/** * usb_clear_halt - tells device to clear endpoint halt/stall condition * @dev: device whose endpoint is halted * @pipe: endpoint "pipe" being cleared * Context: !in_interrupt () * * This is used to clear halt conditions for bulk and interrupt endpoints, * as reported by URB completion status. Endpoints that are halted are * sometimes referred to as being "stalled". Such endpoints are unable * to transmit or receive data until the halt status is cleared. Any URBs * queued for such an endpoint should normally be unlinked by the driver * before clearing the halt condition, as described in sections 5.7.5 * and 5.8.5 of the USB 2.0 spec. * * Note that control and isochronous endpoints don't halt, although control * endpoints report "protocol stall" (for unsupported requests) using the * same status code used to report a true stall. * * This call is synchronous, and may not be used in an interrupt context. * * Returns zero on success, or else the status code returned by the * underlying usb_control_msg() call. */ int usb_clear_halt(struct usb_device *dev, int pipe) { int result; int endp = usb_pipeendpoint(pipe); if (usb_pipein (pipe)) endp |= USB_DIR_IN; /* we don't care if it wasn't halted first. in fact some devices * (like some ibmcam model 1 units) seem to expect hosts to make * this request for iso endpoints, which can't halt! */ result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, USB_ENDPOINT_HALT, endp, NULL, 0, HZ * USB_CTRL_SET_TIMEOUT); /* don't un-halt or force to DATA0 except on success */ if (result < 0) return result; /* NOTE: seems like Microsoft and Apple don't bother verifying * the clear "took", so some devices could lock up if you check... * such as the Hagiwara FlashGate DUAL. So we won't bother. * * NOTE: make sure the logic here doesn't diverge much from * the copy in usb-storage, for as long as we need two copies. */ /* toggle was reset by the clear, then ep was reactivated */ usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); usb_endpoint_running(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)); return 0; }
//Update int queue status in interrupt,it is revised according the routine //_ehci_poll_int_queue. static BOOL _ehciQueueIntHandler(struct int_queue* queue) { struct QH *cur = queue->current; struct qTD *cur_td; uint32_t token, toggle; unsigned long pipe = queue->pipe; struct usb_device* dev = queue->pUsbDev; //Queue is canceled by user,maybe triggered by wait time out. if (INT_QUEUE_STATUS_CANCELED == queue->dwStatus) { return FALSE; } /* depleted queue */ if (cur == NULL) { queue->dwStatus = INT_QUEUE_STATUS_COMPLETED; return TRUE; } /* still active */ cur_td = &queue->tds[queue->current - queue->first]; invalidate_dcache_range((unsigned long)cur_td, ALIGN_END_ADDR(struct qTD, cur_td, 1)); token = hc32_to_cpu(cur_td->qt_token); if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE) { queue->dwStatus = INT_QUEUE_STATUS_INPROCESS; debug("Exit %s with no completed intr transfer. token is %x\r\n", __func__, token); return FALSE; } if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_HALTED){ queue->dwStatus = INT_QUEUE_STATUS_ERROR; debug("Exit %s with halted intr transfer,token is %X.\r\n", __func__, token); return FALSE; } toggle = QT_TOKEN_GET_DT(token); usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), toggle); if (!(cur->qh_link & QH_LINK_TERMINATE)) queue->current++; else queue->current = NULL; invalidate_dcache_range((unsigned long)cur->buffer, ALIGN_END_ADDR(char, cur->buffer, queue->elementsize)); //Last qTD is transfer over. if (NULL == queue->current) { queue->dwStatus = INT_QUEUE_STATUS_COMPLETED; debug("Exit %s with completed intr transfer. token is %x at %p (first at %p)\r\n", __func__, token, cur, queue->first); return TRUE; } return FALSE; }
/* * usb_enable_endpoint - Enable an endpoint for USB communications * @dev: the device whose interface is being enabled * @ep: the endpoint * * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. * For control endpoints, both the input and output sides are handled. */ static void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) { unsigned int epaddr = ep->desc.bEndpointAddress; unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; int is_control; is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_CONTROL); if (usb_endpoint_out(epaddr) || is_control) { usb_settoggle(dev, epnum, 1, 0); dev->ep_out[epnum] = ep; } if (!usb_endpoint_out(epaddr) || is_control) { usb_settoggle(dev, epnum, 0, 0); dev->ep_in[epnum] = ep; } }
/* * usb_enable_endpoint - Enable an endpoint for USB communications * @dev: the device whose interface is being enabled * @epd: pointer to the endpoint descriptor * * Marks the endpoint as running, resets its toggle, and stores * its maxpacket value. For control endpoints, both the input * and output sides are handled. */ void usb_enable_endpoint(struct usb_device *dev, struct usb_endpoint_descriptor *epd) { int maxsize = epd->wMaxPacketSize; unsigned int epaddr = epd->bEndpointAddress; unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; int is_control = ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_CONTROL); if (usb_endpoint_out(epaddr) || is_control) { usb_endpoint_running(dev, epnum, 1); usb_settoggle(dev, epnum, 1, 0); dev->epmaxpacketout[epnum] = maxsize; } if (!usb_endpoint_out(epaddr) || is_control) { usb_endpoint_running(dev, epnum, 0); usb_settoggle(dev, epnum, 0, 0); dev->epmaxpacketin[epnum] = maxsize; } }
/* * The request on endpoint 0 has completed. * Call the user provided completion routine and try * to send the next request. */ static void usb_ctrl_complete(struct urb *urb) { struct st5481_adapter *adapter = urb->context; struct st5481_ctrl *ctrl = &adapter->ctrl; struct ctrl_msg *ctrl_msg; if (unlikely(urb->status < 0)) { switch (urb->status) { case -ENOENT: case -ESHUTDOWN: case -ECONNRESET: DBG(1,"urb killed status %d", urb->status); return; // Give up default: WARNING("urb status %d",urb->status); break; } } ctrl_msg = (struct ctrl_msg *)urb->setup_packet; if (ctrl_msg->dr.bRequest == USB_REQ_CLEAR_FEATURE) { /* Special case handling for pipe reset */ le16_to_cpus(&ctrl_msg->dr.wIndex); /* toggle is reset on clear */ usb_settoggle(adapter->usb_dev, ctrl_msg->dr.wIndex & ~USB_DIR_IN, (ctrl_msg->dr.wIndex & USB_DIR_IN) == 0, 0); } if (ctrl_msg->complete) ctrl_msg->complete(ctrl_msg->context); clear_bit(0, &ctrl->busy); // Try to send next control message usb_next_ctrl_msg(urb, adapter); return; }
/* This is a version of usb_clear_halt() that doesn't read the status from * the device -- this is because some devices crash their internal firmware * when the status is requested after a halt */ int usb_stor_clear_halt(struct usb_device *dev, int pipe) { int result; int endp = usb_pipeendpoint(pipe) | (usb_pipein(pipe) << 7); result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 0, endp, NULL, 0, HZ * 3); /* this is a failure case */ if (result < 0) return result; /* reset the toggles and endpoint flags */ usb_endpoint_running(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)); usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); return 0; }
/* * The request on endpoint 0 has completed. * Call the user provided completion routine and try * to send the next request. */ static void usb_ctrl_complete(struct urb *urb) { struct st5481_adapter *adapter = urb->context; struct st5481_ctrl *ctrl = &adapter->ctrl; struct ctrl_msg *ctrl_msg; if (urb->status < 0) { if (urb->status != -ENOENT) { WARN("urb status %d",urb->status); } else { DBG(1,"urb killed"); return; // Give up } } ctrl_msg = (struct ctrl_msg *)urb->setup_packet; if (ctrl_msg->dr.bRequest == USB_REQ_CLEAR_FEATURE) { /* Special case handling for pipe reset */ le16_to_cpus(&ctrl_msg->dr.wIndex); usb_endpoint_running(adapter->usb_dev, ctrl_msg->dr.wIndex & ~USB_DIR_IN, (ctrl_msg->dr.wIndex & USB_DIR_IN) == 0); /* toggle is reset on clear */ usb_settoggle(adapter->usb_dev, ctrl_msg->dr.wIndex & ~USB_DIR_IN, (ctrl_msg->dr.wIndex & USB_DIR_IN) == 0, 0); } if (ctrl_msg->complete) ctrl_msg->complete(ctrl_msg->context); clear_bit(0, &ctrl->busy); // Try to send next control message usb_next_ctrl_msg(urb, adapter); return; }
/* This is a version of usb_clear_halt() that allows early termination and * doesn't read the status from the device -- this is because some devices * crash their internal firmware when the status is requested after a halt. * * A definitive list of these 'bad' devices is too difficult to maintain or * make complete enough to be useful. This problem was first observed on the * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither * MacOS nor Windows checks the status after clearing a halt. * * Since many vendors in this space limit their testing to interoperability * with these two OSes, specification violations like this one are common. */ int usb_stor_clear_halt(struct us_data *us, unsigned int pipe) { int result; int endp = usb_pipeendpoint(pipe); if (usb_pipein (pipe)) endp |= USB_DIR_IN; result = usb_stor_control_msg(us, us->send_ctrl_pipe, USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, USB_ENDPOINT_HALT, endp, NULL, 0, 3*HZ); /* reset the endpoint toggle */ usb_settoggle(us->pusb_dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); US_DEBUGP("%s: result = %d\n", __FUNCTION__, result); return result; }
/* this function must be called with interrupt disabled */ static void pipe_setting(struct r8a66597 *r8a66597, struct r8a66597_td *td) { struct r8a66597_pipe_info *info; struct urb *urb = td->urb; if (td->pipenum > 0) { info = &td->pipe->info; cfifo_change(r8a66597, 0); pipe_buffer_setting(r8a66597, info); if (!usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)) && !usb_pipecontrol(urb->pipe)) { r8a66597_pipe_toggle(r8a66597, td->pipe, 0); pipe_toggle_set(r8a66597, td->pipe, urb, 0); clear_all_buffer(r8a66597, td->pipe); usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe), 1); } pipe_toggle_restore(r8a66597, td->pipe, urb); } }
/* This is a version of usb_clear_halt() that doesn't read the status from * the device -- this is because some devices crash their internal firmware * when the status is requested after a halt */ static int clear_halt(USB_DEV_T *dev, int pipe) { int result; int endp = usb_pipeendpoint(pipe) | (usb_pipein(pipe) << 7); UMAS_DEBUG("clear_halt!\n"); result = USBH_SendCtrlMsg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 0, endp, NULL, 0, 0); /* this is a failure case */ if(result < 0) { UMAS_DEBUG("clear_halt failed!!\n"); return result; } /* reset the toggles and endpoint flags */ usb_endpoint_running(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)); usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0x1000); return 0; }
/* This is a version of usb_clear_halt() that doesn't read the status from * the device -- this is because some devices crash their internal firmware * when the status is requested after a halt */ int usb_stor_clear_halt(struct us_data *us, int pipe) { int result; int endp = usb_pipeendpoint(pipe) | (usb_pipein(pipe) << 7); result = usb_stor_control_msg(us, usb_sndctrlpipe(us->pusb_dev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 0, endp, NULL, 0); /* note: no 3*HZ timeout */ US_DEBUGP("usb_stor_clear_halt: result=%d\n", result); /* this is a failure case */ if (result < 0) return result; /* reset the toggles and endpoint flags */ usb_endpoint_running(us->pusb_dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)); usb_settoggle(us->pusb_dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); return 0; }
static int ehci_submit_async(struct usb_device *dev, unsigned long pipe, void *buffer, int length, struct devrequest *req) { ALLOC_ALIGN_BUFFER(struct QH, qh, 1, USB_DMA_MINALIGN); struct qTD *qtd; int qtd_count = 0; int qtd_counter = 0; volatile struct qTD *vtd; unsigned long ts; uint32_t *tdp; uint32_t endpt, maxpacket, token, usbsts; uint32_t c, toggle; uint32_t cmd; int timeout; int ret = 0; struct ehci_ctrl *ctrl = ehci_get_ctrl(dev); debug("dev=%p, pipe=%lx, buffer=%p, length=%d, req=%p\n", dev, pipe, buffer, length, req); if (req != NULL) debug("req=%u (%#x), type=%u (%#x), value=%u (%#x), index=%u\n", req->request, req->request, req->requesttype, req->requesttype, le16_to_cpu(req->value), le16_to_cpu(req->value), le16_to_cpu(req->index)); #define PKT_ALIGN 512 /* * The USB transfer is split into qTD transfers. Eeach qTD transfer is * described by a transfer descriptor (the qTD). The qTDs form a linked * list with a queue head (QH). * * Each qTD transfer starts with a new USB packet, i.e. a packet cannot * have its beginning in a qTD transfer and its end in the following * one, so the qTD transfer lengths have to be chosen accordingly. * * Each qTD transfer uses up to QT_BUFFER_CNT data buffers, mapped to * single pages. The first data buffer can start at any offset within a * page (not considering the cache-line alignment issues), while the * following buffers must be page-aligned. There is no alignment * constraint on the size of a qTD transfer. */ if (req != NULL) /* 1 qTD will be needed for SETUP, and 1 for ACK. */ qtd_count += 1 + 1; if (length > 0 || req == NULL) { /* * Determine the qTD transfer size that will be used for the * data payload (not considering the first qTD transfer, which * may be longer or shorter, and the final one, which may be * shorter). * * In order to keep each packet within a qTD transfer, the qTD * transfer size is aligned to PKT_ALIGN, which is a multiple of * wMaxPacketSize (except in some cases for interrupt transfers, * see comment in submit_int_msg()). * * By default, i.e. if the input buffer is aligned to PKT_ALIGN, * QT_BUFFER_CNT full pages will be used. */ int xfr_sz = QT_BUFFER_CNT; /* * However, if the input buffer is not aligned to PKT_ALIGN, the * qTD transfer size will be one page shorter, and the first qTD * data buffer of each transfer will be page-unaligned. */ if ((unsigned long)buffer & (PKT_ALIGN - 1)) xfr_sz--; /* Convert the qTD transfer size to bytes. */ xfr_sz *= EHCI_PAGE_SIZE; /* * Approximate by excess the number of qTDs that will be * required for the data payload. The exact formula is way more * complicated and saves at most 2 qTDs, i.e. a total of 128 * bytes. */ qtd_count += 2 + length / xfr_sz; } /* * Threshold value based on the worst-case total size of the allocated qTDs for * a mass-storage transfer of 65535 blocks of 512 bytes. */ #if CONFIG_SYS_MALLOC_LEN <= 64 + 128 * 1024 #warning CONFIG_SYS_MALLOC_LEN may be too small for EHCI #endif qtd = memalign(USB_DMA_MINALIGN, qtd_count * sizeof(struct qTD)); if (qtd == NULL) { printf("unable to allocate TDs\n"); return -1; } memset(qh, 0, sizeof(struct QH)); memset(qtd, 0, qtd_count * sizeof(*qtd)); toggle = usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)); /* * Setup QH (3.6 in ehci-r10.pdf) * * qh_link ................. 03-00 H * qh_endpt1 ............... 07-04 H * qh_endpt2 ............... 0B-08 H * - qh_curtd * qh_overlay.qt_next ...... 13-10 H * - qh_overlay.qt_altnext */ qh->qh_link = cpu_to_hc32((unsigned long)&ctrl->qh_list | QH_LINK_TYPE_QH); c = (dev->speed != USB_SPEED_HIGH) && !usb_pipeendpoint(pipe); maxpacket = usb_maxpacket(dev, pipe); endpt = QH_ENDPT1_RL(8) | QH_ENDPT1_C(c) | QH_ENDPT1_MAXPKTLEN(maxpacket) | QH_ENDPT1_H(0) | QH_ENDPT1_DTC(QH_ENDPT1_DTC_DT_FROM_QTD) | QH_ENDPT1_EPS(ehci_encode_speed(dev->speed)) | QH_ENDPT1_ENDPT(usb_pipeendpoint(pipe)) | QH_ENDPT1_I(0) | QH_ENDPT1_DEVADDR(usb_pipedevice(pipe)); qh->qh_endpt1 = cpu_to_hc32(endpt); endpt = QH_ENDPT2_MULT(1) | QH_ENDPT2_UFCMASK(0) | QH_ENDPT2_UFSMASK(0); qh->qh_endpt2 = cpu_to_hc32(endpt); ehci_update_endpt2_dev_n_port(dev, qh); qh->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qh->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); tdp = &qh->qh_overlay.qt_next; if (req != NULL) { /* * Setup request qTD (3.5 in ehci-r10.pdf) * * qt_next ................ 03-00 H * qt_altnext ............. 07-04 H * qt_token ............... 0B-08 H * * [ buffer, buffer_hi ] loaded with "req". */ qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = QT_TOKEN_DT(0) | QT_TOKEN_TOTALBYTES(sizeof(*req)) | QT_TOKEN_IOC(0) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) | QT_TOKEN_PID(QT_TOKEN_PID_SETUP) | QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE); qtd[qtd_counter].qt_token = cpu_to_hc32(token); if (ehci_td_buffer(&qtd[qtd_counter], req, sizeof(*req))) { printf("unable to construct SETUP TD\n"); goto fail; } /* Update previous qTD! */ *tdp = cpu_to_hc32((unsigned long)&qtd[qtd_counter]); tdp = &qtd[qtd_counter++].qt_next; toggle = 1; } if (length > 0 || req == NULL) { uint8_t *buf_ptr = buffer; int left_length = length; do { /* * Determine the size of this qTD transfer. By default, * QT_BUFFER_CNT full pages can be used. */ int xfr_bytes = QT_BUFFER_CNT * EHCI_PAGE_SIZE; /* * However, if the input buffer is not page-aligned, the * portion of the first page before the buffer start * offset within that page is unusable. */ xfr_bytes -= (unsigned long)buf_ptr & (EHCI_PAGE_SIZE - 1); /* * In order to keep each packet within a qTD transfer, * align the qTD transfer size to PKT_ALIGN. */ xfr_bytes &= ~(PKT_ALIGN - 1); /* * This transfer may be shorter than the available qTD * transfer size that has just been computed. */ xfr_bytes = min(xfr_bytes, left_length); /* * Setup request qTD (3.5 in ehci-r10.pdf) * * qt_next ................ 03-00 H * qt_altnext ............. 07-04 H * qt_token ............... 0B-08 H * * [ buffer, buffer_hi ] loaded with "buffer". */ qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = QT_TOKEN_DT(toggle) | QT_TOKEN_TOTALBYTES(xfr_bytes) | QT_TOKEN_IOC(req == NULL) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) | QT_TOKEN_PID(usb_pipein(pipe) ? QT_TOKEN_PID_IN : QT_TOKEN_PID_OUT) | QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE); qtd[qtd_counter].qt_token = cpu_to_hc32(token); if (ehci_td_buffer(&qtd[qtd_counter], buf_ptr, xfr_bytes)) { printf("unable to construct DATA TD\n"); goto fail; } /* Update previous qTD! */ *tdp = cpu_to_hc32((unsigned long)&qtd[qtd_counter]); tdp = &qtd[qtd_counter++].qt_next; /* * Data toggle has to be adjusted since the qTD transfer * size is not always an even multiple of * wMaxPacketSize. */ if ((xfr_bytes / maxpacket) & 1) toggle ^= 1; buf_ptr += xfr_bytes; left_length -= xfr_bytes; } while (left_length > 0); } if (req != NULL) { /* * Setup request qTD (3.5 in ehci-r10.pdf) * * qt_next ................ 03-00 H * qt_altnext ............. 07-04 H * qt_token ............... 0B-08 H */ qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = QT_TOKEN_DT(1) | QT_TOKEN_TOTALBYTES(0) | QT_TOKEN_IOC(1) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) | QT_TOKEN_PID(usb_pipein(pipe) ? QT_TOKEN_PID_OUT : QT_TOKEN_PID_IN) | QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE); qtd[qtd_counter].qt_token = cpu_to_hc32(token); /* Update previous qTD! */ *tdp = cpu_to_hc32((unsigned long)&qtd[qtd_counter]); tdp = &qtd[qtd_counter++].qt_next; } ctrl->qh_list.qh_link = cpu_to_hc32((unsigned long)qh | QH_LINK_TYPE_QH); /* Flush dcache */ flush_dcache_range((unsigned long)&ctrl->qh_list, ALIGN_END_ADDR(struct QH, &ctrl->qh_list, 1)); flush_dcache_range((unsigned long)qh, ALIGN_END_ADDR(struct QH, qh, 1)); flush_dcache_range((unsigned long)qtd, ALIGN_END_ADDR(struct qTD, qtd, qtd_count)); /* Set async. queue head pointer. */ ehci_writel(&ctrl->hcor->or_asynclistaddr, (unsigned long)&ctrl->qh_list); usbsts = ehci_readl(&ctrl->hcor->or_usbsts); ehci_writel(&ctrl->hcor->or_usbsts, (usbsts & 0x3f)); /* Enable async. schedule. */ cmd = ehci_readl(&ctrl->hcor->or_usbcmd); cmd |= CMD_ASE; ehci_writel(&ctrl->hcor->or_usbcmd, cmd); ret = handshake((uint32_t *)&ctrl->hcor->or_usbsts, STS_ASS, STS_ASS, 100 * 1000); if (ret < 0) { printf("EHCI fail timeout STS_ASS set\n"); goto fail; } /* Wait for TDs to be processed. */ ts = get_timer(0); vtd = &qtd[qtd_counter - 1]; timeout = USB_TIMEOUT_MS(pipe); do { /* Invalidate dcache */ invalidate_dcache_range((unsigned long)&ctrl->qh_list, ALIGN_END_ADDR(struct QH, &ctrl->qh_list, 1)); invalidate_dcache_range((unsigned long)qh, ALIGN_END_ADDR(struct QH, qh, 1)); invalidate_dcache_range((unsigned long)qtd, ALIGN_END_ADDR(struct qTD, qtd, qtd_count)); token = hc32_to_cpu(vtd->qt_token); if (!(QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE)) break; WATCHDOG_RESET(); } while (get_timer(ts) < timeout); /* * Invalidate the memory area occupied by buffer * Don't try to fix the buffer alignment, if it isn't properly * aligned it's upper layer's fault so let invalidate_dcache_range() * vow about it. But we have to fix the length as it's actual * transfer length and can be unaligned. This is potentially * dangerous operation, it's responsibility of the calling * code to make sure enough space is reserved. */ invalidate_dcache_range((unsigned long)buffer, ALIGN((unsigned long)buffer + length, ARCH_DMA_MINALIGN)); /* Check that the TD processing happened */ if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE) printf("EHCI timed out on TD - token=%#x\n", token); /* Disable async schedule. */ cmd = ehci_readl(&ctrl->hcor->or_usbcmd); cmd &= ~CMD_ASE; ehci_writel(&ctrl->hcor->or_usbcmd, cmd); ret = handshake((uint32_t *)&ctrl->hcor->or_usbsts, STS_ASS, 0, 100 * 1000); if (ret < 0) { printf("EHCI fail timeout STS_ASS reset\n"); goto fail; } token = hc32_to_cpu(qh->qh_overlay.qt_token); if (!(QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE)) { debug("TOKEN=%#x\n", token); switch (QT_TOKEN_GET_STATUS(token) & ~(QT_TOKEN_STATUS_SPLITXSTATE | QT_TOKEN_STATUS_PERR)) { case 0: toggle = QT_TOKEN_GET_DT(token); usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), toggle); dev->status = 0; break; case QT_TOKEN_STATUS_HALTED: dev->status = USB_ST_STALLED; break; case QT_TOKEN_STATUS_ACTIVE | QT_TOKEN_STATUS_DATBUFERR: case QT_TOKEN_STATUS_DATBUFERR: dev->status = USB_ST_BUF_ERR; break; case QT_TOKEN_STATUS_HALTED | QT_TOKEN_STATUS_BABBLEDET: case QT_TOKEN_STATUS_BABBLEDET: dev->status = USB_ST_BABBLE_DET; break; default: dev->status = USB_ST_CRC_ERR; if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_HALTED) dev->status |= USB_ST_STALLED; break; } dev->act_len = length - QT_TOKEN_GET_TOTALBYTES(token); } else { dev->act_len = 0; #ifndef CONFIG_USB_EHCI_FARADAY debug("dev=%u, usbsts=%#x, p[1]=%#x, p[2]=%#x\n", dev->devnum, ehci_readl(&ctrl->hcor->or_usbsts), ehci_readl(&ctrl->hcor->or_portsc[0]), ehci_readl(&ctrl->hcor->or_portsc[1])); #endif } free(qtd); return (dev->status != USB_ST_NOT_PROC) ? 0 : -1; fail: free(qtd); return -1; }
int submit_control_msg(struct usb_device *dev, unsigned long pipe, void *buffer, int len,struct devrequest *setup) { int done = 0; int devnum = usb_pipedevice(pipe); int ep = usb_pipeendpoint(pipe); dev->status = 0; if (devnum == root_hub_devnum) return sl811_rh_submit_urb(dev, pipe, buffer, len, setup); PDEBUG(7, "dev = %d pipe = %ld buf = %p size = %d rt = %#x req = %#x bus = %i\n", devnum, ep, buffer, len, (int)setup->requesttype, (int)setup->request, sl811_read(SL811_SOFCNTDIV)*64); sl811_write(SL811_DEV_A, devnum); sl811_write(SL811_PIDEP_A, PIDEP(USB_PID_SETUP, ep)); /* setup phase */ usb_settoggle(dev, ep, 1, 0); if (sl811_send_packet(dev, usb_sndctrlpipe(dev, ep), (__u8*)setup, sizeof(*setup)) == sizeof(*setup)) { int dir_in = usb_pipein(pipe); int max = usb_maxpacket(dev, pipe); /* data phase */ sl811_write(SL811_PIDEP_A, PIDEP(dir_in ? USB_PID_IN : USB_PID_OUT, ep)); usb_settoggle(dev, ep, usb_pipeout(pipe), 1); while (done < len) { int res = sl811_send_packet(dev, pipe, (__u8*)buffer+done, max > len - done ? len - done : max); if (res < 0) { PDEBUG(0, "status data failed!\n"); dev->status = -res; return 0; } done += res; usb_dotoggle(dev, ep, usb_pipeout(pipe)); if (dir_in && res < max) /* short packet */ break; } /* status phase */ sl811_write(SL811_PIDEP_A, PIDEP(!dir_in ? USB_PID_IN : USB_PID_OUT, ep)); usb_settoggle(dev, ep, !usb_pipeout(pipe), 1); if (sl811_send_packet(dev, !dir_in ? usb_rcvctrlpipe(dev, ep) : usb_sndctrlpipe(dev, ep), 0, 0) < 0) { PDEBUG(0, "status phase failed!\n"); dev->status = -1; } } else { PDEBUG(0, "setup phase failed!\n"); dev->status = -1; } dev->act_len = done; return done; }
static int ehci_submit_async(struct usb_device *dev, unsigned long pipe, void *buffer, int length, struct devrequest *req) { struct QH *qh; struct qTD *td; volatile struct qTD *vtd; unsigned long ts; uint32_t *tdp; uint32_t endpt, token, usbsts; uint32_t c, toggle; uint32_t cmd; int timeout; int ret = 0; debug("dev=%p, pipe=%lx, buffer=%p, length=%d, req=%p\n", dev, pipe, buffer, length, req); if (req != NULL) debug("req=%u (%#x), type=%u (%#x), value=%u (%#x), index=%u\n", req->request, req->request, req->requesttype, req->requesttype, le16_to_cpu(req->value), le16_to_cpu(req->value), le16_to_cpu(req->index)); qh = ehci_alloc(sizeof(struct QH), 32); if (qh == NULL) { debug("unable to allocate QH\n"); return -1; } qh->qh_link = cpu_to_hc32((uint32_t)&qh_list | QH_LINK_TYPE_QH); c = (usb_pipespeed(pipe) != USB_SPEED_HIGH && usb_pipeendpoint(pipe) == 0) ? 1 : 0; endpt = (8 << 28) | (c << 27) | (usb_maxpacket(dev, pipe) << 16) | (0 << 15) | (1 << 14) | (usb_pipespeed(pipe) << 12) | (usb_pipeendpoint(pipe) << 8) | (0 << 7) | (usb_pipedevice(pipe) << 0); qh->qh_endpt1 = cpu_to_hc32(endpt); endpt = (1 << 30) | (dev->portnr << 23) | (dev->parent->devnum << 16) | (0 << 8) | (0 << 0); qh->qh_endpt2 = cpu_to_hc32(endpt); qh->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); td = NULL; tdp = &qh->qh_overlay.qt_next; toggle = usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)); if (req != NULL) { td = ehci_alloc(sizeof(struct qTD), 32); if (td == NULL) { debug("unable to allocate SETUP td\n"); goto fail; } td->qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); td->qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = (0 << 31) | (sizeof(*req) << 16) | (0 << 15) | (0 << 12) | (3 << 10) | (2 << 8) | (0x80 << 0); td->qt_token = cpu_to_hc32(token); if (ehci_td_buffer(td, req, sizeof(*req)) != 0) { debug("unable construct SETUP td\n"); ehci_free(td, sizeof(*td)); goto fail; } *tdp = cpu_to_hc32((uint32_t) td); tdp = &td->qt_next; toggle = 1; } if (length > 0 || req == NULL) { td = ehci_alloc(sizeof(struct qTD), 32); if (td == NULL) { debug("unable to allocate DATA td\n"); goto fail; } td->qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); td->qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = (toggle << 31) | (length << 16) | ((req == NULL ? 1 : 0) << 15) | (0 << 12) | (3 << 10) | ((usb_pipein(pipe) ? 1 : 0) << 8) | (0x80 << 0); td->qt_token = cpu_to_hc32(token); if (ehci_td_buffer(td, buffer, length) != 0) { debug("unable construct DATA td\n"); ehci_free(td, sizeof(*td)); goto fail; } *tdp = cpu_to_hc32((uint32_t) td); tdp = &td->qt_next; } if (req != NULL) { td = ehci_alloc(sizeof(struct qTD), 32); if (td == NULL) { debug("unable to allocate ACK td\n"); goto fail; } td->qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); td->qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = (toggle << 31) | (0 << 16) | (1 << 15) | (0 << 12) | (3 << 10) | ((usb_pipein(pipe) ? 0 : 1) << 8) | (0x80 << 0); td->qt_token = cpu_to_hc32(token); *tdp = cpu_to_hc32((uint32_t) td); tdp = &td->qt_next; } qh_list.qh_link = cpu_to_hc32((uint32_t) qh | QH_LINK_TYPE_QH); /* Flush dcache */ ehci_flush_dcache(&qh_list); usbsts = ehci_readl(&hcor->or_usbsts); ehci_writel(&hcor->or_usbsts, (usbsts & 0x3f)); /* Enable async. schedule. */ cmd = ehci_readl(&hcor->or_usbcmd); cmd |= CMD_ASE; ehci_writel(&hcor->or_usbcmd, cmd); ret = handshake((uint32_t *)&hcor->or_usbsts, STD_ASS, STD_ASS, 100 * 1000); if (ret < 0) { printf("EHCI fail timeout STD_ASS set\n"); goto fail; } /* Wait for TDs to be processed. */ ts = get_timer(0); vtd = td; timeout = USB_TIMEOUT_MS(pipe); do { /* Invalidate dcache */ ehci_invalidate_dcache(&qh_list); token = hc32_to_cpu(vtd->qt_token); if (!(token & 0x80)) break; WATCHDOG_RESET(); } while (get_timer(ts) < timeout); /* Check that the TD processing happened */ if (token & 0x80) { printf("EHCI timed out on TD - token=%#x\n", token); goto fail; } /* Disable async schedule. */ cmd = ehci_readl(&hcor->or_usbcmd); cmd &= ~CMD_ASE; ehci_writel(&hcor->or_usbcmd, cmd); ret = handshake((uint32_t *)&hcor->or_usbsts, STD_ASS, 0, 100 * 1000); if (ret < 0) { printf("EHCI fail timeout STD_ASS reset\n"); goto fail; } qh_list.qh_link = cpu_to_hc32((uint32_t)&qh_list | QH_LINK_TYPE_QH); token = hc32_to_cpu(qh->qh_overlay.qt_token); if (!(token & 0x80)) { debug("TOKEN=%#x\n", token); switch (token & 0xfc) { case 0: toggle = token >> 31; usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), toggle); dev->status = 0; break; case 0x40: dev->status = USB_ST_STALLED; break; case 0xa0: case 0x20: dev->status = USB_ST_BUF_ERR; break; case 0x50: case 0x10: dev->status = USB_ST_BABBLE_DET; break; default: dev->status = USB_ST_CRC_ERR; if ((token & 0x40) == 0x40) dev->status |= USB_ST_STALLED; break; } dev->act_len = length - ((token >> 16) & 0x7fff); } else {
static int ehci_submit_async(struct usb_device *dev, unsigned long pipe, void *buffer, int length, struct devrequest *req) { static struct QH qh __attribute__((aligned(32))); static struct qTD qtd[3] __attribute__((aligned (32))); int qtd_counter = 0; volatile struct qTD *vtd; unsigned long ts; uint32_t *tdp; uint32_t endpt, token, usbsts; uint32_t c, toggle; uint32_t cmd; int timeout; int ret = 0; debug("dev=%p, pipe=%lx, buffer=%p, length=%d, req=%p\n", dev, pipe, buffer, length, req); if (req != NULL) debug("req=%u (%#x), type=%u (%#x), value=%u (%#x), index=%u\n", req->request, req->request, req->requesttype, req->requesttype, le16_to_cpu(req->value), le16_to_cpu(req->value), le16_to_cpu(req->index)); memset(&qh, 0, sizeof(struct QH)); memset(qtd, 0, sizeof(qtd)); toggle = usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)); /* * Setup QH (3.6 in ehci-r10.pdf) * * qh_link ................. 03-00 H * qh_endpt1 ............... 07-04 H * qh_endpt2 ............... 0B-08 H * - qh_curtd * qh_overlay.qt_next ...... 13-10 H * - qh_overlay.qt_altnext */ qh.qh_link = cpu_to_hc32((uint32_t)&qh_list | QH_LINK_TYPE_QH); c = (usb_pipespeed(pipe) != USB_SPEED_HIGH && usb_pipeendpoint(pipe) == 0) ? 1 : 0; endpt = (8 << 28) | (c << 27) | (usb_maxpacket(dev, pipe) << 16) | (0 << 15) | (1 << 14) | (usb_pipespeed(pipe) << 12) | (usb_pipeendpoint(pipe) << 8) | (0 << 7) | (usb_pipedevice(pipe) << 0); qh.qh_endpt1 = cpu_to_hc32(endpt); endpt = (1 << 30) | (dev->portnr << 23) | (dev->parent->devnum << 16) | (0 << 8) | (0 << 0); qh.qh_endpt2 = cpu_to_hc32(endpt); qh.qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); tdp = &qh.qh_overlay.qt_next; if (req != NULL) { /* * Setup request qTD (3.5 in ehci-r10.pdf) * * qt_next ................ 03-00 H * qt_altnext ............. 07-04 H * qt_token ............... 0B-08 H * * [ buffer, buffer_hi ] loaded with "req". */ qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = (0 << 31) | (sizeof(*req) << 16) | (0 << 15) | (0 << 12) | (3 << 10) | (2 << 8) | (0x80 << 0); qtd[qtd_counter].qt_token = cpu_to_hc32(token); if (ehci_td_buffer(&qtd[qtd_counter], req, sizeof(*req)) != 0) { debug("unable construct SETUP td\n"); goto fail; } /* Update previous qTD! */ *tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]); tdp = &qtd[qtd_counter++].qt_next; toggle = 1; } if (length > 0 || req == NULL) { /* * Setup request qTD (3.5 in ehci-r10.pdf) * * qt_next ................ 03-00 H * qt_altnext ............. 07-04 H * qt_token ............... 0B-08 H * * [ buffer, buffer_hi ] loaded with "buffer". */ qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = (toggle << 31) | (length << 16) | ((req == NULL ? 1 : 0) << 15) | (0 << 12) | (3 << 10) | ((usb_pipein(pipe) ? 1 : 0) << 8) | (0x80 << 0); qtd[qtd_counter].qt_token = cpu_to_hc32(token); if (ehci_td_buffer(&qtd[qtd_counter], buffer, length) != 0) { debug("unable construct DATA td\n"); goto fail; } /* Update previous qTD! */ *tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]); tdp = &qtd[qtd_counter++].qt_next; } if (req != NULL) { /* * Setup request qTD (3.5 in ehci-r10.pdf) * * qt_next ................ 03-00 H * qt_altnext ............. 07-04 H * qt_token ............... 0B-08 H */ qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE); qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE); token = (toggle << 31) | (0 << 16) | (1 << 15) | (0 << 12) | (3 << 10) | ((usb_pipein(pipe) ? 0 : 1) << 8) | (0x80 << 0); qtd[qtd_counter].qt_token = cpu_to_hc32(token); /* Update previous qTD! */ *tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]); tdp = &qtd[qtd_counter++].qt_next; } qh_list.qh_link = cpu_to_hc32((uint32_t)&qh | QH_LINK_TYPE_QH); /* Flush dcache */ flush_dcache_range((uint32_t)&qh_list, (uint32_t)&qh_list + sizeof(struct QH)); flush_dcache_range((uint32_t)&qh, (uint32_t)&qh + sizeof(struct QH)); flush_dcache_range((uint32_t)qtd, (uint32_t)qtd + sizeof(qtd)); usbsts = ehci_readl(&hcor->or_usbsts); ehci_writel(&hcor->or_usbsts, (usbsts & 0x3f)); /* Enable async. schedule. */ cmd = ehci_readl(&hcor->or_usbcmd); cmd |= CMD_ASE; ehci_writel(&hcor->or_usbcmd, cmd); ret = handshake((uint32_t *)&hcor->or_usbsts, STD_ASS, STD_ASS, 100 * 1000); if (ret < 0) { printf("EHCI fail timeout STD_ASS set\n"); goto fail; } /* Wait for TDs to be processed. */ ts = get_timer(0); vtd = &qtd[qtd_counter - 1]; timeout = USB_TIMEOUT_MS(pipe); do { /* Invalidate dcache */ invalidate_dcache_range((uint32_t)&qh_list, (uint32_t)&qh_list + sizeof(struct QH)); invalidate_dcache_range((uint32_t)&qh, (uint32_t)&qh + sizeof(struct QH)); invalidate_dcache_range((uint32_t)qtd, (uint32_t)qtd + sizeof(qtd)); token = hc32_to_cpu(vtd->qt_token); if (!(token & 0x80)) break; WATCHDOG_RESET(); } while (get_timer(ts) < timeout); /* Invalidate the memory area occupied by buffer */ invalidate_dcache_range(((uint32_t)buffer & ~31), ((uint32_t)buffer & ~31) + roundup(length, 32)); /* Check that the TD processing happened */ if (token & 0x80) { printf("EHCI timed out on TD - token=%#x\n", token); } /* Disable async schedule. */ cmd = ehci_readl(&hcor->or_usbcmd); cmd &= ~CMD_ASE; ehci_writel(&hcor->or_usbcmd, cmd); ret = handshake((uint32_t *)&hcor->or_usbsts, STD_ASS, 0, 100 * 1000); if (ret < 0) { printf("EHCI fail timeout STD_ASS reset\n"); goto fail; } qh_list.qh_link = cpu_to_hc32((uint32_t)&qh_list | QH_LINK_TYPE_QH); token = hc32_to_cpu(qh.qh_overlay.qt_token); if (!(token & 0x80)) { debug("TOKEN=%#x\n", token); switch (token & 0xfc) { case 0: toggle = token >> 31; usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), toggle); dev->status = 0; break; case 0x40: dev->status = USB_ST_STALLED; break; case 0xa0: case 0x20: dev->status = USB_ST_BUF_ERR; break; case 0x50: case 0x10: dev->status = USB_ST_BABBLE_DET; break; default: dev->status = USB_ST_CRC_ERR; if ((token & 0x40) == 0x40) dev->status |= USB_ST_STALLED; break; } dev->act_len = length - ((token >> 16) & 0x7fff); } else {
void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb) { char *speed, *type; memset (qh, 0, sizeof (dwc_otg_qh_t)); if(urb && urb->dev){ usb_settoggle (urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe), 1); } /* Initialize QH */ switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: qh->ep_type = USB_ENDPOINT_XFER_CONTROL; break; case PIPE_BULK: qh->ep_type = USB_ENDPOINT_XFER_BULK; break; case PIPE_ISOCHRONOUS: qh->ep_type = USB_ENDPOINT_XFER_ISOC; break; case PIPE_INTERRUPT: qh->ep_type = USB_ENDPOINT_XFER_INT; break; } qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0; qh->data_toggle = DWC_OTG_HC_PID_DATA0; qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe))); INIT_LIST_HEAD(&qh->qtd_list); INIT_LIST_HEAD(&qh->qh_list_entry); qh->channel = NULL; /* FS/LS Enpoint on HS Hub * NOT virtual root hub */ qh->do_split = 0; if (((urb->dev->speed == USB_SPEED_LOW) || (urb->dev->speed == USB_SPEED_FULL)) && (urb->dev->tt) && (urb->dev->tt->hub->devnum != 1)) { DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n", usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum, urb->dev->ttport); qh->do_split = 1; } if (qh->ep_type == USB_ENDPOINT_XFER_INT || qh->ep_type == USB_ENDPOINT_XFER_ISOC) { /* Compute scheduling parameters once and save them. */ hprt0_data_t hprt; /** @todo Account for split transfers in the bus time. */ int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp); /* FIXME: work-around patch by Steven */ qh->usecs = NS_TO_US(usb_calc_bus_time(urb->dev->speed, usb_pipein(urb->pipe), (qh->ep_type == USB_ENDPOINT_XFER_ISOC), bytecount)); /* Start in a slightly future (micro)frame. */ qh->sched_frame = dwc_frame_num_inc(hcd->frame_number, SCHEDULE_SLOP); qh->interval = urb->interval; #if 0 /* Increase interrupt polling rate for debugging. */ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { qh->interval = 8; } #endif hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0); if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) && ((urb->dev->speed == USB_SPEED_LOW) || (urb->dev->speed == USB_SPEED_FULL))) { qh->interval *= 8; qh->sched_frame |= 0x7; qh->start_split_frame = qh->sched_frame; } } DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n"); DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh); DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n", urb->dev->devnum); DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n", usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT"); switch(urb->dev->speed) { case USB_SPEED_LOW: qh->dev_speed = DWC_OTG_EP_SPEED_LOW; speed = "low"; break; case USB_SPEED_FULL: qh->dev_speed = DWC_OTG_EP_SPEED_FULL; speed = "full"; break; case USB_SPEED_HIGH: qh->dev_speed = DWC_OTG_EP_SPEED_HIGH; speed = "high"; break; default: speed = "?"; break; } DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed); switch (qh->ep_type) { case USB_ENDPOINT_XFER_ISOC: type = "isochronous"; break; case USB_ENDPOINT_XFER_INT: type = "interrupt"; break; case USB_ENDPOINT_XFER_CONTROL: type = "control"; break; case USB_ENDPOINT_XFER_BULK: type = "bulk"; break; default: type = "?"; break; } DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",type); #ifdef DEBUG if (qh->ep_type == USB_ENDPOINT_XFER_INT) { DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n", qh->usecs); DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n", qh->interval); } #endif qh->dw_align_buf = NULL; return; }