コード例 #1
0
ファイル: rf_utils.c プロジェクト: andrepuschmann/srsLTE
int rf_rssi_scan(srslte_rf_t *rf, float *freqs, float *rssi, int nof_bands, double fs, int nsamp) {
  int i, j;
  int ret = -1;
  cf_t *buffer;
  double f;

  buffer = calloc(nsamp, sizeof(cf_t));
  if (!buffer) {
    goto free_and_exit;
  }

  srslte_rf_set_rx_gain(rf, 20.0);
  srslte_rf_set_rx_srate(rf, fs);

  for (i=0;i<nof_bands;i++) {
    srslte_rf_stop_rx_stream(rf);

    f = (double) freqs[i];
    srslte_rf_set_rx_freq(rf, f);
    srslte_rf_rx_wait_lo_locked(rf);
    usleep(10000);
    srslte_rf_start_rx_stream(rf, false);

    /* discard first samples */
    for (j=0;j<2;j++) {
      if (srslte_rf_recv(rf, buffer, nsamp, 1) != nsamp) {
        goto free_and_exit;
      }
    }
    rssi[i] = srslte_vec_avg_power_cf(buffer, nsamp);
    printf("[%3d]: Freq %4.1f Mhz - RSSI: %3.2f dBm\r", i, f/1000000, 10*log10f(rssi[i]) + 30); fflush(stdout);
    if (SRSLTE_VERBOSE_ISINFO()) {
      printf("\n");
    }
  }
  srslte_rf_stop_rx_stream(rf);

  ret = 0;
free_and_exit:
  free(buffer);
  return ret;
}
コード例 #2
0
ファイル: rf_imp.c プロジェクト: stray109/srsLTE
/* This thread listens for set_rx_gain commands to the USRP */
static void* thread_gain_fcn(void *h) {
  srslte_rf_t* rf = (srslte_rf_t*) h;
  
  while(1) {
    pthread_mutex_lock(&rf->mutex);
    while(rf->cur_rx_gain == rf->new_rx_gain) 
    {
      pthread_cond_wait(&rf->cond, &rf->mutex);
    }
    if (rf->new_rx_gain != rf->cur_rx_gain) {
      rf->cur_rx_gain = rf->new_rx_gain; 
      srslte_rf_set_rx_gain(h, rf->cur_rx_gain);
    }
    if (rf->tx_gain_same_rx) {
      srslte_rf_set_tx_gain(h, rf->cur_rx_gain+rf->tx_rx_gain_offset);
    }
    pthread_mutex_unlock(&rf->mutex);
  }
  return NULL; 
}
コード例 #3
0
ファイル: usrp_txrx.c プロジェクト: stray109/srsLTE
int main(int argc, char **argv) {
  parse_args(argc, argv);
  
  uint32_t flen = srslte_sampling_freq_hz(nof_prb)/1000;
  
  cf_t *rx_buffer = malloc(sizeof(cf_t)*flen*nof_frames);
  if (!rx_buffer) {
    perror("malloc");
    exit(-1);
  }

  cf_t *tx_buffer = malloc(sizeof(cf_t)*(flen+time_adv_samples));
  if (!tx_buffer) {
    perror("malloc");
    exit(-1);
  }
  bzero(tx_buffer, sizeof(cf_t)*(flen+time_adv_samples));
  
  cf_t *zeros = calloc(sizeof(cf_t),flen);
  if (!zeros) {
    perror("calloc");
    exit(-1);
  }

  float time_adv_sec = (float) time_adv_samples/srslte_sampling_freq_hz(nof_prb);
 
  // Send through RF 
  srslte_rf_t rf; 
  printf("Opening RF device...\n");
  if (srslte_rf_open(&rf, rf_args)) {
    fprintf(stderr, "Error opening rf\n");
    exit(-1);
  }
  srslte_rf_set_master_clock_rate(&rf, 30.72e6);        
  
  int srate = srslte_sampling_freq_hz(nof_prb);    
  if (srate < 10e6) {          
    srslte_rf_set_master_clock_rate(&rf, 4*srate);        
  } else {
    srslte_rf_set_master_clock_rate(&rf, srate);        
  }
  srslte_rf_set_rx_srate(&rf, (double) srate);
  srslte_rf_set_tx_srate(&rf, (double) srate);
  
  
  printf("Subframe len:   %d samples\n", flen);
  printf("Time advance:   %f us\n",time_adv_sec*1e6);
  printf("Set TX/RX rate: %.2f MHz\n", (float) srate / 1000000);
  printf("Set RX gain:    %.1f dB\n", srslte_rf_set_rx_gain(&rf, rf_rx_gain));
  printf("Set TX gain:    %.1f dB\n", srslte_rf_set_tx_gain(&rf, srslte_rf_tx_gain));
  printf("Set TX/RX freq: %.2f MHz\n", srslte_rf_set_rx_freq(&rf, rf_freq) / 1000000);
  srslte_rf_set_tx_freq(&rf, rf_freq);
  
  sleep(1);
  
  if (input_filename) {
    srslte_vec_load_file(input_filename, &tx_buffer[time_adv_samples], flen*sizeof(cf_t));
  } else {
    for (int i=0;i<flen-time_adv_samples;i++) {
      tx_buffer[i+time_adv_samples] = 0.3*cexpf(_Complex_I*2*M_PI*tone_offset_hz*((float) i/(float) srate));       
    }
    srslte_vec_save_file("srslte_rf_txrx_tone", tx_buffer, flen*sizeof(cf_t));
  }

  srslte_timestamp_t tstamp; 
  
  srslte_rf_start_rx_stream(&rf);
  uint32_t nframe=0;
  

  while(nframe<nof_frames) {
    printf("Rx subframe %d\n", nframe);
    srslte_rf_recv_with_time(&rf, &rx_buffer[flen*nframe], flen, true, &tstamp.full_secs, &tstamp.frac_secs);
    nframe++;
    if (nframe==9) {
      srslte_timestamp_add(&tstamp, 0, 2e-3-time_adv_sec);
      srslte_rf_send_timed2(&rf, tx_buffer, flen+time_adv_samples, tstamp.full_secs, tstamp.frac_secs, true, true);      
      printf("Transmitting Signal\n");        
    }

  }

  srslte_vec_save_file(output_filename, &rx_buffer[10*flen], flen*sizeof(cf_t));

  free(tx_buffer);
  free(rx_buffer);

  printf("Done\n");
  exit(0);
}
コード例 #4
0
ファイル: cell_measurement.c プロジェクト: Intellifora/srsLTE
int main(int argc, char **argv) {
  int ret; 
  cf_t *sf_buffer; 
  prog_args_t prog_args; 
  srslte_cell_t cell;  
  int64_t sf_cnt;
  srslte_ue_sync_t ue_sync; 
  srslte_ue_mib_t ue_mib; 
  srslte_rf_t rf; 
  srslte_ue_dl_t ue_dl; 
  srslte_ofdm_t fft; 
  srslte_chest_dl_t chest; 
  uint32_t nframes=0;
  uint32_t nof_trials = 0; 
  uint32_t sfn = 0; // system frame number
  int n; 
  uint8_t bch_payload[SRSLTE_BCH_PAYLOAD_LEN];
  uint32_t sfn_offset; 
  float rssi_utra=0,rssi=0, rsrp=0, rsrq=0, snr=0;
  cf_t *ce[SRSLTE_MAX_PORTS];

  if (parse_args(&prog_args, argc, argv)) {
    exit(-1);
  }

  printf("Opening RF device...\n");
  if (srslte_rf_open(&rf, prog_args.rf_args)) {
    fprintf(stderr, "Error opening rf\n");
    exit(-1);
  }
  if (prog_args.rf_gain > 0) {
    srslte_rf_set_rx_gain(&rf, prog_args.rf_gain);      
  } else {
    printf("Starting AGC thread...\n");
    if (srslte_rf_start_gain_thread(&rf, false)) {
      fprintf(stderr, "Error opening rf\n");
      exit(-1);
    }
    srslte_rf_set_rx_gain(&rf, 50);
  }

  sigset_t sigset;
  sigemptyset(&sigset);
  sigaddset(&sigset, SIGINT);
  sigprocmask(SIG_UNBLOCK, &sigset, NULL);
  signal(SIGINT, sig_int_handler);

  srslte_rf_set_master_clock_rate(&rf, 30.72e6);        

  /* set receiver frequency */
  srslte_rf_set_rx_freq(&rf, (double) prog_args.rf_freq);
  srslte_rf_rx_wait_lo_locked(&rf);
  printf("Tunning receiver to %.3f MHz\n", (double ) prog_args.rf_freq/1000000);
  
  cell_detect_config.init_agc = (prog_args.rf_gain<0);
  
  uint32_t ntrial=0; 
  do {
    ret = rf_search_and_decode_mib(&rf, &cell_detect_config, prog_args.force_N_id_2, &cell);
    if (ret < 0) {
      fprintf(stderr, "Error searching for cell\n");
      exit(-1); 
    } else if (ret == 0 && !go_exit) {
      printf("Cell not found after %d trials. Trying again (Press Ctrl+C to exit)\n", ntrial++);
    }      
  } while (ret == 0 && !go_exit); 
  
  if (go_exit) {
    exit(0);
  }
  
  /* set sampling frequency */
    int srate = srslte_sampling_freq_hz(cell.nof_prb);    
    if (srate != -1) {  
      if (srate < 10e6) {          
        srslte_rf_set_master_clock_rate(&rf, 4*srate);        
      } else {
        srslte_rf_set_master_clock_rate(&rf, srate);        
      }
      printf("Setting sampling rate %.2f MHz\n", (float) srate/1000000);
      float srate_rf = srslte_rf_set_rx_srate(&rf, (double) srate);
      if (srate_rf != srate) {
        fprintf(stderr, "Could not set sampling rate\n");
        exit(-1);
      }
    } else {
      fprintf(stderr, "Invalid number of PRB %d\n", cell.nof_prb);
      exit(-1);
    }

  INFO("Stopping RF and flushing buffer...\n",0);
  srslte_rf_stop_rx_stream(&rf);
  srslte_rf_flush_buffer(&rf);
  
  if (srslte_ue_sync_init(&ue_sync, cell, srslte_rf_recv_wrapper, (void*) &rf)) {
    fprintf(stderr, "Error initiating ue_sync\n");
    return -1; 
  }
  if (srslte_ue_dl_init(&ue_dl, cell)) { 
    fprintf(stderr, "Error initiating UE downlink processing module\n");
    return -1;
  }
  if (srslte_ue_mib_init(&ue_mib, cell)) {
    fprintf(stderr, "Error initaiting UE MIB decoder\n");
    return -1;
  }
  
  /* Configure downlink receiver for the SI-RNTI since will be the only one we'll use */
  srslte_ue_dl_set_rnti(&ue_dl, SRSLTE_SIRNTI); 

  /* Initialize subframe counter */
  sf_cnt = 0;
    
  if (srslte_ofdm_rx_init(&fft, cell.cp, cell.nof_prb)) {
    fprintf(stderr, "Error initiating FFT\n");
    return -1;
  }
  if (srslte_chest_dl_init(&chest, cell)) {
    fprintf(stderr, "Error initiating channel estimator\n");
    return -1;
  }
  
  int sf_re = SRSLTE_SF_LEN_RE(cell.nof_prb, cell.cp);

  cf_t *sf_symbols = srslte_vec_malloc(sf_re * sizeof(cf_t));

  for (int i=0;i<SRSLTE_MAX_PORTS;i++) {
    ce[i] = srslte_vec_malloc(sizeof(cf_t) * sf_re);
  }
  
  srslte_rf_start_rx_stream(&rf);
  
  float rx_gain_offset = 0;

  /* Main loop */
  while ((sf_cnt < prog_args.nof_subframes || prog_args.nof_subframes == -1) && !go_exit) {
    
    ret = srslte_ue_sync_get_buffer(&ue_sync, &sf_buffer);
    if (ret < 0) {
      fprintf(stderr, "Error calling srslte_ue_sync_work()\n");
    }

        
    /* srslte_ue_sync_get_buffer returns 1 if successfully read 1 aligned subframe */
    if (ret == 1) {
      switch (state) {
        case DECODE_MIB:
          if (srslte_ue_sync_get_sfidx(&ue_sync) == 0) {
            srslte_pbch_decode_reset(&ue_mib.pbch);
            n = srslte_ue_mib_decode(&ue_mib, sf_buffer, bch_payload, NULL, &sfn_offset);
            if (n < 0) {
              fprintf(stderr, "Error decoding UE MIB\n");
              return -1;
            } else if (n == SRSLTE_UE_MIB_FOUND) {   
              srslte_pbch_mib_unpack(bch_payload, &cell, &sfn);
              printf("Decoded MIB. SFN: %d, offset: %d\n", sfn, sfn_offset);
              sfn = (sfn + sfn_offset)%1024; 
              state = DECODE_SIB; 
            }
          }
          break;
        case DECODE_SIB:
          /* We are looking for SI Blocks, search only in appropiate places */
          if ((srslte_ue_sync_get_sfidx(&ue_sync) == 5 && (sfn%2)==0)) {
            n = srslte_ue_dl_decode_rnti_rv(&ue_dl, sf_buffer, data, srslte_ue_sync_get_sfidx(&ue_sync), SRSLTE_SIRNTI,
                                 ((int) ceilf((float)3*(((sfn)/2)%4)/2))%4);
            if (n < 0) {
              fprintf(stderr, "Error decoding UE DL\n");fflush(stdout);
              return -1;
            } else if (n == 0) {
              printf("CFO: %+6.4f KHz, SFO: %+6.4f Khz, NOI: %.2f, PDCCH-Det: %.3f\r",
                      srslte_ue_sync_get_cfo(&ue_sync)/1000, srslte_ue_sync_get_sfo(&ue_sync)/1000, 
                      srslte_sch_average_noi(&ue_dl.pdsch.dl_sch),
                      (float) ue_dl.nof_detected/nof_trials);                
              nof_trials++; 
            } else {
              printf("Decoded SIB1. Payload: ");
              srslte_vec_fprint_byte(stdout, data, n/8);;
              state = MEASURE;
            }
          }
        break;
        
      case MEASURE:
        
        if (srslte_ue_sync_get_sfidx(&ue_sync) == 5) {
          /* Run FFT for all subframe data */
          srslte_ofdm_rx_sf(&fft, sf_buffer, sf_symbols);
          
          srslte_chest_dl_estimate(&chest, sf_symbols, ce, srslte_ue_sync_get_sfidx(&ue_sync));
                  
          rssi = SRSLTE_VEC_EMA(srslte_vec_avg_power_cf(sf_buffer,SRSLTE_SF_LEN(srslte_symbol_sz(cell.nof_prb))),rssi,0.05);
          rssi_utra = SRSLTE_VEC_EMA(srslte_chest_dl_get_rssi(&chest),rssi_utra,0.05);
          rsrq = SRSLTE_VEC_EMA(srslte_chest_dl_get_rsrq(&chest),rsrq,0.05);
          rsrp = SRSLTE_VEC_EMA(srslte_chest_dl_get_rsrp(&chest),rsrp,0.05);      
          snr = SRSLTE_VEC_EMA(srslte_chest_dl_get_snr(&chest),snr,0.05);      
          
          nframes++;          
        } 
        
        
        if ((nframes%100) == 0 || rx_gain_offset == 0) {
          if (srslte_rf_has_rssi(&rf)) {
            rx_gain_offset = 10*log10(rssi)-srslte_rf_get_rssi(&rf);
          } else {
            rx_gain_offset = srslte_rf_get_rx_gain(&rf);            
          }
        }
        
        // Plot and Printf
        if ((nframes%10) == 0) {

          printf("CFO: %+8.4f KHz, SFO: %+8.4f Khz, RSSI: %5.1f dBm, RSSI/ref-symbol: %+5.1f dBm, "
                 "RSRP: %+5.1f dBm, RSRQ: %5.1f dB, SNR: %5.1f dB\r",
                srslte_ue_sync_get_cfo(&ue_sync)/1000, srslte_ue_sync_get_sfo(&ue_sync)/1000, 
                10*log10(rssi*1000) - rx_gain_offset,                                  
                10*log10(rssi_utra*1000)- rx_gain_offset, 
                10*log10(rsrp*1000) - rx_gain_offset, 
                10*log10(rsrq), 10*log10(snr));                
          if (srslte_verbose != SRSLTE_VERBOSE_NONE) {
            printf("\n");
          }
        }
        break;
      }
      if (srslte_ue_sync_get_sfidx(&ue_sync) == 9) {
        sfn++; 
        if (sfn == 1024) {
          sfn = 0; 
        }
      }
    } else if (ret == 0) {
      printf("Finding PSS... Peak: %8.1f, FrameCnt: %d, State: %d\r", 
        srslte_sync_get_peak_value(&ue_sync.sfind), 
        ue_sync.frame_total_cnt, ue_sync.state);      
    }
   
        
    sf_cnt++;                  
  } // Main loop

  srslte_ue_sync_free(&ue_sync);
  srslte_rf_close(&rf);
  printf("\nBye\n");
  exit(0);
}