; boothowto = RB_VERBOSE | RB_SINGLE; cninit(); set_cpufuncs(); lastaddr = fake_preload_metadata(); physmem = memsize / PAGE_SIZE; pc = &__pcpu; pcpu_init(pc, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); /* Do basic tuning, hz etc */ init_param1(); physical_start = (vm_offset_t) KERNBASE; physical_end = lastaddr; physical_freestart = (((vm_offset_t)physical_end) + PAGE_MASK) & ~PAGE_MASK; md_addr.pv_va = md_addr.pv_pa = MDROOT_ADDR; freemempos = (vm_offset_t)round_page(physical_freestart); memset((void *)freemempos, 0, 256*1024); /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = (var).pv_pa; #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += ((np) * PAGE_SIZE);\ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while ((freemempos & (L1_TABLE_SIZE - 1)) != 0) freemempos += PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); valloc_pages(md_bla, L2_TABLE_SIZE / PAGE_SIZE); alloc_pages(sa1_cache_clean_addr, CPU_SA110_CACHE_CLEAN_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_pa = freemempos + (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_va = kernel_pt_table[loop].pv_pa; } } /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); lastalloced = kernelstack.pv_va; /* * Allocate memory for the l1 and l2 page tables. The scheme to avoid * wasting memory by allocating the l1pt on the first 16k memory was * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for * this to work (which is supposed to be the case). */ /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, KERNBASE, &kernel_pt_table[KERNEL_PT_KERNEL]); pmap_link_l2pt(l1pagetable, 0xd0000000, &kernel_pt_table[KERNEL_PT_IO]); pmap_link_l2pt(l1pagetable, lastalloced & ~((L1_S_SIZE * 4) - 1), &kernel_pt_table[KERNEL_PT_L1]); pmap_link_l2pt(l1pagetable, 0x90000000, &kernel_pt_table[KERNEL_PT_IRQ]); pmap_link_l2pt(l1pagetable, MDROOT_ADDR, &md_bla); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00100000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); pmap_map_chunk(l1pagetable, KERNBASE, KERNBASE, ((uint32_t)lastaddr - KERNBASE), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the DPCPU pages */ pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, DPCPU_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, md_addr.pv_va, md_addr.pv_pa, MD_ROOT_SIZE * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } pmap_map_chunk(l1pagetable, md_bla.pv_va, md_bla.pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); /* Map the vector page. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the statically mapped devices. */ pmap_devmap_bootstrap(l1pagetable, assabet_devmap); pmap_map_chunk(l1pagetable, sa1_cache_clean_addr, 0xf0000000, CPU_SA110_CACHE_CLEAN_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); bootverbose = 1; /* Set stack for exception handlers */ proc_linkup0(&proc0, &thread0); thread0.td_kstack = kernelstack.pv_va; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; /* Enable MMU, I-cache, D-cache, write buffer. */ cpufunc_control(0x337f, 0x107d); arm_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); pmap_curmaxkvaddr = freemempos + KERNEL_PT_VMDATA_NUM * 0x400000; dump_avail[0] = phys_avail[0] = round_page(virtual_avail); dump_avail[1] = phys_avail[1] = 0xc0000000 + 0x02000000 - 1; dump_avail[2] = phys_avail[2] = 0; dump_avail[3] = phys_avail[3] = 0; mutex_init(); pmap_bootstrap(freemempos, 0xd0000000, &kernel_l1pt); init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); }
void * initarm(void *arg, void *arg2) { #define next_chunk2(a,b) (((a) + (b)) &~ ((b)-1)) #define next_page(a) next_chunk2(a,PAGE_SIZE) struct pv_addr kernel_l1pt; struct pv_addr dpcpu; int loop, i; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t freemem_pt; vm_offset_t afterkern; vm_offset_t freemem_after; vm_offset_t lastaddr; uint32_t memsize; set_cpufuncs(); /* NB: sets cputype */ lastaddr = fake_preload_metadata(); pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); /* Do basic tuning, hz etc */ init_param1(); /* * We allocate memory downwards from where we were loaded * by RedBoot; first the L1 page table, then NUM_KERNEL_PTS * entries in the L2 page table. Past that we re-align the * allocation boundary so later data structures (stacks, etc) * can be mapped with different attributes (write-back vs * write-through). Note this leaves a gap for expansion * (or might be repurposed). */ freemempos = KERNPHYSADDR; /* macros to simplify initial memory allocation */ #define alloc_pages(var, np) do { \ freemempos -= (np * PAGE_SIZE); \ (var) = freemempos; \ /* NB: this works because locore maps PA=VA */ \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); \ } while (0) #define valloc_pages(var, np) do { \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = (var).pv_pa + (KERNVIRTADDR - KERNPHYSADDR); \ } while (0) /* force L1 page table alignment */ while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos -= PAGE_SIZE; /* allocate contiguous L1 page table */ valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); /* now allocate L2 page tables; they are linked to L1 below */ for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_pa = freemempos + (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_va = kernel_pt_table[loop].pv_pa + (KERNVIRTADDR - KERNPHYSADDR); } } freemem_pt = freemempos; /* base of allocated pt's */ /* * Re-align allocation boundary so we can map the area * write-back instead of write-through for the stacks and * related structures allocated below. */ freemempos = PHYSADDR + 0x100000; /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); alloc_pages(minidataclean.pv_pa, 1); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); #ifdef ARM_USE_SMALL_ALLOC freemempos -= PAGE_SIZE; freemem_pt = trunc_page(freemem_pt); freemem_after = freemempos - ((freemem_pt - (PHYSADDR + 0x100000)) / PAGE_SIZE) * sizeof(struct arm_small_page); arm_add_smallalloc_pages( (void *)(freemem_after + (KERNVIRTADDR - KERNPHYSADDR)), (void *)0xc0100000, freemem_pt - (PHYSADDR + 0x100000), 1); freemem_after -= ((freemem_after - (PHYSADDR + 0x1000)) / PAGE_SIZE) * sizeof(struct arm_small_page); arm_add_smallalloc_pages( (void *)(freemem_after + (KERNVIRTADDR - KERNPHYSADDR)), (void *)0xc0001000, trunc_page(freemem_after) - (PHYSADDR + 0x1000), 0); freemempos = trunc_page(freemem_after); freemempos -= PAGE_SIZE; #endif /* * Now construct the L1 page table. First map the L2 * page tables into the L1 so we can replace L1 mappings * later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE, &kernel_pt_table[KERNEL_PT_IO]); pmap_link_l2pt(l1pagetable, IXP425_MCU_VBASE, &kernel_pt_table[KERNEL_PT_IO + 1]); pmap_link_l2pt(l1pagetable, IXP425_PCI_MEM_VBASE, &kernel_pt_table[KERNEL_PT_IO + 2]); pmap_link_l2pt(l1pagetable, KERNBASE, &kernel_pt_table[KERNEL_PT_BEFOREKERN]); pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, PHYSADDR + 0x100000, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_PHYS, next_chunk2(((uint32_t)lastaddr) - KERNEL_TEXT_BASE, L1_S_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); freemem_after = next_page((int)lastaddr); afterkern = round_page(next_chunk2((vm_offset_t)lastaddr, L1_S_SIZE)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #ifdef ARM_USE_SMALL_ALLOC if ((freemem_after + 2 * PAGE_SIZE) <= afterkern) { arm_add_smallalloc_pages((void *)(freemem_after), (void*)(freemem_after + PAGE_SIZE), afterkern - (freemem_after + PAGE_SIZE), 0); } #endif /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, afterkern, minidataclean.pv_pa); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); if (cpu_is_ixp43x()) pmap_devmap_bootstrap(l1pagetable, ixp435_devmap); else pmap_devmap_bootstrap(l1pagetable, ixp425_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE*PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE*PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE*PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* ready to setup the console (XXX move earlier if possible) */ cninit(); /* * Fetch the RAM size from the MCU registers. The * expansion bus was mapped above so we can now read 'em. */ if (cpu_is_ixp43x()) memsize = ixp435_ddram_size(); else memsize = ixp425_sdram_size(); physmem = memsize / PAGE_SIZE; /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); proc_linkup0(&proc0, &thread0); thread0.td_kstack = kernelstack.pv_va; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern + PAGE_SIZE; dump_avail[0] = PHYSADDR; dump_avail[1] = PHYSADDR + memsize; dump_avail[2] = 0; dump_avail[3] = 0; pmap_bootstrap(pmap_curmaxkvaddr, 0xd0000000, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); i = 0; #ifdef ARM_USE_SMALL_ALLOC phys_avail[i++] = PHYSADDR; phys_avail[i++] = PHYSADDR + PAGE_SIZE; /* *XXX: Gross hack to get our * pages in the vm_page_array. */ #endif phys_avail[i++] = round_page(virtual_avail - KERNBASE + PHYSADDR); phys_avail[i++] = trunc_page(PHYSADDR + memsize - 1); phys_avail[i++] = 0; phys_avail[i] = 0; init_param2(physmem); kdb_init(); /* use static kernel environment if so configured */ if (envmode == 1) kern_envp = static_env; return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); #undef next_page #undef next_chunk2 }
void * initarm(void *arg, void *arg2) { struct pv_addr kernel_l1pt; struct pv_addr dpcpu; int loop, i; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t freemem_pt; vm_offset_t afterkern; vm_offset_t freemem_after; vm_offset_t lastaddr; uint32_t memsize, memstart; set_cpufuncs(); lastaddr = fake_preload_metadata(); pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); freemempos = 0xa0200000; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = (var).pv_pa + 0x20000000; #define alloc_pages(var, np) \ freemempos -= (np * PAGE_SIZE); \ (var) = freemempos; \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos -= PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_pa = freemempos + (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_va = kernel_pt_table[loop].pv_pa + 0x20000000; } i++; } freemem_pt = freemempos; freemempos = 0xa0100000; /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); alloc_pages(minidataclean.pv_pa, 1); valloc_pages(msgbufpv, round_page(MSGBUF_SIZE) / PAGE_SIZE); #ifdef ARM_USE_SMALL_ALLOC freemempos -= PAGE_SIZE; freemem_pt = trunc_page(freemem_pt); freemem_after = freemempos - ((freemem_pt - 0xa0100000) / PAGE_SIZE) * sizeof(struct arm_small_page); arm_add_smallalloc_pages((void *)(freemem_after + 0x20000000) , (void *)0xc0100000, freemem_pt - 0xa0100000, 1); freemem_after -= ((freemem_after - 0xa0001000) / PAGE_SIZE) * sizeof(struct arm_small_page); arm_add_smallalloc_pages((void *)(freemem_after + 0x20000000), (void *)0xc0001000, trunc_page(freemem_after) - 0xa0001000, 0); freemempos = trunc_page(freemem_after); freemempos -= PAGE_SIZE; #endif /* * Allocate memory for the l1 and l2 page tables. The scheme to avoid * wasting memory by allocating the l1pt on the first 16k memory was * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for * this to work (which is supposed to be the case). */ /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE, &kernel_pt_table[KERNEL_PT_IOPXS]); pmap_link_l2pt(l1pagetable, KERNBASE, &kernel_pt_table[KERNEL_PT_BEFOREKERN]); pmap_map_chunk(l1pagetable, KERNBASE, IQ80321_SDRAM_START, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, IQ80321_SDRAM_START + 0x100000, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, KERNBASE + 0x200000, IQ80321_SDRAM_START + 0x200000, (((uint32_t)(lastaddr) - KERNBASE - 0x200000) + L1_S_SIZE) & ~(L1_S_SIZE - 1), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); freemem_after = ((int)lastaddr + PAGE_SIZE) & ~(PAGE_SIZE - 1); afterkern = round_page(((vm_offset_t)lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #ifdef ARM_USE_SMALL_ALLOC if ((freemem_after + 2 * PAGE_SIZE) <= afterkern) { arm_add_smallalloc_pages((void *)(freemem_after), (void*)(freemem_after + PAGE_SIZE), afterkern - (freemem_after + PAGE_SIZE), 0); } #endif /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, afterkern, minidataclean.pv_pa); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_devmap_bootstrap(l1pagetable, ep80219_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* * Fetch the SDRAM start/size from the i80321 SDRAM configration * registers. */ i80321_calibrate_delay(); i80321_sdram_bounds(&obio_bs_tag, IQ80321_80321_VBASE + VERDE_MCU_BASE, &memstart, &memsize); physmem = memsize / PAGE_SIZE; cninit(); /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); proc_linkup0(&proc0, &thread0); thread0.td_kstack = kernelstack.pv_va; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; /* Enable MMU, I-cache, D-cache, write buffer. */ arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern + PAGE_SIZE; dump_avail[0] = 0xa0000000; dump_avail[1] = 0xa0000000 + memsize; dump_avail[2] = 0; dump_avail[3] = 0; pmap_bootstrap(pmap_curmaxkvaddr, 0xd0000000, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, MSGBUF_SIZE); mutex_init(); i = 0; #ifdef ARM_USE_SMALL_ALLOC phys_avail[i++] = 0xa0000000; phys_avail[i++] = 0xa0001000; /* *XXX: Gross hack to get our * pages in the vm_page_array . */ #endif phys_avail[i++] = round_page(virtual_avail - KERNBASE + IQ80321_SDRAM_START); phys_avail[i++] = trunc_page(0xa0000000 + memsize - 1); phys_avail[i++] = 0; phys_avail[i] = 0; /* Do basic tuning, hz etc */ init_param1(); init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); }