コード例 #1
0
ファイル: apby.cpp プロジェクト: yngccc/apby
DWORD game_loop_main(LPVOID thread_input) {
  struct common_vars common_vars = *(struct common_vars *)thread_input;
  profiler profiler = {};
  profiler_create(&profiler);
  LARGE_INTEGER performance_frequency = {};
  QueryPerformanceFrequency(&performance_frequency);
  memory_arena memory_arena = {};
  if (!virtual_alloc_memory_arena(m_megabytes(16), common_vars.system_info.dwPageSize, &memory_arena)) {
    m_die("call to \"virtual_alloc_memory_arena\" failed(event_render_loop_thread memory arena)");
  }
  vulkan vulkan = {};
  {
    m_memory_arena_undo_allocations_at_scope_exit(&memory_arena);
    string info_string = { memory_arena_allocate<char>(&memory_arena, m_kilobytes(4)), 0, m_kilobytes(2) };
    string err_string = { memory_arena_allocate<char>(&memory_arena, m_kilobytes(1)), 0, m_kilobytes(1) };
    vulkan_create_info vulkan_create_info = {};
    vulkan_create_info.win32_instance = common_vars.instance;
    vulkan_create_info.win32_window = common_vars.window;
    const char *shader_file_paths[] = { "shaders\\swap_chain_pipeline_image.vert.spv", "shaders\\swap_chain_pipeline_image.frag.spv" };
    if (!read_file_into_memory_arena(shader_file_paths[0], &memory_arena, &vulkan_create_info.swap_chain_pipeline_image_code[0], &vulkan_create_info.swap_chain_pipeline_image_code_sizes[0]) ||
        !read_file_into_memory_arena(shader_file_paths[1], &memory_arena, &vulkan_create_info.swap_chain_pipeline_image_code[1], &vulkan_create_info.swap_chain_pipeline_image_code_sizes[1])) {
      m_die("call to \"read_file_into_memory_arena\" failed(swap_chain_pipeline_image shaders)");
    }
    if (!vulkan_create(vulkan_create_info, &memory_arena, &info_string, &err_string, &vulkan)) {
      m_die("%s", err_string.buf);
    }
    else {
      m_printf("%s", info_string.buf);
    }
  }
  game_buffer game_buffer = {};
  vec4 game_buffer_viewport = {};
  HANDLE game_buffer_gpk_file_handle = nullptr;
  HANDLE game_buffer_gpk_file_mapping = nullptr;
  void *game_buffer_gpk_file_mapping_ptr = nullptr;
  HANDLE game_buffer_mpk_import_shared_memory_mapping = nullptr;
  void *game_buffer_mpk_import_shared_memory_mapping_ptr = nullptr;
  HANDLE game_buffer_mpk_import_shared_memory_semaphore = nullptr;
  {
    game_buffer_create_info game_buffer_create_info = {};
    if (!virtual_alloc_memory_arena(m_megabytes(512), common_vars.system_info.dwPageSize, &game_buffer_create_info.memory_arena)) {
      m_die("call to \"virtual_alloc_memory_arena\" failed(game buffer memory arena)");
    }
    game_buffer_create_info.vulkan = &vulkan;
    game_buffer_create_info.vulkan_framebuffer_width = 1920;
    game_buffer_create_info.vulkan_framebuffer_height = 1080;
    if (!game_buffer_create(game_buffer_create_info, &game_buffer)) {
      m_die("call to \"game_buffer_create\" failed");
    }
#ifdef EDITOR_ENABLE
    game_buffer_editor_create_info game_buffer_editor_create_info = {};
    game_buffer_editor_create_info.game_buffer = &game_buffer;
    game_buffer_editor_create_info.vulkan = &vulkan;
    game_buffer_editor_create_info.imgui_init_file = "assets\\gpks\\example.gpk.imgui.ini";
    game_buffer_editor_create_info.imgui_font_file = "assets\\fonts\\OpenSans-Regular.ttf";
    game_buffer_editor_create_info.imgui_font_size = GetSystemMetrics(SM_CXSCREEN) / 150;
    game_buffer_editor_create_info.set_imgui_keymap = [] (ImGuiIO *imgui_io) {
      imgui_io->KeyMap[ImGuiKey_Tab] = VK_TAB;
      imgui_io->KeyMap[ImGuiKey_LeftArrow] = VK_LEFT;
      imgui_io->KeyMap[ImGuiKey_RightArrow] = VK_RIGHT;
      imgui_io->KeyMap[ImGuiKey_UpArrow] = VK_UP;
      imgui_io->KeyMap[ImGuiKey_DownArrow] = VK_DOWN;
      imgui_io->KeyMap[ImGuiKey_PageUp] = VK_PRIOR;
      imgui_io->KeyMap[ImGuiKey_PageDown] = VK_NEXT;
      imgui_io->KeyMap[ImGuiKey_Home] = VK_HOME;
      imgui_io->KeyMap[ImGuiKey_End] = VK_END;
      imgui_io->KeyMap[ImGuiKey_Backspace] = VK_BACK;
      imgui_io->KeyMap[ImGuiKey_Enter] = VK_RETURN;
      imgui_io->KeyMap[ImGuiKey_Escape] = VK_ESCAPE;
      imgui_io->KeyMap[ImGuiKey_A] = 'A';
      imgui_io->KeyMap[ImGuiKey_C] = 'C';
      imgui_io->KeyMap[ImGuiKey_V] = 'V';
      imgui_io->KeyMap[ImGuiKey_X] = 'X';
      imgui_io->KeyMap[ImGuiKey_Y] = 'Y';
      imgui_io->KeyMap[ImGuiKey_Z] = 'Z';
    };
    {
      m_memory_arena_undo_allocations_at_scope_exit(&memory_arena);
      const char *file_paths[] = { "shaders\\imgui.vert.spv", "shaders\\imgui.frag.spv" };
      VkShaderModule shader_modules[m_countof(file_paths)] = {};
      for (uint i = 0; i < m_countof(file_paths); i += 1) {
        void *file_data;
        uint file_size;
        if (!read_file_into_memory_arena(file_paths[i], &memory_arena, &file_data, &file_size)) {
          m_die("call to \"read_file_into_memory_arena\" failed(game buffer shader files)");
        }
        VkShaderModuleCreateInfo shader_module_info = { VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO };
        shader_module_info.codeSize = file_size;
        shader_module_info.pCode = (const uint32_t *)file_data;
        if(vkCreateShaderModule(vulkan.device, &shader_module_info, nullptr, &shader_modules[i]) != VK_SUCCESS) {
          m_die("game buffer creation failed\ncall to \"vkCreateShaderModule\" failed for shader file %s", file_paths[i]);
        }
      }
      game_buffer_editor_create_info.imgui_vulkan_shaders[0] = shader_modules[0];
      game_buffer_editor_create_info.imgui_vulkan_shaders[1] = shader_modules[1];
    }
    game_buffer.editor = memory_arena_allocate<game_buffer_editor>(&game_buffer.memory_arena, 1);
    *game_buffer.editor = {};
    if (!game_buffer_editor_create(&game_buffer_editor_create_info, game_buffer.editor)) {
      m_die("call to \"game_buffer_editor_create\" failed");
    }
    {
      uint shared_memory_size = m_megabytes(32);
      HANDLE shared_memory_mapping = CreateFileMappingA(INVALID_HANDLE_VALUE, nullptr, PAGE_READWRITE | SEC_COMMIT, 0, shared_memory_size, m_mpk_import_shared_memory_name);
      if (!shared_memory_mapping) {
        m_last_error_str(err_str);
        m_die("call to \"CreateFileMappingA\" failed\nfile: %s\nerr: %s", m_mpk_import_shared_memory_name, err_str);
      }
      void *shared_memory_mapping_ptr = MapViewOfFile(shared_memory_mapping, FILE_MAP_WRITE, 0, 0, shared_memory_size);
      if (!shared_memory_mapping_ptr) {
        m_last_error_str(err_str);
        m_die("call to \"MapViewOfFile\" failed\nfile: %s\nerr: %s", m_mpk_import_shared_memory_name, err_str);
      }
      ((mpk_import_shared_memory_header *)shared_memory_mapping_ptr)->total_size = shared_memory_size;
      ((mpk_import_shared_memory_header *)shared_memory_mapping_ptr)->mpk_size = shared_memory_size - sizeof(struct mpk_import_shared_memory_header);
      SetLastError(ERROR_SUCCESS);
      HANDLE shared_memory_semaphore = CreateSemaphore(nullptr, 1, 1, m_mpk_import_shared_memory_semaphore_name);
      if (!shared_memory_semaphore) {
        m_last_error_str(err_str);
        m_die("call to \"CreateSemaphore\" failed\nsemaphore: %s\nerr: %s", m_mpk_import_shared_memory_semaphore_name, err_str);
      }
      if (GetLastError() == ERROR_ALREADY_EXISTS) {
        m_die("call to \"CreateSemaphore\" failed\nsemaphore: %s\nerr: %s", m_mpk_import_shared_memory_semaphore_name, "named semaphore already exist");
      }
      game_buffer_mpk_import_shared_memory_mapping = shared_memory_mapping;
      game_buffer_mpk_import_shared_memory_mapping_ptr = shared_memory_mapping_ptr;
      game_buffer_mpk_import_shared_memory_semaphore = shared_memory_semaphore;
    }
    {
      game_buffer_editor_job *new_job = nullptr;
      if (game_buffer_editor_add_mpk_job(&game_buffer, &new_job)) {
        mpk_import_command_line cmdl = m_mpk_import_command_line_default;
        cmdl.job_id = new_job->id;
        cmdl.import_type = mpk_import_type_fbx;
        strcpy(cmdl.fbx_file_path, "assets\\models\\simple_man\\simple_man.fbx");
        mpk_import_create_process(&cmdl, common_vars.process_group, &memory_arena);
      }
    }
#endif // EDITOR_ENABLE
    {
      char gpk_file_name[] = "assets\\gpks\\example.gpk";
      HANDLE gpk_file_handle = CreateFileA(gpk_file_name, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr);
      if (gpk_file_handle == INVALID_HANDLE_VALUE) {
        m_last_error_str(err_str);
        m_die("call to \"CreateFile\" failed\nfile: %s\nerr: %s", gpk_file_name, err_str);
      }
      uint file_size = m_megabytes(32);
      SetFilePointer(gpk_file_handle, file_size, nullptr, FILE_BEGIN);
      if (!SetEndOfFile(gpk_file_handle)) {
        m_last_error_str(err_str);
        m_die("call to \"SetEndOfFile\" failed\nfile: %s\nsize: %d\nerr: %s", gpk_file_name, file_size, err_str);
      }
      HANDLE gpk_file_mapping = CreateFileMappingA(gpk_file_handle, nullptr, PAGE_READWRITE, 0, 0, nullptr);
      if (!gpk_file_mapping) {
        m_last_error_str(err_str);
        m_die("call to \"CreateFileMappingA\" failed\nfile: %s\nerr: %s", gpk_file_name, err_str);
      }
      void *gpk_file_mapping_ptr = MapViewOfFile(gpk_file_mapping, FILE_MAP_WRITE, 0, 0, file_size);
      if (!gpk_file_mapping_ptr) {
        m_last_error_str(err_str);
        m_die("call to \"MapViewOfFile\" failed\nfile: %s\nerr: %s", gpk_file_name, err_str);
      }
      uint gpk_file_initial_state_size = 0;
      if (!gpk_write_initial_state(gpk_file_mapping_ptr, file_size, &gpk_file_initial_state_size)) {
        m_die("call to \"gpk_write_initial_state\" failed");
      }
      if (!FlushViewOfFile(gpk_file_mapping_ptr, gpk_file_initial_state_size)) {
        m_last_error_str(err_str);
        m_die("call to \"FlushViewOfFile\" failed\nfile: %s\nerr: %s", gpk_file_name, err_str);
      }
      game_buffer_gpk_file_handle = gpk_file_handle;
      game_buffer_gpk_file_mapping = gpk_file_mapping;
      game_buffer_gpk_file_mapping_ptr = gpk_file_mapping_ptr;
    }
    {
      game_buffer_update_vulkan_swap_chain_image(&game_buffer, &vulkan);
      game_buffer_viewport = rectangle_fit_into_viewport((float)vulkan.swap_chain_info.imageExtent.width, (float)vulkan.swap_chain_info.imageExtent.height, (float)game_buffer.vulkan_framebuffer_image_width, (float)game_buffer.vulkan_framebuffer_image_height);
    }
  }
  uint64 last_frame_time_microsecs = 0;
  bool mouse_down_up_same_frame[3] = {};
  for (;;) {
    LARGE_INTEGER frame_begin_performance_count;
    QueryPerformanceCounter(&frame_begin_performance_count);
    m_scope_exit(
      LARGE_INTEGER frame_end_performance_count;
      QueryPerformanceCounter(&frame_end_performance_count);
      last_frame_time_microsecs = (frame_end_performance_count.QuadPart - frame_begin_performance_count.QuadPart) * 1000000 / performance_frequency.QuadPart;
    );
    {
      bool mouse_down_this_frame[3] = {};
      for (uint i = 0; i < 3; i += 1) {
        if (mouse_down_up_same_frame[i]) {
          mouse_down_up_same_frame[i] = false;
#ifdef EDITOR_ENABLE
          game_buffer_editor_handle_mouse_up(&game_buffer, i);
#endif
        }
      }
      HANDLE iocp = common_vars.io_completion_port;
      DWORD iocp_num_bytes = 0;
      ULONG_PTR iocp_completion_key = 0;
      LPOVERLAPPED iocp_overlapped = nullptr;
      DWORD iocp_time_out = 0;
      while (GetQueuedCompletionStatus(iocp, &iocp_num_bytes, &iocp_completion_key, &iocp_overlapped, iocp_time_out) == TRUE) {
        switch (iocp_completion_key) {
          case quit_win_main_event : {
#ifdef EDITOR_ENABLE
            ImGui::Shutdown();
#endif
            ExitThread(0);
          } break;
          case window_resize_event : {
            uint32 new_width = LOWORD((LPARAM)iocp_overlapped);
            uint32 new_height = HIWORD((LPARAM)iocp_overlapped);
            if (vulkan.swap_chain_info.imageExtent.width != new_width || vulkan.swap_chain_info.imageExtent.height != new_height) {
              if (!vulkan_resize_swap_chain_images(&vulkan, new_width, new_height)) {
                m_die("call to \"vulkan_resize_swap_chain_images\" failed");
              }
              game_buffer_viewport = rectangle_fit_into_viewport((float)vulkan.swap_chain_info.imageExtent.width, (float)vulkan.swap_chain_info.imageExtent.height, (float)game_buffer.vulkan_framebuffer_image_width, (float)game_buffer.vulkan_framebuffer_image_height);
            }
          } break;
          case key_down_event : {
          } break;
          case key_up_event : {
          } break;
          case mouse_move_event : {
#ifdef EDITOR_ENABLE
            game_buffer_editor_handle_mouse_move(&game_buffer, game_buffer_viewport, LOWORD((LPARAM)iocp_overlapped), HIWORD((LPARAM)iocp_overlapped));
#endif
          } break;
          case mouse_lbutton_down_event : {
            mouse_down_this_frame[0] = true;
#ifdef EDITOR_ENABLE
            game_buffer_editor_handle_mouse_down(&game_buffer, 0);
#endif
          } break;
          case mouse_lbutton_up_event : {
            if (mouse_down_this_frame[0]) {
              mouse_down_up_same_frame[0] = true;
            }
            else {
#ifdef EDITOR_ENABLE
              game_buffer_editor_handle_mouse_up(&game_buffer, 0);
#endif
            }
          } break;
          case mouse_rbutton_down_event : {
            mouse_down_this_frame[1] = true;
#ifdef EDITOR_ENABLE
            game_buffer_editor_handle_mouse_down(&game_buffer, 1);
#endif
          } break;
          case mouse_rbutton_up_event : {
            if (mouse_down_this_frame[1]) {
              mouse_down_up_same_frame[1] = true;
            }
            else {
#ifdef EDITOR_ENABLE
              game_buffer_editor_handle_mouse_up(&game_buffer, 1);
#endif
            }
          } break;
          case mpk_import_named_pipe_event : {
#ifdef EDITOR_ENABLE
            mpk_import_named_pipe_instance *named_pipe_instance = (mpk_import_named_pipe_instance *)iocp_overlapped;
            if (named_pipe_instance->connected) {
              m_printf("got message %d bytes: %s\n", iocp_num_bytes, named_pipe_instance->message.msg);
              game_buffer_editor_handle_mpk_import_message(&game_buffer, &named_pipe_instance->message);
              if (named_pipe_instance->message.type == mpk_import_named_pipe_message_type_done) {
                void *mpk_ptr = ((struct mpk_import_shared_memory_header *)game_buffer_mpk_import_shared_memory_mapping_ptr) + 1;
                struct mpk_header *mpk_header_ptr = (struct mpk_header *)mpk_ptr;
                ReleaseSemaphore(game_buffer_mpk_import_shared_memory_semaphore, 1, nullptr);
              }
              ReadFile(named_pipe_instance->handle, &named_pipe_instance->message, sizeof(named_pipe_instance->message), nullptr, &named_pipe_instance->overlapped);
            }
            else {
              m_printf("new named pipe instance connected\n");
              named_pipe_instance->connected = true;
              ReadFile(named_pipe_instance->handle, &named_pipe_instance->message, sizeof(named_pipe_instance->message), nullptr, &named_pipe_instance->overlapped);
              mpk_import_add_named_pipe_instance(&common_vars);
            }
#else
            m_die("game loop main: received event \"mpk_import_named_pipe_event\", but editor is not enabled");
#endif
          } break;
          default : {
            m_die("game loop main: call to \"GetQueuedCompletionStatus\" returned an invalid event");
          } break;
        }
      }
    }
#ifdef EDITOR_ENABLE
    game_buffer.editor->imgui_io->DeltaTime = (float)(last_frame_time_microsecs / 1000000.0);
    ImGui::NewFrame();
    game_buffer_editor_imgui_new_frame(&game_buffer, &vulkan);
#endif
    {
      VkResult vk_result = {};
      vkWaitForFences(vulkan.device, 1, &vulkan.swap_chain_fence, VK_TRUE, UINT64_MAX);
      vkResetFences(vulkan.device, 1, &vulkan.swap_chain_fence);
      uint swap_chain_image_index = 0;
      if ((vk_result = vkAcquireNextImageKHR(vulkan.device, vulkan.swap_chain, UINT64_MAX, vulkan.swap_chain_image_semaphore, VK_NULL_HANDLE, &swap_chain_image_index)) != VK_SUCCESS) {
        m_die("call to \"vkAcquireNextImageKHR\" failed");
      }
      VkCommandBufferBeginInfo cmd_buffer_begin_info = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO };
      cmd_buffer_begin_info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
      vkBeginCommandBuffer(vulkan.swap_chain_cmd_buffer, &cmd_buffer_begin_info);
      game_buffer_record_vulkan_commands(&game_buffer, &vulkan);
      vulkan_record_swap_chain_commands(&vulkan, swap_chain_image_index, game_buffer_viewport);
      vkEndCommandBuffer(vulkan.swap_chain_cmd_buffer);
      VkSubmitInfo queue_submit_info = { VK_STRUCTURE_TYPE_SUBMIT_INFO };
      queue_submit_info.waitSemaphoreCount = 1;
      queue_submit_info.pWaitSemaphores = &vulkan.swap_chain_image_semaphore;
      VkPipelineStageFlags wait_dst_stage_mask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
      queue_submit_info.pWaitDstStageMask = &wait_dst_stage_mask;
      queue_submit_info.commandBufferCount = 1;
      queue_submit_info.pCommandBuffers = &vulkan.swap_chain_cmd_buffer;
      queue_submit_info.signalSemaphoreCount = 1;
      queue_submit_info.pSignalSemaphores = &vulkan.swap_chain_queue_semaphore;
      if ((vk_result = vkQueueSubmit(vulkan.device_queue, 1, &queue_submit_info, vulkan.swap_chain_fence)) != VK_SUCCESS) {
        m_die("call to \"vkQueueSubmit\" failed");
      }
      VkPresentInfoKHR device_queue_present_info = { VK_STRUCTURE_TYPE_PRESENT_INFO_KHR };
      device_queue_present_info.waitSemaphoreCount = 1;
      device_queue_present_info.pWaitSemaphores = &vulkan.swap_chain_queue_semaphore;
      device_queue_present_info.swapchainCount = 1;
      device_queue_present_info.pSwapchains = &vulkan.swap_chain;
      device_queue_present_info.pImageIndices = &swap_chain_image_index;
      if ((vk_result = vkQueuePresentKHR(vulkan.device_queue, &device_queue_present_info)) != VK_SUCCESS) {
        m_die("call to \"vkQueuePresentKHR\" failed");
      }
    }
  }
コード例 #2
0
/**
 *  Sample using multiple render passes per framebuffer (different x,y extents)
 *  and multiple subpasses per renderpass.
 */
int sample_main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "Multi-pass render passes";
    const bool depthPresent = true;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);

    info.depth.format = VK_FORMAT_D32_SFLOAT_S8_UINT;
    init_depth_buffer(info);

    init_uniform_buffer(info);
    init_descriptor_and_pipeline_layouts(info, false);
    init_vertex_buffer(info, g_vb_solid_face_colors_Data,
                       sizeof(g_vb_solid_face_colors_Data),
                       sizeof(g_vb_solid_face_colors_Data[0]), false);
    init_descriptor_pool(info, false);
    init_descriptor_set(info, false);
    init_pipeline_cache(info);

    /* VULKAN_KEY_START */

    /**
     *  First renderpass in this sample.
     *  Stenciled rendering: subpass 1 draw to stencil buffer, subpass 2 draw to
     *  color buffer with stencil test
     */
    VkAttachmentDescription attachments[2];
    attachments[0].format = info.format;
    attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
    attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
    attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
    attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
    attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
    attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    attachments[0].flags = 0;

    attachments[1].format = info.depth.format;
    attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
    attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
    attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
    attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
    attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
    attachments[1].initialLayout =
        VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
    attachments[1].finalLayout =
        VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
    attachments[1].flags = 0;

    VkAttachmentReference color_reference = {};
    color_reference.attachment = 0;
    color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

    VkAttachmentReference depth_reference = {};
    depth_reference.attachment = 1;
    depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

    VkSubpassDescription subpass = {};
    subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
    subpass.flags = 0;
    subpass.inputAttachmentCount = 0;
    subpass.pInputAttachments = NULL;
    subpass.colorAttachmentCount = 0;
    subpass.pColorAttachments = NULL;
    subpass.pResolveAttachments = NULL;
    subpass.pDepthStencilAttachment = &depth_reference;
    subpass.preserveAttachmentCount = 0;
    subpass.pPreserveAttachments = NULL;

    std::vector<VkSubpassDescription> subpasses;

    /* first a depthstencil-only subpass */
    subpasses.push_back(subpass);

    subpass.colorAttachmentCount = 1;
    subpass.pColorAttachments = &color_reference;

    /* then depthstencil and color */
    subpasses.push_back(subpass);

    /* Set up a dependency between the source and destination subpasses */
    VkSubpassDependency dependency = {};
    dependency.srcSubpass = 0;
    dependency.dstSubpass = 1;
    dependency.dependencyFlags = 0;
    dependency.srcStageMask = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
    dependency.dstStageMask = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT;
    dependency.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
                               VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
    dependency.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
                               VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;

    VkRenderPassCreateInfo rp_info = {};
    rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
    rp_info.pNext = NULL;
    rp_info.attachmentCount = 2;
    rp_info.pAttachments = attachments;
    rp_info.subpassCount = subpasses.size();
    rp_info.pSubpasses = subpasses.data();
    rp_info.dependencyCount = 1;
    rp_info.pDependencies = &dependency;

    VkRenderPass stencil_render_pass;
    res = vkCreateRenderPass(info.device, &rp_info, NULL, &stencil_render_pass);
    assert(!res);

    /* now that we have the render pass, create framebuffer and pipelines */

    info.render_pass = stencil_render_pass;
    init_framebuffers(info, depthPresent);

    VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE];
    VkPipelineDynamicStateCreateInfo dynamicState = {};
    memset(dynamicStateEnables, 0, sizeof dynamicStateEnables);
    dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
    dynamicState.pNext = NULL;
    dynamicState.pDynamicStates = dynamicStateEnables;
    dynamicState.dynamicStateCount = 0;

    VkPipelineVertexInputStateCreateInfo vi;
    vi.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
    vi.pNext = NULL;
    vi.vertexBindingDescriptionCount = 1;
    vi.pVertexBindingDescriptions = &info.vi_binding;
    vi.vertexAttributeDescriptionCount = 2;
    vi.pVertexAttributeDescriptions = info.vi_attribs;

    VkPipelineInputAssemblyStateCreateInfo ia;
    ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
    ia.pNext = NULL;
    ia.primitiveRestartEnable = VK_FALSE;
    ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;

    VkPipelineRasterizationStateCreateInfo rs;
    rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
    rs.pNext = NULL;
    rs.polygonMode = VK_POLYGON_MODE_FILL;
    rs.cullMode = VK_CULL_MODE_BACK_BIT;
    rs.frontFace = VK_FRONT_FACE_CLOCKWISE;
    rs.depthClampEnable = VK_FALSE;
    rs.rasterizerDiscardEnable = VK_FALSE;
    rs.depthBiasEnable = VK_FALSE;
    rs.depthBiasConstantFactor = 0;
    rs.depthBiasClamp = 0;
    rs.depthBiasSlopeFactor = 0;
    rs.lineWidth = 0;

    VkPipelineColorBlendStateCreateInfo cb;
    cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
    cb.pNext = NULL;
    VkPipelineColorBlendAttachmentState att_state[1];
    att_state[0].colorWriteMask = 0xf;
    att_state[0].blendEnable = VK_FALSE;
    att_state[0].alphaBlendOp = VK_BLEND_OP_ADD;
    att_state[0].colorBlendOp = VK_BLEND_OP_ADD;
    att_state[0].srcColorBlendFactor = VK_BLEND_FACTOR_ZERO;
    att_state[0].dstColorBlendFactor = VK_BLEND_FACTOR_ZERO;
    att_state[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
    att_state[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
    cb.attachmentCount = 1;
    cb.pAttachments = att_state;
    cb.logicOpEnable = VK_FALSE;
    cb.logicOp = VK_LOGIC_OP_NO_OP;
    cb.blendConstants[0] = 1.0f;
    cb.blendConstants[1] = 1.0f;
    cb.blendConstants[2] = 1.0f;
    cb.blendConstants[3] = 1.0f;

    VkPipelineViewportStateCreateInfo vp = {};
    vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
    vp.pNext = NULL;
    vp.viewportCount = NUM_VIEWPORTS;
    dynamicStateEnables[dynamicState.dynamicStateCount++] =
        VK_DYNAMIC_STATE_VIEWPORT;
    vp.scissorCount = NUM_SCISSORS;
    dynamicStateEnables[dynamicState.dynamicStateCount++] =
        VK_DYNAMIC_STATE_SCISSOR;

    VkPipelineDepthStencilStateCreateInfo ds;
    ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
    ds.pNext = NULL;
    ds.depthTestEnable = VK_TRUE;
    ds.depthWriteEnable = VK_TRUE;
    ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
    ds.depthBoundsTestEnable = VK_FALSE;
    ds.minDepthBounds = 0;
    ds.maxDepthBounds = 0;

    ds.stencilTestEnable = VK_TRUE;
    ds.back.failOp = VK_STENCIL_OP_REPLACE;
    ds.back.depthFailOp = VK_STENCIL_OP_REPLACE;
    ds.back.passOp = VK_STENCIL_OP_REPLACE;
    ds.back.compareOp = VK_COMPARE_OP_ALWAYS;
    ds.back.compareMask = 0xff;
    ds.back.writeMask = 0xff;
    ds.back.reference = 0x44;
    ds.front = ds.back;

    VkPipelineMultisampleStateCreateInfo ms;
    ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
    ms.pNext = NULL;
    ms.pSampleMask = NULL;
    ms.rasterizationSamples = NUM_SAMPLES;
    ms.sampleShadingEnable = VK_FALSE;
    ms.minSampleShading = 0.0;
    ms.alphaToCoverageEnable = VK_FALSE;
    ms.alphaToOneEnable = VK_FALSE;

    VkGraphicsPipelineCreateInfo pipeline;
    pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
    pipeline.pNext = NULL;
    pipeline.layout = info.pipeline_layout;
    pipeline.basePipelineHandle = VK_NULL_HANDLE;
    pipeline.basePipelineIndex = 0;
    pipeline.flags = 0;
    pipeline.pVertexInputState = &vi;
    pipeline.pInputAssemblyState = &ia;
    pipeline.pRasterizationState = &rs;
    pipeline.pColorBlendState = NULL;
    pipeline.pTessellationState = NULL;
    pipeline.pMultisampleState = &ms;
    pipeline.pDynamicState = &dynamicState;
    pipeline.pViewportState = &vp;
    pipeline.pDepthStencilState = &ds;
    pipeline.pStages = info.shaderStages;
    pipeline.stageCount = 2;
    pipeline.renderPass = stencil_render_pass;
    pipeline.subpass = 0;

    init_shaders(info, normalVertShaderText, fragShaderText);

    /* The first pipeline will render in subpass 0 to fill the stencil */
    pipeline.subpass = 0;

    VkPipeline stencil_cube_pipe = VK_NULL_HANDLE;
    res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1,
                                    &pipeline, NULL, &stencil_cube_pipe);
    assert(res == VK_SUCCESS);

    /* destroy the shaders used for the above pipelin eand replace them with
       those for the
       fullscreen fill pass */
    destroy_shaders(info);
    init_shaders(info, fullscreenVertShaderText, fragShaderText);

    /* the second pipeline will stencil test but not write, using the same
     * reference */
    ds.back.failOp = VK_STENCIL_OP_KEEP;
    ds.back.depthFailOp = VK_STENCIL_OP_KEEP;
    ds.back.passOp = VK_STENCIL_OP_KEEP;
    ds.back.compareOp = VK_COMPARE_OP_EQUAL;
    ds.front = ds.back;

    /* don't test depth, only use stencil test */
    ds.depthTestEnable = VK_FALSE;

    /* the second pipeline will be a fullscreen triangle strip, with vertices
       generated purely from the vertex shader - no inputs needed */
    ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
    vi.vertexAttributeDescriptionCount = 0;
    vi.vertexBindingDescriptionCount = 0;

    /* this pipeline will run in the second subpass */
    pipeline.subpass = 1;
    pipeline.pColorBlendState = &cb;

    VkPipeline stencil_fullscreen_pipe = VK_NULL_HANDLE;
    res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1,
                                    &pipeline, NULL, &stencil_fullscreen_pipe);
    assert(res == VK_SUCCESS);

    destroy_shaders(info);
    info.pipeline = VK_NULL_HANDLE;

    VkClearValue clear_values[2];
    clear_values[0].color.float32[0] = 0.2f;
    clear_values[0].color.float32[1] = 0.2f;
    clear_values[0].color.float32[2] = 0.2f;
    clear_values[0].color.float32[3] = 0.2f;
    clear_values[1].depthStencil.depth = 1.0f;
    clear_values[1].depthStencil.stencil = 0;

    VkSemaphore presentCompleteSemaphore;
    VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo;
    presentCompleteSemaphoreCreateInfo.sType =
        VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    presentCompleteSemaphoreCreateInfo.pNext = NULL;
    presentCompleteSemaphoreCreateInfo.flags = 0;

    res = vkCreateSemaphore(info.device, &presentCompleteSemaphoreCreateInfo,
                            NULL, &presentCompleteSemaphore);
    assert(res == VK_SUCCESS);

    // Get the index of the next available swapchain image:
    res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX,
                                presentCompleteSemaphore, NULL,
                                &info.current_buffer);
    // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR
    // return codes
    assert(res == VK_SUCCESS);

    VkRenderPassBeginInfo rp_begin;
    rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
    rp_begin.pNext = NULL;
    rp_begin.renderPass = stencil_render_pass;
    rp_begin.framebuffer = info.framebuffers[info.current_buffer];
    rp_begin.renderArea.offset.x = 0;
    rp_begin.renderArea.offset.y = 0;
    rp_begin.renderArea.extent.width = info.width / 2;
    rp_begin.renderArea.extent.height = info.height;
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    /* Begin the first render pass. This will render in the left half of the
       screen. Subpass 0 will render a cube, stencil writing but outputting
       no color. Subpass 1 will render a fullscreen pass, stencil testing and
       outputting color only where the cube filled in stencil */
    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                      stencil_cube_pipe);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);

    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);

    VkViewport viewport;
    viewport.height = (float)info.height;
    viewport.width = (float)info.width / 2;
    viewport.minDepth = (float)0.0f;
    viewport.maxDepth = (float)1.0f;
    viewport.x = 0;
    viewport.y = 0;
    vkCmdSetViewport(info.cmd, 0, NUM_VIEWPORTS, &viewport);

    VkRect2D scissor;
    scissor.extent.width = info.width / 2;
    scissor.extent.height = info.height;
    scissor.offset.x = 0;
    scissor.offset.y = 0;
    vkCmdSetScissor(info.cmd, 0, NUM_SCISSORS, &scissor);

    /* Draw the cube into stencil */
    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);

    /* Advance to the next subpass */
    vkCmdNextSubpass(info.cmd, VK_SUBPASS_CONTENTS_INLINE);

    /* Bind the fullscreen pass pipeline */
    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                      stencil_fullscreen_pipe);

    vkCmdSetViewport(info.cmd, 0, NUM_VIEWPORTS, &viewport);
    vkCmdSetScissor(info.cmd, 0, NUM_SCISSORS, &scissor);

    /* Draw the fullscreen pass */
    vkCmdDraw(info.cmd, 4, 1, 0, 0);

    vkCmdEndRenderPass(info.cmd);

    /**
     * Second renderpass in this sample.
     * Blended rendering, each subpass blends continuously onto the color
     */

    /* note that we reuse a lot of the initialisation strutures from the first
       render pass, so this represents a 'delta' from that configuration */

    /* This time, the first subpass will use color */
    subpasses[0].colorAttachmentCount = 1;
    subpasses[0].pColorAttachments = &color_reference;

    /* The dependency between the subpasses now includes the color attachment */
    dependency.srcAccessMask |= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
                                VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
    dependency.dstAccessMask |= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
                                VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;

    /* Otherwise, the render pass is identical */
    VkRenderPass blend_render_pass;
    res = vkCreateRenderPass(info.device, &rp_info, NULL, &blend_render_pass);
    assert(!res);

    pipeline.renderPass = blend_render_pass;

    /* We must recreate the framebuffers with this renderpass as the two render
       passes are not compatible. Store the current framebuffers for later
       deletion */
    VkFramebuffer *stencil_framebuffers = info.framebuffers;
    info.framebuffers = NULL;

    info.render_pass = blend_render_pass;
    init_framebuffers(info, depthPresent);

    /* Now create the pipelines for the second render pass */

    /* We are rendering the cube again, configure the vertex inputs */
    ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
    vi.vertexAttributeDescriptionCount = 2;
    vi.vertexBindingDescriptionCount = 1;

    /* The first pipeline will depth write and depth test */
    ds.depthWriteEnable = VK_TRUE;
    ds.depthTestEnable = VK_TRUE;

    /* We don't want to stencil test */
    ds.stencilTestEnable = VK_FALSE;

    /* This time, both pipelines will blend. the first pipeline uses the blend
     constant
     to determine the blend amount */
    att_state[0].colorWriteMask = 0xf;
    att_state[0].blendEnable = VK_TRUE;
    att_state[0].alphaBlendOp = VK_BLEND_OP_ADD;
    att_state[0].colorBlendOp = VK_BLEND_OP_ADD;
    att_state[0].srcColorBlendFactor = VK_BLEND_FACTOR_CONSTANT_ALPHA;
    att_state[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
    att_state[0].srcColorBlendFactor = VK_BLEND_FACTOR_CONSTANT_ALPHA;
    att_state[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;

    cb.blendConstants[0] = 1.0f;
    cb.blendConstants[1] = 1.0f;
    cb.blendConstants[2] = 1.0f;
    cb.blendConstants[3] = 0.3f;

    init_shaders(info, normalVertShaderText, fragShaderText);

    /* This is the first subpass's pipeline, to blend a cube onto the color
     * image */
    pipeline.subpass = 0;

    VkPipeline blend_cube_pipe = VK_NULL_HANDLE;
    res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1,
                                    &pipeline, NULL, &blend_cube_pipe);
    assert(res == VK_SUCCESS);

    /* Now we will set up the fullscreen pass to render on top. */
    destroy_shaders(info);
    init_shaders(info, fullscreenVertShaderText, fragShaderText);

    /* the second pipeline will be a fullscreen triangle strip with no inputs */
    ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
    vi.vertexAttributeDescriptionCount = 0;
    vi.vertexBindingDescriptionCount = 0;

    /* We'll use the alpha output from the shader */
    att_state[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
    att_state[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
    att_state[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
    att_state[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE;

    /* This renders in the second subpass */
    pipeline.subpass = 1;

    VkPipeline blend_fullscreen_pipe = VK_NULL_HANDLE;
    res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1,
                                    &pipeline, NULL, &blend_fullscreen_pipe);
    assert(res == VK_SUCCESS);

    destroy_shaders(info);
    info.pipeline = VK_NULL_HANDLE;

    /* Now we are going to render in the right half of the screen */
    viewport.x = (float)info.width / 2;
    scissor.offset.x = info.width / 2;
    rp_begin.renderArea.offset.x = info.width / 2;

    /* Use our framebuffer and render pass */
    rp_begin.framebuffer = info.framebuffers[info.current_buffer];
    rp_begin.renderPass = blend_render_pass;
    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                      blend_cube_pipe);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);
    vkCmdSetViewport(info.cmd, 0, NUM_VIEWPORTS, &viewport);
    vkCmdSetScissor(info.cmd, 0, NUM_SCISSORS, &scissor);

    /* Draw the cube blending */
    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);

    /* Advance to the next subpass */
    vkCmdNextSubpass(info.cmd, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                      blend_fullscreen_pipe);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);

    /* Adjust the viewport to be a square in the centre, just overlapping the
     * cube */
    viewport.x += 25.0f;
    viewport.y += 150.0f;
    viewport.width -= 50.0f;
    viewport.height -= 300.0f;

    vkCmdSetViewport(info.cmd, 0, NUM_VIEWPORTS, &viewport);
    vkCmdSetScissor(info.cmd, 0, NUM_SCISSORS, &scissor);

    vkCmdDraw(info.cmd, 4, 1, 0, 0);

    /* The second renderpass is complete */
    vkCmdEndRenderPass(info.cmd);
    /* VULKAN_KEY_END */

    VkImageMemoryBarrier prePresentBarrier = {};
    prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    prePresentBarrier.pNext = NULL;
    prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
    prePresentBarrier.dstAccessMask = 0;
    prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
    prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    prePresentBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    prePresentBarrier.subresourceRange.baseMipLevel = 0;
    prePresentBarrier.subresourceRange.levelCount = 1;
    prePresentBarrier.subresourceRange.baseArrayLayer = 0;
    prePresentBarrier.subresourceRange.layerCount = 1;
    prePresentBarrier.image = info.buffers[info.current_buffer].image;
    vkCmdPipelineBarrier(info.cmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
                         VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, NULL, 0, NULL,
                         1, &prePresentBarrier);

    res = vkEndCommandBuffer(info.cmd);
    const VkCommandBuffer cmd_bufs[] = {info.cmd};
    VkFenceCreateInfo fenceInfo;
    VkFence drawFence;
    fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    fenceInfo.pNext = NULL;
    fenceInfo.flags = 0;
    vkCreateFence(info.device, &fenceInfo, NULL, &drawFence);

    VkPipelineStageFlags pipe_stage_flags =
        VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkSubmitInfo submit_info[1] = {};
    submit_info[0].pNext = NULL;
    submit_info[0].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submit_info[0].waitSemaphoreCount = 1;
    submit_info[0].pWaitSemaphores = &presentCompleteSemaphore;
    submit_info[0].commandBufferCount = 1;
    submit_info[0].pCommandBuffers = cmd_bufs;
    submit_info[0].pWaitDstStageMask = &pipe_stage_flags;
    submit_info[0].signalSemaphoreCount = 0;
    submit_info[0].pSignalSemaphores = NULL;

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */

    VkPresentInfoKHR present;
    present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
    present.pNext = NULL;
    present.swapchainCount = 1;
    present.pSwapchains = &info.swap_chain;
    present.pImageIndices = &info.current_buffer;
    present.pWaitSemaphores = NULL;
    present.waitSemaphoreCount = 0;
    present.pResults = NULL;

    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    /* VULKAN_KEY_END */
    if (info.save_images)
        write_ppm(info, "drawsubpasses");

    for (uint32_t i = 0; i < info.swapchainImageCount; i++)
        vkDestroyFramebuffer(info.device, stencil_framebuffers[i], NULL);
    free(stencil_framebuffers);

    vkDestroyRenderPass(info.device, stencil_render_pass, NULL);
    vkDestroyRenderPass(info.device, blend_render_pass, NULL);

    vkDestroyPipeline(info.device, blend_cube_pipe, NULL);
    vkDestroyPipeline(info.device, blend_fullscreen_pipe, NULL);

    vkDestroyPipeline(info.device, stencil_cube_pipe, NULL);
    vkDestroyPipeline(info.device, stencil_fullscreen_pipe, NULL);

    vkDestroySemaphore(info.device, presentCompleteSemaphore, NULL);
    vkDestroyFence(info.device, drawFence, NULL);
    destroy_pipeline_cache(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
コード例 #3
0
ファイル: VulkanBase.cpp プロジェクト: bertogs/VulkanBase
void VulkanBase::createInstance() {
    // Application info init
    const VkApplicationInfo applicationInfo = {
        .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
        .pNext = NULL,
        .pApplicationName = name.c_str(),
        .applicationVersion = 1,
        .pEngineName = engineName.c_str(),
        .engineVersion = 1,
        .apiVersion = VK_API_VERSION,       //FIXME  Nvidia driver not updated to latest Vulkan Version
    };


    VkInstanceCreateInfo instanceCreateInfo = {
        .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
        .pNext = NULL,
        .flags = VK_FLAGS_NONE,
        .pApplicationInfo = &applicationInfo,
        .enabledLayerCount = 0,
        .ppEnabledLayerNames = NULL,
        .enabledExtensionCount = 0,
        .ppEnabledExtensionNames = NULL,
    };

    std::vector<const char*> enabledExtensions = { VK_KHR_SURFACE_EXTENSION_NAME, VK_KHR_XCB_SURFACE_EXTENSION_NAME};
    //Check if extensions are present
    vkUtils::checkGlobalExtensionPresent(VK_KHR_SURFACE_EXTENSION_NAME);
    vkUtils::checkGlobalExtensionPresent(VK_KHR_XCB_SURFACE_EXTENSION_NAME);

#ifdef _DEBUG
    if (enableValidation) {
        //Extensions management
        enabledExtensions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
        vkUtils::checkGlobalExtensionPresent(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);

        // Layer management
        instanceCreateInfo.enabledLayerCount = vkDebug::validationLayerCount;
        instanceCreateInfo.ppEnabledLayerNames = vkDebug::validationLayerNames;
        // Check standard debug layers are present
        for(uint32_t i = 0; i < instanceCreateInfo.enabledLayerCount; i++) {
            vkUtils::checkGlobalLayerPresent(vkDebug::validationLayerNames[i]);
        }
    }
#endif // DEBUG

    instanceCreateInfo.ppEnabledExtensionNames = enabledExtensions.data();
    instanceCreateInfo.enabledExtensionCount = (uint32_t) enabledExtensions.size();

    CHECK_RESULT(vkCreateInstance(&instanceCreateInfo, nullptr, &instance));
}




void VulkanBase::selectVkPhysicalDevice() {
    uint32_t physicalDeviceCount = 0;
    CHECK_RESULT(vkEnumeratePhysicalDevices(instance,&physicalDeviceCount,nullptr));

    if (physicalDeviceCount<=0) {
        ERROR("No physical device found");
    }

    std::vector<VkPhysicalDevice> physicalDevicesVector(physicalDeviceCount);
    CHECK_RESULT(vkEnumeratePhysicalDevices(instance,&physicalDeviceCount,physicalDevicesVector.data()));

#ifdef _DEBUG
    int deviceIndex = 0;
    for(const auto & phyDev : physicalDevicesVector) {
        VkPhysicalDeviceProperties phyDevProperties;
        vkGetPhysicalDeviceProperties(phyDev, &phyDevProperties);

        std::cout << "--- Physical device: " << phyDevProperties.deviceName << " (index: " << (deviceIndex++) << ")" << std::endl;
        std::cout << "        apiVersion: " << phyDevProperties.apiVersion << std::endl;
        std::cout << "     driverVersion: " << phyDevProperties.driverVersion << std::endl;
        std::cout << "          vendorID: " << phyDevProperties.vendorID << std::endl;
        std::cout << "          deviceID: " << phyDevProperties.deviceID << std::endl;
        std::cout << "        deviceType: ";
        switch(phyDevProperties.deviceType) {
        case VK_PHYSICAL_DEVICE_TYPE_OTHER:
            std::cout << "OTHER";
            break;
        case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU:
            std::cout << "INTEGRATED_GPU";
            break;
        case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU:
            std::cout << "DISCRETE_GPU";
            break;
        case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU:
            std::cout << "VIRTUAL_GPU";
            break;
        case VK_PHYSICAL_DEVICE_TYPE_CPU:
            std::cout << "CPU";
            break;
        default:
            std::cout << "UNKNOWN!!!";
            break;
        }

        std::cout << std::endl;
    }
#endif // _DEBUG

    physicalDevice = physicalDevicesVector.at(0);

    // Gather Physical Device Memory Properties
    vkGetPhysicalDeviceMemoryProperties(physicalDevice,&physicalDeviceMemoryProperties);

}

void VulkanBase::selectQueue() {
    uint32_t queueFamilyPropertyCount = 0;

    vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice,&queueFamilyPropertyCount,nullptr);
    if (queueFamilyPropertyCount<=0)
        ERROR("Physical device has no queue families");

    std::vector<VkQueueFamilyProperties> queueFamilyPropertiesVector(queueFamilyPropertyCount);
    vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice,&queueFamilyPropertyCount,queueFamilyPropertiesVector.data());

    uint32_t queueFamilyIndex = 0;
    int32_t selectedQueueFamilyIndex = -1;
    VkBool32 presentSupport = VK_FALSE;

#ifdef _DEBUG
    std::cout << std::endl << "--- Number of queue families " << queueFamilyPropertyCount << std::endl;
#endif // _DEBUG

    for(const auto & queueFamProp : queueFamilyPropertiesVector) {
        CHECK_RESULT(vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, queueFamilyIndex, swapchain.surface, &presentSupport));
#ifdef _DEBUG
        std::cout << "--- Properties for queue family " << queueFamilyIndex << std::endl;
        std::cout << "                     queueFlags:";

        if(queueFamProp.queueFlags & VK_QUEUE_GRAPHICS_BIT)
            std::cout << " G";
        if(queueFamProp.queueFlags & VK_QUEUE_COMPUTE_BIT)
            std::cout << " C";
        if(queueFamProp.queueFlags & VK_QUEUE_TRANSFER_BIT)
            std::cout << " T";
        if(queueFamProp.queueFlags & VK_QUEUE_SPARSE_BINDING_BIT)
            std::cout << " S";

        std::cout << '\n';
        std::cout << "                     queueCount: " << queueFamProp.queueCount << std::endl;
        std::cout << "             timestampValidBits: " << queueFamProp.timestampValidBits << std::endl;
        std::cout << "    minImageTransferGranularity: " << queueFamProp.minImageTransferGranularity.width
                  << ", " << queueFamProp.minImageTransferGranularity.height
                  << ", " << queueFamProp.minImageTransferGranularity.depth
                  << std::endl;

        std::cout << "       Supports present?: " << std::boolalpha << bool(presentSupport) << std::endl << std::endl;
#endif // _DEBUG

        if (bool(queueFamProp.queueFlags & VK_QUEUE_GRAPHICS_BIT) && presentSupport == VK_TRUE) {
            if (selectedQueueFamilyIndex < 0)
                selectedQueueFamilyIndex = queueFamilyIndex;
        }
        queueFamilyIndex++;
    }

    if (selectedQueueFamilyIndex<0)
        ERROR("No queue with both graphics and present capabilities found");

    // Create device after selecting the queue
    std::array<float,1> queuePriorities = {0.0f};

    VkDeviceQueueCreateInfo queueCreateInfo = {
        .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
        .pNext = nullptr,
        .flags = VK_FLAGS_NONE,
        .queueFamilyIndex = (uint32_t) selectedQueueFamilyIndex,
        .queueCount = 1,                            //Number of queues to create
        .pQueuePriorities = queuePriorities.data()
    };

    // Call to createDevice
    createDevice(queueCreateInfo,1);

    //Get a handle to the selected queue
    vkGetDeviceQueue(device, (uint32_t) selectedQueueFamilyIndex, 0, &queue);      //TODO get handle if using multiple queues
    queueFamilyIndex = (uint32_t) selectedQueueFamilyIndex;

}


void VulkanBase::createDevice(VkDeviceQueueCreateInfo requestedQueues, uint32_t requestedQueuesCount) {
    //Check extensions available on the selected physical device before creating it
    // Check swap chain extension
    vkUtils::checkDeviceExtensionPresent(physicalDevice,VK_KHR_SWAPCHAIN_EXTENSION_NAME);
    std::vector<const char*> enabledExtensions = {VK_KHR_SWAPCHAIN_EXTENSION_NAME};

    VkDeviceCreateInfo deviceCreateInfo = {
        .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
        .pNext = nullptr,
        .flags = VK_FLAGS_NONE,
        .queueCreateInfoCount = requestedQueuesCount,
        .pQueueCreateInfos = &requestedQueues,
        .enabledLayerCount = 0,
        .ppEnabledLayerNames = nullptr,
        .enabledExtensionCount = (uint32_t) enabledExtensions.size(),
        .ppEnabledExtensionNames = enabledExtensions.data(),
        .pEnabledFeatures = NULL
    };

#ifdef _DEBUG
    if (enableValidation) {
        deviceCreateInfo.enabledLayerCount = vkDebug::validationLayerCount;
        deviceCreateInfo.ppEnabledLayerNames = vkDebug::validationLayerNames;
        // Check standard debug layers are present on the device
        for(uint32_t i = 0; i < deviceCreateInfo.enabledLayerCount; i++) {
            vkUtils::checkGlobalLayerPresent(vkDebug::validationLayerNames[i]);
        }
    }
#endif // _DEBUG

    CHECK_RESULT(vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device));
}

void VulkanBase::createCommandPool(const uint32_t queueFamilyIndex, const VkCommandPoolCreateFlagBits createFlagBits) {
    const VkCommandPoolCreateInfo commandPoolCreateInfo= {
        .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
        .pNext = NULL,
        .flags = createFlagBits,
        .queueFamilyIndex = queueFamilyIndex
    };

    CHECK_RESULT(vkCreateCommandPool(device, &commandPoolCreateInfo,nullptr,&commandPool));

#ifdef _DEBUG
    std::cout << "\n+++ Created command pool" << std::endl;
#endif // _DEBUG
}

void VulkanBase::createSynchroItems()
{
    // Semaphores

    VkSemaphoreCreateInfo semaphoreCreateInfo = {
        .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
        .pNext = NULL,
        .flags = VK_FLAGS_NONE
    };

    // Semaphore signaled on swapchain image ready to use and wait on the queue before rendering/present
    CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &imageAcquiredSemaphore));

    // Semaphore signaled on queue rendering termination and waited on present operation
    CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &renderingCompletedSemaphore));

    // Fences

    VkFenceCreateInfo fenceCreateInfo = {
        .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
        .pNext = NULL,
        .flags = VK_FLAGS_NONE
    };

    CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &presentFence));

    #ifdef _DEBUG
    std::cout << "\n+++ Created semaphores and fences\n";
    #endif // _DEBUG
}



void VulkanBase::createCommandBuffers(VkCommandBuffer* cmdBuffer, uint32_t commandBufferCount, VkCommandBufferLevel cmdBufferLevel)
{
    const VkCommandBufferAllocateInfo commandBufferAllocateInfo = {
        .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
        .pNext = NULL,
        .commandPool = commandPool,
        .level = cmdBufferLevel,
        .commandBufferCount = commandBufferCount
    };

    CHECK_RESULT(vkAllocateCommandBuffers(device, &commandBufferAllocateInfo, cmdBuffer));

    #ifdef _DEBUG
    std::cout << "\n+++ Allocated " << commandBufferCount << " command buffers" << std::endl;
    #endif // _DEBUG
}

void VulkanBase::setupInitCommandBuffer()
{
    VkCommandBufferBeginInfo commandBufferBeginInfo = {
        .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
        .pNext = NULL,
        .flags = VK_FLAGS_NONE,
        .pInheritanceInfo = NULL
    };

    CHECK_RESULT(vkBeginCommandBuffer(initCommandBuffer, &commandBufferBeginInfo));

    // Creates an image memory barrier to change the layout for every image on the swapchain
    VkImageMemoryBarrier imageMemoryBarrier = {
        .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
        .pNext = NULL,
        .srcAccessMask = VK_FLAGS_NONE,
        .dstAccessMask = VK_FLAGS_NONE,
        .oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
        .newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
        .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
        .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
        .image = 0,
        .subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}
    };


	// Pipeline Barrier for each swapchain image
    for (const auto& image: swapchain.swapchainImagesVector){
        imageMemoryBarrier.image = image;

        vkCmdPipelineBarrier(initCommandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, //Put barrier on top of the pipeline
        VK_FLAGS_NONE,
        0, nullptr,                 // memoryBarrier
        0, nullptr,                 // bufferMemoryBarrier
        1, &imageMemoryBarrier);    // imageMemoryBarrier
    }

    CHECK_RESULT(vkEndCommandBuffer(initCommandBuffer));

    #ifdef _DEBUG
    std::cout << "\n+++ Finished recording initCommandBuffer\n";
    #endif // _DEBUG
}

void VulkanBase::setupPresentCommandBuffer(const VkImage currentSwapchainImage, const float* clearColors)
{

 VkCommandBufferBeginInfo commandBufferBeginInfo = {
        .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
        .pNext = NULL,
        .flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
        .pInheritanceInfo = NULL
    };

    CHECK_RESULT(vkBeginCommandBuffer(presentCommandBuffer, &commandBufferBeginInfo));

    VkImageMemoryBarrier imageMemoryBarrier = {
        .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
        .pNext = NULL,
        .srcAccessMask = VK_ACCESS_MEMORY_READ_BIT,
        .dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
        .oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
        .newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
        .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
        .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
        .image = currentSwapchainImage,
        .subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}
    };

    //Set barrier on top to change layout and access
    vkCmdPipelineBarrier(presentCommandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
    VK_FLAGS_NONE, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);

    VkClearColorValue clearColorValue;
    VkImageSubresourceRange imageSubresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};

    clearColorValue.float32[0] = clearColors[0];
    clearColorValue.float32[1] = clearColors[1];
    clearColorValue.float32[2] = clearColors[2];
    clearColorValue.float32[3] = 1.0f;

    // Command to clear the swapchain image
    vkCmdClearColorImage(presentCommandBuffer,currentSwapchainImage,
    VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearColorValue, 1, &imageSubresourceRange);

    /*
	 * Transition the swapchain image from VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
	 * to VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
	 */
	imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
	imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
	imageMemoryBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
	imageMemoryBarrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;

    // Set barrier end of pipeline
	vkCmdPipelineBarrier(presentCommandBuffer,
		VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
		0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier
	);

    CHECK_RESULT(vkEndCommandBuffer(presentCommandBuffer));

    #ifdef _DEBUG
    //std::cout << "\n+++ Finished recording presentCommandBuffer\n";
    #endif // _DEBUG
}

void VulkanBase::renderFrame(const float* clearColors)
{
    // Wait on previous frame fence (render too fast)
    //CHECK_RESULT(vkWaitForFences(device, 1, &presentFence, VK_TRUE, UINT64_MAX));
    //CHECK_RESULT(vkResetFences(device, 1, &presentFence));

    // Acquire next image on the swapchain
    uint32_t imageIndex = UINT64_MAX;
    CHECK_RESULT(vkAcquireNextImageKHR(device, swapchain.swapchain, UINT64_MAX, imageAcquiredSemaphore, VK_NULL_HANDLE, &imageIndex));

    // Setup the present command buffer
    setupPresentCommandBuffer(swapchain.swapchainImagesVector.at(imageIndex),clearColors);
    // Submit present command buffer to the queue
    // Waits on imageAcquiredSemaphore so it doesnt start rendering until the image from the swapchain is ready and
    // it also signals the renderingCompletedSemaphore used by the later present

    VkPipelineStageFlags pipelineStageFlags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
    VkSubmitInfo submitInfo = {
        .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
        .pNext = NULL,
        .waitSemaphoreCount = 1,
        .pWaitSemaphores = &imageAcquiredSemaphore,
        .pWaitDstStageMask = &pipelineStageFlags,
        .commandBufferCount = 1,
        .pCommandBuffers = &presentCommandBuffer,
        .signalSemaphoreCount = 1,
        .pSignalSemaphores = &renderingCompletedSemaphore
    };

    CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));

    // Present the rendered image
    VkPresentInfoKHR presentInfo = {
        .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
        .pNext = NULL,
        .waitSemaphoreCount = 1,
        .pWaitSemaphores = &renderingCompletedSemaphore,
        .swapchainCount = 1,
        .pSwapchains = &swapchain.swapchain,
        .pImageIndices = &imageIndex,
        .pResults = nullptr
    };

    CHECK_RESULT(vkQueuePresentKHR(queue,&presentInfo));

    CHECK_RESULT(vkQueueWaitIdle(queue)); //TODO Not sure this is the correct way...


}



void VulkanBase::prepare()
{
    //Allocate command Buffers
    createCommandBuffers(&initCommandBuffer, 1, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
    createCommandBuffers(&presentCommandBuffer, 1, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
    commandBuffersVector.push_back(initCommandBuffer);
    commandBuffersVector.push_back(presentCommandBuffer);
    //Initialize command Buffers
    setupInitCommandBuffer();
    // Submit initialization command buffer to the queue
    VkSubmitInfo submitInfo = {
        .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
        .pNext = nullptr,
        .waitSemaphoreCount = 0,
        .pWaitSemaphores = nullptr,
        .pWaitDstStageMask = VK_FLAGS_NONE,
        .commandBufferCount = 1,
        .pCommandBuffers = &initCommandBuffer,
        .signalSemaphoreCount = 0,
        .pSignalSemaphores = nullptr
    };

    CHECK_RESULT(vkQueueSubmit(queue,1,&submitInfo, VK_NULL_HANDLE));

    CHECK_RESULT(vkQueueWaitIdle(queue));

    vkFreeCommandBuffers(device, commandPool, 1, &initCommandBuffer);

#ifdef _DEBUG
    std::cout << "\n+++ initCommandBuffer work complete!\n";
    std::cout << "\n******* Rendering Start ******\n";
#endif // _DEBUG

}
コード例 #4
0
int sample_main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "Pipeline Cache";
    const bool depthPresent = true;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    init_texture(info, "blue.ppm");
    init_uniform_buffer(info);
    init_descriptor_and_pipeline_layouts(info, true);
    init_renderpass(info, depthPresent);
    init_shaders(info, vertShaderText, fragShaderText);
    init_framebuffers(info, depthPresent);
    init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data),
                       sizeof(g_vb_texture_Data[0]), true);
    init_descriptor_pool(info, true);
    init_descriptor_set(info, true);

    /* VULKAN_KEY_START */

    // Check disk for existing cache data
    size_t startCacheSize = 0;
    void *startCacheData = nullptr;

    std::string directoryName = get_file_directory();
    std::string readFileName = directoryName + "pipeline_cache_data.bin";
    FILE *pReadFile = fopen(readFileName.c_str(), "rb");

    if (pReadFile) {

        // Determine cache size
        fseek(pReadFile, 0, SEEK_END);
        startCacheSize = ftell(pReadFile);
        rewind(pReadFile);

        // Allocate memory to hold the initial cache data
        startCacheData = (char *)malloc(sizeof(char) * startCacheSize);
        if (startCacheData == nullptr) {
            fputs("Memory error", stderr);
            exit(EXIT_FAILURE);
        }

        // Read the data into our buffer
        size_t result = fread(startCacheData, 1, startCacheSize, pReadFile);
        if (result != startCacheSize) {
            fputs("Reading error", stderr);
            free(startCacheData);
            exit(EXIT_FAILURE);
        }

        // Clean up and print results
        fclose(pReadFile);
        printf("  Pipeline cache HIT!\n");
        printf("  cacheData loaded from %s\n", readFileName.c_str());

    } else {
        // No cache found on disk
        printf("  Pipeline cache miss!\n");
    }

    if (startCacheData != nullptr) {
        // clang-format off
        //
        // Check for cache validity
        //
        // TODO: Update this as the spec evolves. The fields are not defined by the header.
        //
        // The code below supports SDK 0.10 Vulkan spec, which contains the following table:
        //
        // Offset	 Size            Meaning
        // ------    ------------    ------------------------------------------------------------------
        //      0               4    a device ID equal to VkPhysicalDeviceProperties::DeviceId written
        //                           as a stream of bytes, with the least significant byte first
        //
        //      4    VK_UUID_SIZE    a pipeline cache ID equal to VkPhysicalDeviceProperties::pipelineCacheUUID
        //
        //
        // The code must be updated for latest Vulkan spec, which contains the following table:
        //
        // Offset	 Size            Meaning
        // ------    ------------    ------------------------------------------------------------------
        //      0               4    length in bytes of the entire pipeline cache header written as a
        //                           stream of bytes, with the least significant byte first
        //      4               4    a VkPipelineCacheHeaderVersion value written as a stream of bytes,
        //                           with the least significant byte first
        //      8               4    a vendor ID equal to VkPhysicalDeviceProperties::vendorID written
        //                           as a stream of bytes, with the least significant byte first
        //     12               4    a device ID equal to VkPhysicalDeviceProperties::deviceID written
        //                           as a stream of bytes, with the least significant byte first
        //     16    VK_UUID_SIZE    a pipeline cache ID equal to VkPhysicalDeviceProperties::pipelineCacheUUID
        //
        // clang-format on
        uint32_t headerLength = 0;
        uint32_t cacheHeaderVersion = 0;
        uint32_t vendorID = 0;
        uint32_t deviceID = 0;
        uint8_t pipelineCacheUUID[VK_UUID_SIZE] = {};

        memcpy(&headerLength, (uint8_t *)startCacheData + 0, 4);
        memcpy(&cacheHeaderVersion, (uint8_t *)startCacheData + 4, 4);
        memcpy(&vendorID, (uint8_t *)startCacheData + 8, 4);
        memcpy(&deviceID, (uint8_t *)startCacheData + 12, 4);
        memcpy(pipelineCacheUUID, (uint8_t *)startCacheData + 16, VK_UUID_SIZE);

        // Check each field and report bad values before freeing existing cache
        bool badCache = false;

        if (headerLength <= 0) {
            badCache = true;
            printf("  Bad header length in %s.\n", readFileName.c_str());
            printf("    Cache contains: 0x%.8x\n", headerLength);
        }

        if (cacheHeaderVersion != VK_PIPELINE_CACHE_HEADER_VERSION_ONE) {
            badCache = true;
            printf("  Unsupported cache header version in %s.\n", readFileName.c_str());
            printf("    Cache contains: 0x%.8x\n", cacheHeaderVersion);
        }

        if (vendorID != info.gpu_props.vendorID) {
            badCache = true;
            printf("  Vendor ID mismatch in %s.\n", readFileName.c_str());
            printf("    Cache contains: 0x%.8x\n", vendorID);
            printf("    Driver expects: 0x%.8x\n", info.gpu_props.vendorID);
        }

        if (deviceID != info.gpu_props.deviceID) {
            badCache = true;
            printf("  Device ID mismatch in %s.\n", readFileName.c_str());
            printf("    Cache contains: 0x%.8x\n", deviceID);
            printf("    Driver expects: 0x%.8x\n", info.gpu_props.deviceID);
        }

        if (memcmp(pipelineCacheUUID, info.gpu_props.pipelineCacheUUID,
                   sizeof(pipelineCacheUUID)) != 0) {
            badCache = true;
            printf("  UUID mismatch in %s.\n", readFileName.c_str());
            printf("    Cache contains: ");
            print_UUID(pipelineCacheUUID);
            printf("\n");
            printf("    Driver expects: ");
            print_UUID(info.gpu_props.pipelineCacheUUID);
            printf("\n");
        }

        if (badCache) {
            // Don't submit initial cache data if any version info is incorrect
            free(startCacheData);
            startCacheSize = 0;
            startCacheData = nullptr;

            // And clear out the old cache file for use in next run
            printf("  Deleting cache entry %s to repopulate.\n", readFileName.c_str());
            if (remove(readFileName.c_str()) != 0) {
                fputs("Reading error", stderr);
                exit(EXIT_FAILURE);
            }
        }
    }

    // Feed the initial cache data into pipeline creation
    VkPipelineCacheCreateInfo pipelineCache;
    pipelineCache.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
    pipelineCache.pNext = NULL;
    pipelineCache.initialDataSize = startCacheSize;
    pipelineCache.pInitialData = startCacheData;
    pipelineCache.flags = 0;
    res = vkCreatePipelineCache(info.device, &pipelineCache, nullptr,
                                &info.pipelineCache);
    assert(res == VK_SUCCESS);

    // Free our initialData now that pipeline has been created
    free(startCacheData);

    // Time (roughly) taken to create the graphics pipeline
    timestamp_t start = get_milliseconds();
    init_pipeline(info, depthPresent);
    timestamp_t elapsed = get_milliseconds() - start;
    printf("  vkCreateGraphicsPipeline time: %0.f ms\n", (double)elapsed);

    // Begin standard draw stuff

    init_presentable_image(info);
    VkClearValue clear_values[2];
    init_clear_color_and_depth(info, clear_values);
    VkRenderPassBeginInfo rp_begin;
    init_render_pass_begin_info(info, rp_begin);
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;
    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);
    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);
    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);
    init_viewports(info);
    init_scissors(info);
    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);
    vkCmdEndRenderPass(info.cmd);
    execute_pre_present_barrier(info);
    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);
    VkFence drawFence = {};
    init_fence(info, drawFence);
    VkPipelineStageFlags pipe_stage_flags =
        VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkSubmitInfo submit_info = {};
    init_submit_info(info, submit_info, pipe_stage_flags);
    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence);
    assert(res == VK_SUCCESS);
    /* Now present the image in the window */
    VkPresentInfoKHR present = {};
    init_present_info(info, present);
    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);
    wait_seconds(1);
    if (info.save_images)
        write_ppm(info, "pipeline_cache");

    // End standard draw stuff

    if (startCacheData) {
        // TODO: Create another pipeline, preferably different from the first
        // one and merge it here.  Then store the merged one.
    }

    // Store away the cache that we've populated.  This could conceivably happen
    // earlier, depends on when the pipeline cache stops being populated
    // internally.
    size_t endCacheSize = 0;
    void *endCacheData = nullptr;

    // Call with nullptr to get cache size
    res = vkGetPipelineCacheData(info.device, info.pipelineCache, &endCacheSize,
                           nullptr);
    assert(res == VK_SUCCESS);

    // Allocate memory to hold the populated cache data
    endCacheData = (char *)malloc(sizeof(char) * endCacheSize);
    if (!endCacheData) {
        fputs("Memory error", stderr);
        exit(EXIT_FAILURE);
    }

    // Call again with pointer to buffer
    res = vkGetPipelineCacheData(info.device, info.pipelineCache, &endCacheSize,
                           endCacheData);
    assert(res == VK_SUCCESS);

    // Write the file to disk, overwriting whatever was there
    FILE *pWriteFile;
    std::string writeFileName = directoryName + "pipeline_cache_data.bin";
    pWriteFile = fopen(writeFileName.c_str(), "wb");
    if (pWriteFile) {
        fwrite(endCacheData, sizeof(char), endCacheSize, pWriteFile);
        fclose(pWriteFile);
        printf("  cacheData written to %s\n", writeFileName.c_str());
    } else {
        // Something bad happened
        printf("  Unable to write cache data to disk!\n");
    }

    /* VULKAN_KEY_END */

    vkDestroyFence(info.device, drawFence, NULL);
    vkDestroySemaphore(info.device, info.presentCompleteSemaphore, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_textures(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
コード例 #5
0
int sample_main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    bool U_ASSERT_ONLY pass;
    struct sample_info info = {};
    char sample_title[] = "Draw Cube";
    const bool depthPresent = true;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    if (info.gpu_props.limits.maxDescriptorSetUniformBuffersDynamic < 1) {
        std::cout << "No dynamic uniform buffers supported\n";
        exit(-1);
    }
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    init_renderpass(info, depthPresent);
    init_shaders(info, vertShaderText, fragShaderText);
    init_framebuffers(info, depthPresent);
    init_vertex_buffer(info, g_vb_solid_face_colors_Data, sizeof(g_vb_solid_face_colors_Data),
                       sizeof(g_vb_solid_face_colors_Data[0]), false);

    /* Set up uniform buffer with 2 transform matrices in it */
    info.Projection = glm::perspective(glm::radians(45.0f), 1.0f, 0.1f, 100.0f);
    info.View = glm::lookAt(glm::vec3(0, 3, -10),  // Camera is at (0,3,-10), in World Space
                            glm::vec3(0, 0, 0),    // and looks at the origin
                            glm::vec3(0, -1, 0)    // Head is up (set to 0,-1,0 to look upside-down)
                            );
    info.Model = glm::mat4(1.0f);
    // Vulkan clip space has inverted Y and half Z.
    // clang-format off
    info.Clip = glm::mat4(1.0f, 0.0f, 0.0f, 0.0f,
                          0.0f,-1.0f, 0.0f, 0.0f,
                          0.0f, 0.0f, 0.5f, 0.0f,
                          0.0f, 0.0f, 0.5f, 1.0f);
    // clang-format on
    info.MVP = info.Clip * info.Projection * info.View * info.Model;
    /* VULKAN_KEY_START */
    info.Model = glm::translate(info.Model, glm::vec3(-1.5, 1.5, -1.5));
    glm::mat4 MVP2 = info.Clip * info.Projection * info.View * info.Model;
    VkDeviceSize buf_size = sizeof(info.MVP);

    if (info.gpu_props.limits.minUniformBufferOffsetAlignment)
        buf_size = (buf_size + info.gpu_props.limits.minUniformBufferOffsetAlignment - 1) &
                   ~(info.gpu_props.limits.minUniformBufferOffsetAlignment - 1);

    VkBufferCreateInfo buf_info = {};
    buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
    buf_info.pNext = NULL;
    buf_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
    buf_info.size = 2 * buf_size;
    buf_info.queueFamilyIndexCount = 0;
    buf_info.pQueueFamilyIndices = NULL;
    buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
    buf_info.flags = 0;
    res = vkCreateBuffer(info.device, &buf_info, NULL, &info.uniform_data.buf);
    assert(res == VK_SUCCESS);

    VkMemoryRequirements mem_reqs;
    vkGetBufferMemoryRequirements(info.device, info.uniform_data.buf, &mem_reqs);

    VkMemoryAllocateInfo alloc_info = {};
    alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
    alloc_info.pNext = NULL;
    alloc_info.memoryTypeIndex = 0;

    alloc_info.allocationSize = mem_reqs.size;
    pass = memory_type_from_properties(info, mem_reqs.memoryTypeBits,
                                       VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
                                       &alloc_info.memoryTypeIndex);
    assert(pass && "No mappable, coherent memory");

    res = vkAllocateMemory(info.device, &alloc_info, NULL, &(info.uniform_data.mem));
    assert(res == VK_SUCCESS);

    /* Map the buffer memory and copy both matrices */
    uint8_t *pData;
    res = vkMapMemory(info.device, info.uniform_data.mem, 0, mem_reqs.size, 0, (void **)&pData);
    assert(res == VK_SUCCESS);

    memcpy(pData, &info.MVP, sizeof(info.MVP));

    pData += buf_size;
    memcpy(pData, &MVP2, sizeof(MVP2));

    vkUnmapMemory(info.device, info.uniform_data.mem);

    res = vkBindBufferMemory(info.device, info.uniform_data.buf, info.uniform_data.mem, 0);
    assert(res == VK_SUCCESS);

    info.uniform_data.buffer_info.buffer = info.uniform_data.buf;
    info.uniform_data.buffer_info.offset = 0;
    info.uniform_data.buffer_info.range = buf_size;

    /* Init desciptor and pipeline layouts - descriptor type is
     * UNIFORM_BUFFER_DYNAMIC */
    VkDescriptorSetLayoutBinding layout_bindings[2];
    layout_bindings[0].binding = 0;
    layout_bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
    layout_bindings[0].descriptorCount = 1;
    layout_bindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
    layout_bindings[0].pImmutableSamplers = NULL;

    /* Next take layout bindings and use them to create a descriptor set layout
     */
    VkDescriptorSetLayoutCreateInfo descriptor_layout = {};
    descriptor_layout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
    descriptor_layout.pNext = NULL;
    descriptor_layout.bindingCount = 1;
    descriptor_layout.pBindings = layout_bindings;

    info.desc_layout.resize(NUM_DESCRIPTOR_SETS);
    res = vkCreateDescriptorSetLayout(info.device, &descriptor_layout, NULL, info.desc_layout.data());
    assert(res == VK_SUCCESS);

    /* Now use the descriptor layout to create a pipeline layout */
    VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {};
    pPipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
    pPipelineLayoutCreateInfo.pNext = NULL;
    pPipelineLayoutCreateInfo.pushConstantRangeCount = 0;
    pPipelineLayoutCreateInfo.pPushConstantRanges = NULL;
    pPipelineLayoutCreateInfo.setLayoutCount = NUM_DESCRIPTOR_SETS;
    pPipelineLayoutCreateInfo.pSetLayouts = info.desc_layout.data();

    res = vkCreatePipelineLayout(info.device, &pPipelineLayoutCreateInfo, NULL, &info.pipeline_layout);
    assert(res == VK_SUCCESS);

    /* Create descriptor pool with UNIFOM_BUFFER_DYNAMIC type */
    VkDescriptorPoolSize type_count[1];
    type_count[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
    type_count[0].descriptorCount = 1;

    VkDescriptorPoolCreateInfo descriptor_pool = {};
    descriptor_pool.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
    descriptor_pool.pNext = NULL;
    descriptor_pool.maxSets = 1;
    descriptor_pool.poolSizeCount = 1;
    descriptor_pool.pPoolSizes = type_count;

    res = vkCreateDescriptorPool(info.device, &descriptor_pool, NULL, &info.desc_pool);
    assert(res == VK_SUCCESS);

    VkDescriptorSetAllocateInfo desc_alloc_info[1];
    desc_alloc_info[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
    desc_alloc_info[0].pNext = NULL;
    desc_alloc_info[0].descriptorPool = info.desc_pool;
    desc_alloc_info[0].descriptorSetCount = NUM_DESCRIPTOR_SETS;
    desc_alloc_info[0].pSetLayouts = info.desc_layout.data();

    /* Allocate descriptor set with UNIFORM_BUFFER_DYNAMIC */
    info.desc_set.resize(NUM_DESCRIPTOR_SETS);
    res = vkAllocateDescriptorSets(info.device, desc_alloc_info, info.desc_set.data());
    assert(res == VK_SUCCESS);

    VkWriteDescriptorSet writes[1];

    writes[0] = {};
    writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    writes[0].pNext = NULL;
    writes[0].dstSet = info.desc_set[0];
    writes[0].descriptorCount = 1;
    writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
    writes[0].pBufferInfo = &info.uniform_data.buffer_info;
    writes[0].dstArrayElement = 0;
    writes[0].dstBinding = 0;

    vkUpdateDescriptorSets(info.device, 1, writes, 0, NULL);

    init_pipeline_cache(info);
    init_pipeline(info, depthPresent);

    VkClearValue clear_values[2];
    clear_values[0].color.float32[0] = 0.2f;
    clear_values[0].color.float32[1] = 0.2f;
    clear_values[0].color.float32[2] = 0.2f;
    clear_values[0].color.float32[3] = 0.2f;
    clear_values[1].depthStencil.depth = 1.0f;
    clear_values[1].depthStencil.stencil = 0;

    VkSemaphore imageAcquiredSemaphore;
    VkSemaphoreCreateInfo imageAcquiredSemaphoreCreateInfo;
    imageAcquiredSemaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    imageAcquiredSemaphoreCreateInfo.pNext = NULL;
    imageAcquiredSemaphoreCreateInfo.flags = 0;

    res = vkCreateSemaphore(info.device, &imageAcquiredSemaphoreCreateInfo, NULL, &imageAcquiredSemaphore);
    assert(res == VK_SUCCESS);

    // Get the index of the next available swapchain image:
    res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX, imageAcquiredSemaphore, VK_NULL_HANDLE,
                                &info.current_buffer);
    // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR
    // return codes
    assert(res == VK_SUCCESS);

    VkRenderPassBeginInfo rp_begin;
    rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
    rp_begin.pNext = NULL;
    rp_begin.renderPass = info.render_pass;
    rp_begin.framebuffer = info.framebuffers[info.current_buffer];
    rp_begin.renderArea.offset.x = 0;
    rp_begin.renderArea.offset.y = 0;
    rp_begin.renderArea.extent.width = info.width;
    rp_begin.renderArea.extent.height = info.height;
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);

    /* The first draw should use the first matrix in the buffer */
    uint32_t uni_offsets[1] = {0};
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 1, uni_offsets);

    const VkDeviceSize vtx_offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, vtx_offsets);

    init_viewports(info);
    init_scissors(info);

    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);

    uni_offsets[0] = (uint32_t)buf_size; /* The second draw should use the
                                            second matrix in the buffer */
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 1, uni_offsets);
    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);

    vkCmdEndRenderPass(info.cmd);
    res = vkEndCommandBuffer(info.cmd);
    const VkCommandBuffer cmd_bufs[] = {info.cmd};
    VkFenceCreateInfo fenceInfo;
    VkFence drawFence;
    fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    fenceInfo.pNext = NULL;
    fenceInfo.flags = 0;
    vkCreateFence(info.device, &fenceInfo, NULL, &drawFence);

    VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
    VkSubmitInfo submit_info[1] = {};
    submit_info[0].pNext = NULL;
    submit_info[0].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submit_info[0].waitSemaphoreCount = 1;
    submit_info[0].pWaitSemaphores = &imageAcquiredSemaphore;
    submit_info[0].pWaitDstStageMask = &pipe_stage_flags;
    submit_info[0].commandBufferCount = 1;
    submit_info[0].pCommandBuffers = cmd_bufs;
    submit_info[0].signalSemaphoreCount = 0;
    submit_info[0].pSignalSemaphores = NULL;

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.graphics_queue, 1, submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */

    VkPresentInfoKHR present;
    present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
    present.pNext = NULL;
    present.swapchainCount = 1;
    present.pSwapchains = &info.swap_chain;
    present.pImageIndices = &info.current_buffer;
    present.pWaitSemaphores = NULL;
    present.waitSemaphoreCount = 0;
    present.pResults = NULL;

    /* Make sure command buffer is finished before presenting */
    do {
        res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.present_queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    /* VULKAN_KEY_END */
    if (info.save_images) write_ppm(info, "dynamicuniform");

    vkDestroySemaphore(info.device, imageAcquiredSemaphore, NULL);
    vkDestroyFence(info.device, drawFence, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
コード例 #6
0
int sample_main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "Copy/Blit Image";
    VkImageCreateInfo image_info;
    VkImage bltSrcImage;
    VkImage bltDstImage;
    VkMemoryRequirements memReq;
    VkMemoryAllocateInfo memAllocInfo;
    VkDeviceMemory dmem;
    unsigned char *pImgMem;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 640, 640);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);

    VkSurfaceCapabilitiesKHR surfCapabilities;
    res = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(info.gpus[0], info.surface,
                                                    &surfCapabilities);
    if (!(surfCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
        std::cout << "Surface cannot be destination of blit - abort \n";
        exit(-1);
    }

    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info,  VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
                           VK_IMAGE_USAGE_TRANSFER_DST_BIT);

    /* VULKAN_KEY_START */

    VkFormatProperties formatProps;
    vkGetPhysicalDeviceFormatProperties(info.gpus[0], info.format,
                                        &formatProps);
    assert(
        (formatProps.linearTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT) &&
        "Format cannot be used as transfer source");

    VkSemaphore presentCompleteSemaphore;
    VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo;
    presentCompleteSemaphoreCreateInfo.sType =
        VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    presentCompleteSemaphoreCreateInfo.pNext = NULL;
    presentCompleteSemaphoreCreateInfo.flags = 0;

    res = vkCreateSemaphore(info.device, &presentCompleteSemaphoreCreateInfo,
                            NULL, &presentCompleteSemaphore);
    assert(res == VK_SUCCESS);

    // Get the index of the next available swapchain image:
    res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX,
                                presentCompleteSemaphore, VK_NULL_HANDLE,
                                &info.current_buffer);
    // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR
    // return codes
    assert(res == VK_SUCCESS);

    set_image_layout(info, info.buffers[info.current_buffer].image,
                     VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
                     VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);

    // Create an image, map it, and write some values to the image

    image_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
    image_info.pNext = NULL;
    image_info.imageType = VK_IMAGE_TYPE_2D;
    image_info.format = info.format;
    image_info.extent.width = info.width;
    image_info.extent.height = info.height;
    image_info.extent.depth = 1;
    image_info.mipLevels = 1;
    image_info.arrayLayers = 1;
    image_info.samples = NUM_SAMPLES;
    image_info.queueFamilyIndexCount = 0;
    image_info.pQueueFamilyIndices = NULL;
    image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
    image_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
    image_info.flags = 0;
    image_info.tiling = VK_IMAGE_TILING_LINEAR;
    image_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
    res = vkCreateImage(info.device, &image_info, NULL, &bltSrcImage);

    memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
    memAllocInfo.pNext = NULL;

    vkGetImageMemoryRequirements(info.device, bltSrcImage, &memReq);
    bool pass = memory_type_from_properties(info, memReq.memoryTypeBits,
                                            VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
                                            &memAllocInfo.memoryTypeIndex);
    assert(pass);
    memAllocInfo.allocationSize = memReq.size;
    res = vkAllocateMemory(info.device, &memAllocInfo, NULL, &dmem);
    res = vkBindImageMemory(info.device, bltSrcImage, dmem, 0);
    set_image_layout(info, bltSrcImage, VK_IMAGE_ASPECT_COLOR_BIT,
                     VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL);

    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    VkFence cmdFence;
    init_fence(info, cmdFence);
    VkPipelineStageFlags pipe_stage_flags =
        VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkSubmitInfo submit_info = {};
    submit_info.pNext = NULL;
    submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submit_info.waitSemaphoreCount = 1;
    submit_info.pWaitSemaphores = &presentCompleteSemaphore;
    submit_info.pWaitDstStageMask = &pipe_stage_flags;
    submit_info.commandBufferCount = 1;
    submit_info.pCommandBuffers = &info.cmd;
    submit_info.signalSemaphoreCount = 0;
    submit_info.pSignalSemaphores = NULL;

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, &submit_info, cmdFence);
    assert(res == VK_SUCCESS);

    /* Make sure command buffer is finished before mapping */
    do {
        res =
            vkWaitForFences(info.device, 1, &cmdFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    vkDestroyFence(info.device, cmdFence, NULL);

    res = vkMapMemory(info.device, dmem, 0, memReq.size, 0, (void **)&pImgMem);
    // Checkerboard of 8x8 pixel squares
    for (int row = 0; row < info.height; row++) {
        for (int col = 0; col < info.width; col++) {
            unsigned char rgb = (((row & 0x8) == 0) ^ ((col & 0x8) == 0)) * 255;
            pImgMem[0] = rgb;
            pImgMem[1] = rgb;
            pImgMem[2] = rgb;
            pImgMem[3] = 255;
            pImgMem += 4;
        }
    }

    // Flush the mapped memory and then unmap it  Assume it isn't coherent since
    // we didn't really confirm
    VkMappedMemoryRange memRange;
    memRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
    memRange.pNext = NULL;
    memRange.memory = dmem;
    memRange.offset = 0;
    memRange.size = memReq.size;
    res = vkFlushMappedMemoryRanges(info.device, 1, &memRange);

    vkUnmapMemory(info.device, dmem);

    vkResetCommandBuffer(info.cmd, 0);
    execute_begin_command_buffer(info);
    set_image_layout(info, bltSrcImage, VK_IMAGE_ASPECT_COLOR_BIT,
                     VK_IMAGE_LAYOUT_GENERAL,
                     VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);

    bltDstImage = info.buffers[info.current_buffer].image;
    // init_swap_chain will create the images as color attachment optimal
    // but we want transfer dst optimal
    set_image_layout(info, bltDstImage, VK_IMAGE_ASPECT_COLOR_BIT,
                     VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
                     VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);

    // Do a 32x32 blit to all of the dst image - should get big squares
    VkImageBlit region;
    region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    region.srcSubresource.mipLevel = 0;
    region.srcSubresource.baseArrayLayer = 0;
    region.srcSubresource.layerCount = 1;
    region.srcOffsets[0].x = 0;
    region.srcOffsets[0].y = 0;
    region.srcOffsets[0].z = 0;
    region.srcOffsets[1].x = 32;
    region.srcOffsets[1].y = 32;
    region.srcOffsets[1].z = 1;
    region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    region.dstSubresource.mipLevel = 0;
    region.dstSubresource.baseArrayLayer = 0;
    region.dstSubresource.layerCount = 1;
    region.dstOffsets[0].x = 0;
    region.dstOffsets[0].y = 0;
    region.dstOffsets[0].z = 0;
    region.dstOffsets[1].x = info.width;
    region.dstOffsets[1].y = info.height;
    region.dstOffsets[1].z = 1;

    vkCmdBlitImage(info.cmd, bltSrcImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
                   bltDstImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
                   &region, VK_FILTER_LINEAR);

    // Do a image copy to part of the dst image - checks should stay small
    VkImageCopy cregion;
    cregion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    cregion.srcSubresource.mipLevel = 0;
    cregion.srcSubresource.baseArrayLayer = 0;
    cregion.srcSubresource.layerCount = 1;
    cregion.srcOffset.x = 0;
    cregion.srcOffset.y = 0;
    cregion.srcOffset.z = 0;
    cregion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    cregion.dstSubresource.mipLevel = 0;
    cregion.dstSubresource.baseArrayLayer = 0;
    cregion.dstSubresource.layerCount = 1;
    cregion.dstOffset.x = 256;
    cregion.dstOffset.y = 256;
    cregion.dstOffset.z = 0;
    cregion.extent.width = 128;
    cregion.extent.height = 128;
    cregion.extent.depth = 1;

    vkCmdCopyImage(info.cmd, bltSrcImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
                   bltDstImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
                   &cregion);

    VkImageMemoryBarrier prePresentBarrier = {};
    prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    prePresentBarrier.pNext = NULL;
    prePresentBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
    prePresentBarrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
    prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
    prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
    prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    prePresentBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    prePresentBarrier.subresourceRange.baseMipLevel = 0;
    prePresentBarrier.subresourceRange.levelCount = 1;
    prePresentBarrier.subresourceRange.baseArrayLayer = 0;
    prePresentBarrier.subresourceRange.layerCount = 1;
    prePresentBarrier.image = info.buffers[info.current_buffer].image;
    vkCmdPipelineBarrier(info.cmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
                         VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0,
                         NULL, 1, &prePresentBarrier);

    res = vkEndCommandBuffer(info.cmd);
    VkFenceCreateInfo fenceInfo;
    VkFence drawFence;
    fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    fenceInfo.pNext = NULL;
    fenceInfo.flags = 0;
    vkCreateFence(info.device, &fenceInfo, NULL, &drawFence);

    submit_info.pNext = NULL;
    submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submit_info.waitSemaphoreCount = 0;
    submit_info.pWaitSemaphores = NULL;
    submit_info.pWaitDstStageMask = NULL;
    submit_info.commandBufferCount = 1;
    submit_info.pCommandBuffers = &info.cmd;
    submit_info.signalSemaphoreCount = 0;
    submit_info.pSignalSemaphores = NULL;

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence);
    assert(res == VK_SUCCESS);

    res = vkQueueWaitIdle(info.queue);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */

    VkPresentInfoKHR present;
    present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
    present.pNext = NULL;
    present.swapchainCount = 1;
    present.pSwapchains = &info.swap_chain;
    present.pImageIndices = &info.current_buffer;
    present.pWaitSemaphores = NULL;
    present.waitSemaphoreCount = 0;
    present.pResults = NULL;

    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    /* VULKAN_KEY_END */
    if (info.save_images)
        write_ppm(info, "copyblitimage");

    vkDestroySemaphore(info.device, presentCompleteSemaphore, NULL);
    vkDestroyFence(info.device, drawFence, NULL);
    vkDestroyImage(info.device, bltSrcImage, NULL);
    vkFreeMemory(info.device, dmem, NULL);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
コード例 #7
0
int sample_main() {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "Secondary command buffers";
    const bool depthPresent = true;

    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    init_uniform_buffer(info);
    init_descriptor_and_pipeline_layouts(info, true);
    init_renderpass(info, depthPresent);
    init_shaders(info, vertShaderText, fragShaderText);
    init_framebuffers(info, depthPresent);
    init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data),
                       sizeof(g_vb_texture_Data[0]), true);
    init_pipeline_cache(info);
    init_pipeline(info, depthPresent);

    // we have to set up a couple of things by hand, but this
    // isn't any different to other examples

    // get two different textures
    init_texture(info, "green.ppm");
    VkDescriptorImageInfo greenTex = info.texture_data.image_info;

    init_texture(info, "lunarg.ppm");
    VkDescriptorImageInfo lunargTex = info.texture_data.image_info;

    // create two identical descriptor sets, each with a different texture but
    // identical UBOa
    VkDescriptorPoolSize pool_size[2];
    pool_size[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    pool_size[0].descriptorCount = 2;
    pool_size[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
    pool_size[1].descriptorCount = 2;

    VkDescriptorPoolCreateInfo descriptor_pool = {};
    descriptor_pool.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
    descriptor_pool.pNext = NULL;
    descriptor_pool.flags = 0;
    descriptor_pool.maxSets = 2;
    descriptor_pool.poolSizeCount = 2;
    descriptor_pool.pPoolSizes = pool_size;

    res = vkCreateDescriptorPool(info.device, &descriptor_pool, NULL,
                                 &info.desc_pool);
    assert(res == VK_SUCCESS);

    VkDescriptorSetLayout layouts[] = {info.desc_layout[0],
                                       info.desc_layout[0]};

    VkDescriptorSetAllocateInfo alloc_info[1];
    alloc_info[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
    alloc_info[0].pNext = NULL;
    alloc_info[0].descriptorPool = info.desc_pool;
    alloc_info[0].descriptorSetCount = 2;
    alloc_info[0].pSetLayouts = layouts;

    info.desc_set.resize(2);
    res =
        vkAllocateDescriptorSets(info.device, alloc_info, info.desc_set.data());
    assert(res == VK_SUCCESS);

    VkWriteDescriptorSet writes[2];

    writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    writes[0].pNext = NULL;
    writes[0].dstSet = info.desc_set[0];
    writes[0].descriptorCount = 1;
    writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    writes[0].pBufferInfo = &info.uniform_data.buffer_info;
    writes[0].dstArrayElement = 0;
    writes[0].dstBinding = 0;

    writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    writes[1].pNext = NULL;
    writes[1].dstSet = info.desc_set[0];
    writes[1].dstBinding = 1;
    writes[1].descriptorCount = 1;
    writes[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
    writes[1].pImageInfo = &greenTex;
    writes[1].dstArrayElement = 0;

    vkUpdateDescriptorSets(info.device, 2, writes, 0, NULL);

    writes[0].dstSet = writes[1].dstSet = info.desc_set[1];
    writes[1].pImageInfo = &lunargTex;

    vkUpdateDescriptorSets(info.device, 2, writes, 0, NULL);

    /* VULKAN_KEY_START */

    // create four secondary command buffers, for each quadrant of the screen

    VkCommandBufferAllocateInfo cmdalloc = {};
    cmdalloc.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
    cmdalloc.pNext = NULL;
    cmdalloc.commandPool = info.cmd_pool;
    cmdalloc.level = VK_COMMAND_BUFFER_LEVEL_SECONDARY;
    cmdalloc.commandBufferCount = 4;

    VkCommandBuffer secondary_cmds[4];

    res = vkAllocateCommandBuffers(info.device, &cmdalloc, secondary_cmds);
    assert(res == VK_SUCCESS);

    VkClearValue clear_values[2];
    clear_values[0].color.float32[0] = 0.2f;
    clear_values[0].color.float32[1] = 0.2f;
    clear_values[0].color.float32[2] = 0.2f;
    clear_values[0].color.float32[3] = 0.2f;
    clear_values[1].depthStencil.depth = 1.0f;
    clear_values[1].depthStencil.stencil = 0;

    VkSemaphore presentCompleteSemaphore;
    VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo;
    presentCompleteSemaphoreCreateInfo.sType =
        VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    presentCompleteSemaphoreCreateInfo.pNext = NULL;
    presentCompleteSemaphoreCreateInfo.flags = 0;

    res = vkCreateSemaphore(info.device, &presentCompleteSemaphoreCreateInfo,
                            NULL, &presentCompleteSemaphore);
    assert(res == VK_SUCCESS);

    // Get the index of the next available swapchain image:
    res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX,
                                presentCompleteSemaphore, NULL,
                                &info.current_buffer);
    // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR
    // return codes
    assert(res == VK_SUCCESS);

    const VkDeviceSize offsets[1] = {0};

    VkViewport viewport;
    viewport.height = 200.0f;
    viewport.width = 200.0f;
    viewport.minDepth = (float)0.0f;
    viewport.maxDepth = (float)1.0f;
    viewport.x = 0;
    viewport.y = 0;

    VkRect2D scissor;
    scissor.extent.width = info.width;
    scissor.extent.height = info.height;
    scissor.offset.x = 0;
    scissor.offset.y = 0;

    // now we record four separate command buffers, one for each quadrant of the
    // screen
    VkCommandBufferInheritanceInfo cmd_buf_inheritance_info = {};
    cmd_buf_inheritance_info.sType =
        VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO,
    cmd_buf_inheritance_info.pNext = NULL;
    cmd_buf_inheritance_info.renderPass = info.render_pass;
    cmd_buf_inheritance_info.subpass = 0;
    cmd_buf_inheritance_info.framebuffer =
        info.framebuffers[info.current_buffer];
    cmd_buf_inheritance_info.occlusionQueryEnable = VK_FALSE;
    cmd_buf_inheritance_info.queryFlags = 0;
    cmd_buf_inheritance_info.pipelineStatistics = 0;

    VkCommandBufferBeginInfo secondary_begin = {};
    secondary_begin.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
    secondary_begin.pNext = NULL;
    secondary_begin.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT |
                            VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
    secondary_begin.pInheritanceInfo = &cmd_buf_inheritance_info;

    for (int i = 0; i < 4; i++) {
        vkBeginCommandBuffer(secondary_cmds[i], &secondary_begin);

        vkCmdBindPipeline(secondary_cmds[i], VK_PIPELINE_BIND_POINT_GRAPHICS,
                          info.pipeline);
        vkCmdBindDescriptorSets(secondary_cmds[i],
                                VK_PIPELINE_BIND_POINT_GRAPHICS,
                                info.pipeline_layout, 0, 1,
                                &info.desc_set[i == 0 || i == 3], 0, NULL);

        vkCmdBindVertexBuffers(secondary_cmds[i], 0, 1, &info.vertex_buffer.buf,
                               offsets);

        viewport.x = 25.0f + 250.0f * (i % 2);
        viewport.y = 25.0f + 250.0f * (i / 2);
        vkCmdSetViewport(secondary_cmds[i], 0, NUM_VIEWPORTS, &viewport);

        vkCmdSetScissor(secondary_cmds[i], 0, NUM_SCISSORS, &scissor);

        vkCmdDraw(secondary_cmds[i], 12 * 3, 1, 0, 0);

        vkEndCommandBuffer(secondary_cmds[i]);
    }

    VkRenderPassBeginInfo rp_begin;
    rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
    rp_begin.pNext = NULL;
    rp_begin.renderPass = info.render_pass;
    rp_begin.framebuffer = info.framebuffers[info.current_buffer];
    rp_begin.renderArea.offset.x = 0;
    rp_begin.renderArea.offset.y = 0;
    rp_begin.renderArea.extent.width = info.width;
    rp_begin.renderArea.extent.height = info.height;
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    // specifying VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS means this
    // render pass may
    // ONLY call vkCmdExecuteCommands
    vkCmdBeginRenderPass(info.cmd, &rp_begin,
                         VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS);

    vkCmdExecuteCommands(info.cmd, 4, secondary_cmds);

    vkCmdEndRenderPass(info.cmd);

    VkImageMemoryBarrier prePresentBarrier = {};
    prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    prePresentBarrier.pNext = NULL;
    prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
    prePresentBarrier.dstAccessMask = 0;
    prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
    prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    prePresentBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    prePresentBarrier.subresourceRange.baseMipLevel = 0;
    prePresentBarrier.subresourceRange.levelCount = 1;
    prePresentBarrier.subresourceRange.baseArrayLayer = 0;
    prePresentBarrier.subresourceRange.layerCount = 1;
    prePresentBarrier.image = info.buffers[info.current_buffer].image;
    vkCmdPipelineBarrier(info.cmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
                         VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, NULL, 0, NULL,
                         1, &prePresentBarrier);

    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    const VkCommandBuffer cmd_bufs[] = {info.cmd};
    VkFenceCreateInfo fenceInfo;
    VkFence drawFence;
    fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    fenceInfo.pNext = NULL;
    fenceInfo.flags = 0;
    vkCreateFence(info.device, &fenceInfo, NULL, &drawFence);

    VkSubmitInfo submit_info[1] = {};
    submit_info[0].pNext = NULL;
    submit_info[0].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submit_info[0].waitSemaphoreCount = 1;
    submit_info[0].pWaitSemaphores = &presentCompleteSemaphore;
    submit_info[0].commandBufferCount = 1;
    submit_info[0].pCommandBuffers = cmd_bufs;
    submit_info[0].signalSemaphoreCount = 0;
    submit_info[0].pSignalSemaphores = NULL;

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */

    VkPresentInfoKHR present;
    present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
    present.pNext = NULL;
    present.swapchainCount = 1;
    present.pSwapchains = &info.swap_chain;
    present.pImageIndices = &info.current_buffer;
    present.pWaitSemaphores = NULL;
    present.waitSemaphoreCount = 0;
    present.pResults = NULL;

    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);

    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);

    vkFreeCommandBuffers(info.device, info.cmd_pool, 4, secondary_cmds);

    /* VULKAN_KEY_END */

    vkDestroyFence(info.device, drawFence, NULL);
    vkDestroySemaphore(info.device, presentCompleteSemaphore, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_textures(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_window(info);
    destroy_device(info);
    destroy_instance(info);
    return 0;
}
コード例 #8
0
int main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "Separate Image Sampler";
    const bool depthPresent = true;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    init_uniform_buffer(info);
    init_renderpass(info, depthPresent);
    init_shaders(info, vertShaderText, fragShaderText);
    init_framebuffers(info, depthPresent);
    init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data),
                       sizeof(g_vb_texture_Data[0]), true);

    /* VULKAN_KEY_START */

    // Sample from a green texture to easily see that we've pulled correct texel
    // value

    // Create our separate image
    struct texture_object texObj;
    const char *textureName = "green.ppm";
    init_image(info, texObj, textureName);

    info.textures.push_back(texObj);

    info.texture_data.image_info.sampler = 0;
    info.texture_data.image_info.imageView = info.textures[0].view;
    info.texture_data.image_info.imageLayout = VK_IMAGE_LAYOUT_GENERAL;

    // Create our separate sampler
    VkSampler separateSampler = {};
    init_sampler(info, separateSampler);

    VkDescriptorImageInfo samplerInfo = {};
    samplerInfo.sampler = separateSampler;

    // Set up one descriptor set
    static const unsigned descriptor_set_count = 1;
    static const unsigned resource_count = 3;
    static const unsigned resource_type_count = 3;

    // Create binding and layout for the following, matching contents of shader
    //   binding 0 = uniform buffer (MVP)
    //   binding 1 = texture2D
    //   binding 2 = sampler

    VkDescriptorSetLayoutBinding resource_binding[resource_count] = {};
    resource_binding[0].binding = 0;
    resource_binding[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    resource_binding[0].descriptorCount = 1;
    resource_binding[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
    resource_binding[0].pImmutableSamplers = NULL;
    resource_binding[1].binding = 1;
    resource_binding[1].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
    resource_binding[1].descriptorCount = 1;
    resource_binding[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
    resource_binding[1].pImmutableSamplers = NULL;
    resource_binding[2].binding = 2;
    resource_binding[2].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
    resource_binding[2].descriptorCount = 1;
    resource_binding[2].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
    resource_binding[2].pImmutableSamplers = NULL;

    VkDescriptorSetLayoutCreateInfo resource_layout_info[1] = {};
    resource_layout_info[0].sType =
        VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
    resource_layout_info[0].pNext = NULL;
    resource_layout_info[0].bindingCount = resource_count;
    resource_layout_info[0].pBindings = resource_binding;

    VkDescriptorSetLayout descriptor_layouts[1] = {};
    res = vkCreateDescriptorSetLayout(info.device, resource_layout_info, NULL,
                                      &descriptor_layouts[0]);

    assert(res == VK_SUCCESS);

    // Create pipeline layout
    VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo[1] = {};
    pipelineLayoutCreateInfo[0].sType =
        VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
    pipelineLayoutCreateInfo[0].pNext = NULL;
    pipelineLayoutCreateInfo[0].pushConstantRangeCount = 0;
    pipelineLayoutCreateInfo[0].pPushConstantRanges = NULL;
    pipelineLayoutCreateInfo[0].setLayoutCount = descriptor_set_count;
    pipelineLayoutCreateInfo[0].pSetLayouts = descriptor_layouts;
    res = vkCreatePipelineLayout(info.device, pipelineLayoutCreateInfo, NULL,
                                 &info.pipeline_layout);
    assert(res == VK_SUCCESS);

    // Create a single pool to contain data for our descriptor set
    VkDescriptorPoolSize pool_sizes[resource_type_count] = {};
    pool_sizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    pool_sizes[0].descriptorCount = 1;
    pool_sizes[1].type = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
    pool_sizes[1].descriptorCount = 1;
    pool_sizes[2].type = VK_DESCRIPTOR_TYPE_SAMPLER;
    pool_sizes[2].descriptorCount = 1;

    VkDescriptorPoolCreateInfo pool_info[1] = {};
    pool_info[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
    pool_info[0].pNext = NULL;
    pool_info[0].maxSets = descriptor_set_count;
    pool_info[0].poolSizeCount = resource_type_count;
    pool_info[0].pPoolSizes = pool_sizes;

    VkDescriptorPool descriptor_pool[1] = {};
    res = vkCreateDescriptorPool(info.device, pool_info, NULL, descriptor_pool);
    assert(res == VK_SUCCESS);

    VkDescriptorSetAllocateInfo alloc_info[1];
    alloc_info[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
    alloc_info[0].pNext = NULL;
    alloc_info[0].descriptorPool = descriptor_pool[0];
    alloc_info[0].descriptorSetCount = descriptor_set_count;
    alloc_info[0].pSetLayouts = descriptor_layouts;

    // Populate descriptor sets
    VkDescriptorSet descriptor_sets[descriptor_set_count] = {};
    res = vkAllocateDescriptorSets(info.device, alloc_info, descriptor_sets);
    assert(res == VK_SUCCESS);

    VkWriteDescriptorSet descriptor_writes[resource_count];

    // Populate with info about our uniform buffer for MVP
    descriptor_writes[0] = {};
    descriptor_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    descriptor_writes[0].pNext = NULL;
    descriptor_writes[0].dstSet = descriptor_sets[0];
    descriptor_writes[0].descriptorCount = 1;
    descriptor_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    descriptor_writes[0].pBufferInfo =
        &info.uniform_data.buffer_info; // populated by init_uniform_buffer()
    descriptor_writes[0].dstArrayElement = 0;
    descriptor_writes[0].dstBinding = 0;

    // Populate with info about our image
    descriptor_writes[1] = {};
    descriptor_writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    descriptor_writes[1].pNext = NULL;
    descriptor_writes[1].dstSet = descriptor_sets[0];
    descriptor_writes[1].descriptorCount = 1;
    descriptor_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
    descriptor_writes[1].pImageInfo =
        &info.texture_data.image_info; // populated by init_texture()
    descriptor_writes[1].dstArrayElement = 0;
    descriptor_writes[1].dstBinding = 1;

    // Populate with info about our sampler
    descriptor_writes[2] = {};
    descriptor_writes[2].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    descriptor_writes[2].pNext = NULL;
    descriptor_writes[2].dstSet = descriptor_sets[0];
    descriptor_writes[2].descriptorCount = 1;
    descriptor_writes[2].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
    descriptor_writes[2].pImageInfo = &samplerInfo;
    descriptor_writes[2].dstArrayElement = 0;
    descriptor_writes[2].dstBinding = 2;

    vkUpdateDescriptorSets(info.device, resource_count, descriptor_writes, 0,
                           NULL);

    /* VULKAN_KEY_END */

    init_pipeline_cache(info);
    init_pipeline(info, depthPresent);
    init_presentable_image(info);

    VkClearValue clear_values[2];
    init_clear_color_and_depth(info, clear_values);

    VkRenderPassBeginInfo rp_begin;
    init_render_pass_begin_info(info, rp_begin);
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            descriptor_sets, 0, NULL);

    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);

    init_viewports(info);
    init_scissors(info);

    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);
    vkCmdEndRenderPass(info.cmd);

    execute_pre_present_barrier(info);

    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    VkFence drawFence = {};
    init_fence(info, drawFence);
    VkPipelineStageFlags pipe_stage_flags =
        VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkSubmitInfo submit_info = {};
    init_submit_info(info, submit_info, pipe_stage_flags);

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */
    VkPresentInfoKHR present = {};
    init_present_info(info, present);

    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    if (info.save_images)
        write_ppm(info, "separate_image_sampler");

    vkDestroyFence(info.device, drawFence, NULL);
    vkDestroySemaphore(info.device, info.presentCompleteSemaphore, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);

    vkDestroySampler(info.device, separateSampler, NULL);
    vkDestroyImageView(info.device, info.textures[0].view, NULL);
    vkDestroyImage(info.device, info.textures[0].image, NULL);
    vkFreeMemory(info.device, info.textures[0].mem, NULL);

    // instead of destroy_descriptor_pool(info);
    vkDestroyDescriptorPool(info.device, descriptor_pool[0], NULL);

    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);

    // instead of destroy_descriptor_and_pipeline_layouts(info);
    for (int i = 0; i < descriptor_set_count; i++)
        vkDestroyDescriptorSetLayout(info.device, descriptor_layouts[i], NULL);
    vkDestroyPipelineLayout(info.device, info.pipeline_layout, NULL);

    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
コード例 #9
0
void CommandBufferManager::SubmitCommandBuffer(u32 command_buffer_index,
                                               VkSwapchainKHR present_swap_chain,
                                               u32 present_image_index)
{
  FrameResources& resources = m_frame_resources[command_buffer_index];

  // This may be executed on the worker thread, so don't modify any state of the manager class.
  uint32_t wait_bits = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
  VkSubmitInfo submit_info = {VK_STRUCTURE_TYPE_SUBMIT_INFO,
                              nullptr,
                              0,
                              nullptr,
                              &wait_bits,
                              static_cast<u32>(resources.command_buffers.size()),
                              resources.command_buffers.data(),
                              0,
                              nullptr};

  // If the init command buffer did not have any commands recorded, don't submit it.
  if (!resources.init_command_buffer_used)
  {
    submit_info.commandBufferCount = 1;
    submit_info.pCommandBuffers = &resources.command_buffers[1];
  }

  if (resources.semaphore_used != VK_NULL_HANDLE)
  {
    submit_info.pWaitSemaphores = &resources.semaphore;
    submit_info.waitSemaphoreCount = 1;
  }

  if (present_swap_chain != VK_NULL_HANDLE)
  {
    submit_info.signalSemaphoreCount = 1;
    submit_info.pSignalSemaphores = &m_present_semaphore;
  }

  VkResult res =
      vkQueueSubmit(g_vulkan_context->GetGraphicsQueue(), 1, &submit_info, resources.fence);
  if (res != VK_SUCCESS)
  {
    LOG_VULKAN_ERROR(res, "vkQueueSubmit failed: ");
    PanicAlert("Failed to submit command buffer.");
  }

  // Do we have a swap chain to present?
  if (present_swap_chain != VK_NULL_HANDLE)
  {
    // Should have a signal semaphore.
    VkPresentInfoKHR present_info = {VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
                                     nullptr,
                                     1,
                                     &m_present_semaphore,
                                     1,
                                     &present_swap_chain,
                                     &present_image_index,
                                     nullptr};

    res = vkQueuePresentKHR(g_vulkan_context->GetPresentQueue(), &present_info);
    if (res != VK_SUCCESS)
    {
      // VK_ERROR_OUT_OF_DATE_KHR is not fatal, just means we need to recreate our swap chain.
      if (res != VK_ERROR_OUT_OF_DATE_KHR && res != VK_SUBOPTIMAL_KHR)
        LOG_VULKAN_ERROR(res, "vkQueuePresentKHR failed: ");
      m_present_failed_flag.Set();
    }
  }

  // Command buffer has been queued, so permit the next one.
  m_submit_semaphore.Post();
}
コード例 #10
0
ファイル: tut11_render.c プロジェクト: ShabbyX/vktut
int tut11_render_finish(struct tut7_render_essentials *essentials, struct tut2_device *dev,
		struct tut6_swapchain *swapchain, VkImageLayout from_layout, uint32_t image_index,
		VkSemaphore wait_sem, VkSemaphore signal_sem)
{
	/* This is all the same as in tut7_render_finish, except the added semaphores */
	tut1_error retval = TUT1_ERROR_NONE;
	VkResult res;

	/* Transition image to PRESENT_SRC */
	VkImageMemoryBarrier image_barrier = {
		.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
		.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
		.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT,
		.oldLayout = from_layout,
		.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
		.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
		.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
		.image = essentials->images[image_index],
		.subresourceRange = {
			.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
			.baseMipLevel = 0,
			.levelCount = 1,
			.baseArrayLayer = 0,
			.layerCount = 1,
		},
	};

	/* All WRITEs anywhere must be done before all READs after the pipeline. */
	vkCmdPipelineBarrier(essentials->cmd_buffer,
			VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
			VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
			0,			/* no flags */
			0, NULL,		/* no memory barriers */
			0, NULL,		/* no buffer barriers */
			1, &image_barrier);	/* our image transition */

	vkEndCommandBuffer(essentials->cmd_buffer);

	res = vkResetFences(dev->device, 1, &essentials->exec_fence);
	tut1_error_set_vkresult(&retval, res);
	if (res)
	{
		tut1_error_printf(&retval, "Failed to reset fence\n");
		return res;
	}

	/*
	 * Submit to queue.
	 *
	 * Wait on wait_sem (if provided) in addition to sem_post_acquire.  Signal signal_sem (if provided) in addition
	 * to sem_pre_submit.
	 */
	VkSemaphore wait_sems[2] = {essentials->sem_post_acquire, wait_sem};
	VkSemaphore signal_sems[2] = {essentials->sem_pre_submit, signal_sem};
	VkPipelineStageFlags wait_sem_stages[2] = {VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT};
	VkSubmitInfo submit_info = {
		.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
		.waitSemaphoreCount = wait_sem?2:1,
		.pWaitSemaphores = wait_sems,
		.pWaitDstStageMask = wait_sem_stages,
		.commandBufferCount = 1,
		.pCommandBuffers = &essentials->cmd_buffer,
		.signalSemaphoreCount = signal_sem?2:1,
		.pSignalSemaphores = signal_sems,
	};
	vkQueueSubmit(essentials->present_queue, 1, &submit_info, essentials->exec_fence);

	/* Present image */
	VkPresentInfoKHR present_info = {
		.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
		.waitSemaphoreCount = 1,
		.pWaitSemaphores = &essentials->sem_pre_submit,
		.swapchainCount = 1,
		.pSwapchains = &swapchain->swapchain,
		.pImageIndices = &image_index,
	};
	res = vkQueuePresentKHR(essentials->present_queue, &present_info);
	tut1_error_set_vkresult(&retval, res);
	if (res < 0)
	{
		tut1_error_printf(&retval, "Failed to queue image for presentation\n");
		return -1;
	}

	return 0;
}
コード例 #11
0
int sample_main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "Multiple Descriptor Sets";

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    // Sample from a green texture to easily see that we've pulled correct texel
    // value
    const char *textureName = "green.ppm";
    init_texture(info, textureName);
    init_uniform_buffer(info);
    init_renderpass(info, true);
    init_shaders(info, vertShaderText, fragShaderText);
    init_framebuffers(info, true);
    init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data),
                       sizeof(g_vb_texture_Data[0]), true);

    /* VULKAN_KEY_START */

    // Set up two descriptor sets
    static const unsigned descriptor_set_count = 2;

    // Create first layout to contain uniform buffer data
    VkDescriptorSetLayoutBinding uniform_binding[1] = {};
    uniform_binding[0].binding = 0;
    uniform_binding[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    uniform_binding[0].descriptorCount = 1;
    uniform_binding[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
    uniform_binding[0].pImmutableSamplers = NULL;
    VkDescriptorSetLayoutCreateInfo uniform_layout_info[1] = {};
    uniform_layout_info[0].sType =
        VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
    uniform_layout_info[0].pNext = NULL;
    uniform_layout_info[0].bindingCount = 1;
    uniform_layout_info[0].pBindings = uniform_binding;

    // Create second layout containing combined sampler/image data
    VkDescriptorSetLayoutBinding sampler2D_binding[1] = {};
    sampler2D_binding[0].binding = 0;
    sampler2D_binding[0].descriptorType =
        VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
    sampler2D_binding[0].descriptorCount = 1;
    sampler2D_binding[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
    sampler2D_binding[0].pImmutableSamplers = NULL;
    VkDescriptorSetLayoutCreateInfo sampler2D_layout_info[1] = {};
    sampler2D_layout_info[0].sType =
        VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
    sampler2D_layout_info[0].pNext = NULL;
    sampler2D_layout_info[0].bindingCount = 1;
    sampler2D_layout_info[0].pBindings = sampler2D_binding;

    // Create multiple sets, using each createInfo
    static const unsigned uniform_set_index = 0;
    static const unsigned sampler_set_index = 1;
    VkDescriptorSetLayout descriptor_layouts[descriptor_set_count] = {};
    res = vkCreateDescriptorSetLayout(info.device, uniform_layout_info, NULL,
                                      &descriptor_layouts[uniform_set_index]);
    assert(res == VK_SUCCESS);
    res = vkCreateDescriptorSetLayout(info.device, sampler2D_layout_info, NULL,
                                      &descriptor_layouts[sampler_set_index]);
    assert(res == VK_SUCCESS);

    // Create pipeline layout with multiple descriptor sets
    VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo[1] = {};
    pipelineLayoutCreateInfo[0].sType =
        VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
    pipelineLayoutCreateInfo[0].pNext = NULL;
    pipelineLayoutCreateInfo[0].pushConstantRangeCount = 0;
    pipelineLayoutCreateInfo[0].pPushConstantRanges = NULL;
    pipelineLayoutCreateInfo[0].setLayoutCount = descriptor_set_count;
    pipelineLayoutCreateInfo[0].pSetLayouts = descriptor_layouts;
    res = vkCreatePipelineLayout(info.device, pipelineLayoutCreateInfo, NULL,
                                 &info.pipeline_layout);
    assert(res == VK_SUCCESS);

    // Create a single pool to contain data for our two descriptor sets
    VkDescriptorPoolSize type_count[2] = {};
    type_count[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    type_count[0].descriptorCount = 1;
    type_count[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
    type_count[1].descriptorCount = 1;

    VkDescriptorPoolCreateInfo pool_info[1] = {};
    pool_info[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
    pool_info[0].pNext = NULL;
    pool_info[0].maxSets = descriptor_set_count;
    pool_info[0].poolSizeCount =
        sizeof(type_count) / sizeof(VkDescriptorPoolSize);
    pool_info[0].pPoolSizes = type_count;

    VkDescriptorPool descriptor_pool[1] = {};
    res = vkCreateDescriptorPool(info.device, pool_info, NULL, descriptor_pool);
    assert(res == VK_SUCCESS);

    VkDescriptorSetAllocateInfo alloc_info[1];
    alloc_info[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
    alloc_info[0].pNext = NULL;
    alloc_info[0].descriptorPool = descriptor_pool[0];
    alloc_info[0].descriptorSetCount = descriptor_set_count;
    alloc_info[0].pSetLayouts = descriptor_layouts;

    // Populate descriptor sets
    VkDescriptorSet descriptor_sets[descriptor_set_count] = {};
    res = vkAllocateDescriptorSets(info.device, alloc_info, descriptor_sets);
    assert(res == VK_SUCCESS);

    // Using empty brace initializer on the next line triggers a bug in older
    // versions of gcc, so memset instead
    VkWriteDescriptorSet descriptor_writes[2];
    memset(descriptor_writes, 0, sizeof(descriptor_writes));

    // Populate with info about our uniform buffer
    descriptor_writes[0] = {};
    descriptor_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    descriptor_writes[0].pNext = NULL;
    descriptor_writes[0].dstSet = descriptor_sets[uniform_set_index];
    descriptor_writes[0].descriptorCount = 1;
    descriptor_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    descriptor_writes[0].pBufferInfo =
        &info.uniform_data.buffer_info; // populated by init_uniform_buffer()
    descriptor_writes[0].dstArrayElement = 0;
    descriptor_writes[0].dstBinding = 0;

    // Populate with info about our sampled image
    descriptor_writes[1] = {};
    descriptor_writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    descriptor_writes[1].pNext = NULL;
    descriptor_writes[1].dstSet = descriptor_sets[sampler_set_index];
    descriptor_writes[1].descriptorCount = 1;
    descriptor_writes[1].descriptorType =
        VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
    descriptor_writes[1].pImageInfo =
        &info.texture_data.image_info; // populated by init_texture()
    descriptor_writes[1].dstArrayElement = 0;
    descriptor_writes[1].dstBinding = 0;

    vkUpdateDescriptorSets(info.device, descriptor_set_count, descriptor_writes,
                           0, NULL);

    /* VULKAN_KEY_END */

    // Call remaining boilerplate utils
    init_pipeline_cache(info);
    init_pipeline(info, true);

    // The remaining is identical to drawtexturedcube
    VkClearValue clear_values[2];
    clear_values[0].color.float32[0] = 0.2f;
    clear_values[0].color.float32[1] = 0.2f;
    clear_values[0].color.float32[2] = 0.2f;
    clear_values[0].color.float32[3] = 0.2f;
    clear_values[1].depthStencil.depth = 1.0f;
    clear_values[1].depthStencil.stencil = 0;

    VkSemaphore presentCompleteSemaphore;
    VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo;
    presentCompleteSemaphoreCreateInfo.sType =
        VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    presentCompleteSemaphoreCreateInfo.pNext = NULL;
    presentCompleteSemaphoreCreateInfo.flags = 0;

    res = vkCreateSemaphore(info.device, &presentCompleteSemaphoreCreateInfo,
                            NULL, &presentCompleteSemaphore);
    assert(res == VK_SUCCESS);

    // Get the index of the next available swapchain image:
    res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX,
                                presentCompleteSemaphore, VK_NULL_HANDLE,
                                &info.current_buffer);
    // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR
    // return codes
    assert(res == VK_SUCCESS);

    VkRenderPassBeginInfo rp_begin;
    rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
    rp_begin.pNext = NULL;
    rp_begin.renderPass = info.render_pass;
    rp_begin.framebuffer = info.framebuffers[info.current_buffer];
    rp_begin.renderArea.offset.x = 0;
    rp_begin.renderArea.offset.y = 0;
    rp_begin.renderArea.extent.width = info.width;
    rp_begin.renderArea.extent.height = info.height;
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, descriptor_set_count,
                            descriptor_sets, 0, NULL);

    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);

    init_viewports(info);
    init_scissors(info);

    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);
    vkCmdEndRenderPass(info.cmd);

    execute_pre_present_barrier(info);

    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    const VkCommandBuffer cmd_bufs[] = {info.cmd};
    VkFenceCreateInfo fenceInfo;
    VkFence drawFence;
    fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    fenceInfo.pNext = NULL;
    fenceInfo.flags = 0;
    vkCreateFence(info.device, &fenceInfo, NULL, &drawFence);

    VkPipelineStageFlags pipe_stage_flags =
        VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkSubmitInfo submit_info[1] = {};
    submit_info[0].pNext = NULL;
    submit_info[0].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submit_info[0].waitSemaphoreCount = 1;
    submit_info[0].pWaitSemaphores = &presentCompleteSemaphore;
    submit_info[0].pWaitDstStageMask = &pipe_stage_flags;
    submit_info[0].commandBufferCount = 1;
    submit_info[0].pCommandBuffers = cmd_bufs;
    submit_info[0].signalSemaphoreCount = 0;
    submit_info[0].pSignalSemaphores = NULL;

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */

    VkPresentInfoKHR present;
    present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
    present.pNext = NULL;
    present.swapchainCount = 1;
    present.pSwapchains = &info.swap_chain;
    present.pImageIndices = &info.current_buffer;
    present.pWaitSemaphores = NULL;
    present.waitSemaphoreCount = 0;
    present.pResults = NULL;

    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    if (info.save_images)
        write_ppm(info, "multiple_sets");

    vkDestroySemaphore(info.device, presentCompleteSemaphore, NULL);
    vkDestroyFence(info.device, drawFence, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_textures(info);

    // instead of destroy_descriptor_pool(info);
    vkDestroyDescriptorPool(info.device, descriptor_pool[0], NULL);

    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);

    // instead of destroy_descriptor_and_pipeline_layouts(info);
    for (int i = 0; i < descriptor_set_count; i++)
        vkDestroyDescriptorSetLayout(info.device, descriptor_layouts[i], NULL);
    vkDestroyPipelineLayout(info.device, info.pipeline_layout, NULL);

    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
コード例 #12
0
//==============================================================================
// 描画
//==============================================================================
void Render()
{
	VkResult result;
	VkCommandBuffer command = g_commandBuffers[g_currentBufferIndex];

	//==================================================
	// コマンド記録開始
	//==================================================
	VkCommandBufferInheritanceInfo commandBufferInheritanceInfo = {};
	commandBufferInheritanceInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
	commandBufferInheritanceInfo.pNext = nullptr;
	commandBufferInheritanceInfo.renderPass = nullptr;
	commandBufferInheritanceInfo.subpass = 0;
	commandBufferInheritanceInfo.framebuffer = g_frameBuffers[g_currentBufferIndex];
	commandBufferInheritanceInfo.occlusionQueryEnable = VK_FALSE;
	commandBufferInheritanceInfo.queryFlags = 0;
	commandBufferInheritanceInfo.pipelineStatistics = 0;

	VkCommandBufferBeginInfo cmdBeginInfo = {};
	cmdBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
	cmdBeginInfo.pNext = nullptr;
	cmdBeginInfo.flags = 0;
	cmdBeginInfo.pInheritanceInfo = &commandBufferInheritanceInfo;

	vkBeginCommandBuffer(command, &cmdBeginInfo);

	//==================================================
	// カラーバッファをクリア
	//==================================================
	static float count = 0;
	count += 0.0001f;
	count = fmodf(count, 1.0f);
	VkClearColorValue clearColor;
	clearColor.float32[0] = 0.0f;	// R
	clearColor.float32[1] = count;	// G
	clearColor.float32[2] = 1.0f;	// B
	clearColor.float32[3] = 1.0f;

	VkImageSubresourceRange imageSubresourceRange;
	imageSubresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
	imageSubresourceRange.baseMipLevel = 0;
	imageSubresourceRange.levelCount = 1;
	imageSubresourceRange.baseArrayLayer = 0;
	imageSubresourceRange.layerCount = 1;

	vkCmdClearColorImage(
		command,
		g_backBuffersTextures[g_currentBufferIndex].image,
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
		&clearColor,
		1,
		&imageSubresourceRange);

	//==================================================
	// 深度バッファをクリア
	//==================================================
	VkClearDepthStencilValue clearDepthStencil;
	clearDepthStencil.depth = 1.0f;
	clearDepthStencil.stencil = 0;

	imageSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
	imageSubresourceRange.baseMipLevel = 0;
	imageSubresourceRange.levelCount = 1;
	imageSubresourceRange.baseArrayLayer = 0;
	imageSubresourceRange.layerCount = 1;

	vkCmdClearDepthStencilImage(
		command,
		g_depthBufferTexture.image,
		VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
		&clearDepthStencil,
		1,
		&imageSubresourceRange);

	//==================================================
	// リソースバリアの設定
	//==================================================
	VkImageMemoryBarrier imageMemoryBarrier;
	imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
	imageMemoryBarrier.pNext = nullptr;
	imageMemoryBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
	imageMemoryBarrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
	imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
	imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
	imageMemoryBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
	imageMemoryBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
	imageMemoryBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
	imageMemoryBarrier.subresourceRange.baseMipLevel = 0;
	imageMemoryBarrier.subresourceRange.levelCount = 1;
	imageMemoryBarrier.subresourceRange.baseArrayLayer = 0;
	imageMemoryBarrier.subresourceRange.layerCount = 1;
	imageMemoryBarrier.image = g_backBuffersTextures[g_currentBufferIndex].image;

	vkCmdPipelineBarrier(
		command,
		VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
		VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
		0,
		0,
		nullptr,
		0,
		nullptr,
		1,
		&imageMemoryBarrier);

	//==================================================
	// コマンドの記録を終了
	//==================================================
	vkEndCommandBuffer(command);

	//==================================================
	// コマンドを実行し,表示する
	//==================================================
	VkPipelineStageFlags pipeStageFlags = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;

	VkSubmitInfo submitInfo = {};
	submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
	submitInfo.pNext = nullptr;
	submitInfo.waitSemaphoreCount = 0;
	submitInfo.pWaitSemaphores = nullptr;
	submitInfo.pWaitDstStageMask = &pipeStageFlags;
	submitInfo.commandBufferCount = 1;
	submitInfo.pCommandBuffers = &command;
	submitInfo.signalSemaphoreCount = 0;
	submitInfo.pSignalSemaphores = nullptr;

	// コマンドを実行
	result = vkQueueSubmit(g_VulkanQueue, 1, &submitInfo, g_VulkanFence);
	checkVulkanError(result, TEXT("グラフィックスキューへのサブミット失敗"));

	// 完了を待機
	result = vkWaitForFences(g_VulkanDevice, 1, &g_VulkanFence, VK_TRUE, TIMEOUT_NANO_SEC);

	// 成功したら表示
	if(result == VK_SUCCESS)
	{
		VkPresentInfoKHR present = {};
		present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
		present.pNext = nullptr;
		present.swapchainCount = 1;
		present.pSwapchains = &g_VulkanSwapChain;
		present.pImageIndices = &g_currentBufferIndex;
		present.pWaitSemaphores = nullptr;
		present.waitSemaphoreCount = 0;
		present.pResults = nullptr;

		result = vkQueuePresentKHR(g_VulkanQueue, &present);
		checkVulkanError(result, TEXT("プレゼント失敗"));
	}
	else if(result == VK_TIMEOUT)
	{
		checkVulkanError(VK_TIMEOUT, TEXT("タイムアウトしました"));
	}

	// フェンスをリセット
	result = vkResetFences(g_VulkanDevice, 1, &g_VulkanFence);
	checkVulkanError(result, TEXT("フェンスのリセット失敗"));

	// 次のイメージを取得
	result = vkAcquireNextImageKHR(
		g_VulkanDevice,
		g_VulkanSwapChain,
		TIMEOUT_NANO_SEC,
		g_VulkanSemahoreRenderComplete,
		nullptr,
		&g_currentBufferIndex);
	checkVulkanError(result, TEXT("次の有効なイメージインデックスの獲得に失敗"));
}
コード例 #13
0
int sample_main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "SPIR-V Specialization";
    const bool depthPresent = true;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    init_texture(info);
    init_uniform_buffer(info);
    init_descriptor_and_pipeline_layouts(info, true);
    init_renderpass(info, depthPresent);

    /* VULKAN_KEY_START */

    // Pass in nullptr for fragment shader so we can setup specialization
    init_shaders(info, vertShaderText, nullptr);

    // This structure maps constant ids to data locations.
    // NOTE: Padding bool to 32-bits for simplicity
    const VkSpecializationMapEntry entries[] =
        // id,  offset,                size
        {{5, 0, sizeof(uint32_t)},
         {7, 1 * sizeof(uint32_t), sizeof(uint32_t)},
         {8, 2 * sizeof(uint32_t), sizeof(uint32_t)},
         {9, 3 * sizeof(uint32_t), sizeof(uint32_t)}};

    // Initialize the values we want our mini-ubershader to use
    const bool drawUserColor = true;
    const float userColor[] = {0.0f, 0.0f, 1.0f};

    // Populate our data entry
    uint32_t data[4] = {};
    data[0] = drawUserColor ? 1 : 0;
    ((float *)data)[1] = userColor[0];
    ((float *)data)[2] = userColor[1];
    ((float *)data)[3] = userColor[2];

    // Set up the info describing our spec map and data
    const VkSpecializationInfo specInfo = {
        4,                 // mapEntryCount
        entries,           // pMapEntries
        4 * sizeof(float), // dataSize
        data,              // pData
    };

    // Provide the specialization data to fragment stage
    info.shaderStages[1].sType =
        VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
    info.shaderStages[1].pNext = NULL;
    info.shaderStages[1].pSpecializationInfo = &specInfo;
    info.shaderStages[1].flags = 0;
    info.shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
    info.shaderStages[1].pName = "main";

    VkShaderModuleCreateInfo moduleCreateInfo;
    moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
    moduleCreateInfo.pNext = NULL;
    moduleCreateInfo.flags = 0;

    if (use_SPIRV_asm) {

        // Use the hand edited SPIR-V assembly
        spv_context spvContext = spvContextCreate(SPV_ENV_VULKAN_1_0);
        spv_binary fragmentBinary = {};
        spv_diagnostic fragmentDiag = {};
        spv_result_t fragmentResult = spvTextToBinary(
            spvContext, fragmentSPIRV_specialized.c_str(),
            fragmentSPIRV_specialized.length(), &fragmentBinary, &fragmentDiag);
        if (fragmentDiag) {
            printf("Diagnostic info from fragment shader:\n");
            spvDiagnosticPrint(fragmentDiag);
        }
        assert(fragmentResult == SPV_SUCCESS);
        moduleCreateInfo.codeSize =
            fragmentBinary->wordCount * sizeof(unsigned int);
        moduleCreateInfo.pCode = fragmentBinary->code;
        spvDiagnosticDestroy(fragmentDiag);
        spvContextDestroy(spvContext);

    } else {

        // Convert GLSL to SPIR-V
        init_glslang();
        std::vector<unsigned int> fragSpv;
        bool U_ASSERT_ONLY retVal =
            GLSLtoSPV(VK_SHADER_STAGE_FRAGMENT_BIT, fragShaderText, fragSpv);
        assert(retVal);
        finalize_glslang();

        moduleCreateInfo.codeSize = fragSpv.size() * sizeof(unsigned int);
        moduleCreateInfo.pCode = fragSpv.data();
    }

    res = vkCreateShaderModule(info.device, &moduleCreateInfo, NULL,
                               &info.shaderStages[1].module);
    assert(res == VK_SUCCESS);

    /* VULKAN_KEY_END */

    init_framebuffers(info, depthPresent);
    init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data),
                       sizeof(g_vb_texture_Data[0]), true);
    init_descriptor_pool(info, true);
    init_descriptor_set(info, true);
    init_pipeline_cache(info);
    init_pipeline(info, depthPresent);
    init_presentable_image(info);

    VkClearValue clear_values[2];
    init_clear_color_and_depth(info, clear_values);

    VkRenderPassBeginInfo rp_begin;
    init_render_pass_begin_info(info, rp_begin);
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);

    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);

    init_viewports(info);
    init_scissors(info);

    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);
    vkCmdEndRenderPass(info.cmd);

    execute_pre_present_barrier(info);

    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    VkFence drawFence = {};
    init_fence(info, drawFence);
    VkPipelineStageFlags pipe_stage_flags =
        VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkSubmitInfo submit_info = {};
    init_submit_info(info, submit_info, pipe_stage_flags);

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */
    VkPresentInfoKHR present = {};
    init_present_info(info, present);

    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    if (info.save_images)
        write_ppm(info, "spirv_specialization");

    vkDestroyFence(info.device, drawFence, NULL);
    vkDestroySemaphore(info.device, info.presentCompleteSemaphore, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_textures(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
コード例 #14
0
int sample_main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "Draw Textured Cube";
    const bool depthPresent = true;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    init_texture(info);
    init_uniform_buffer(info);
    init_descriptor_and_pipeline_layouts(info, true);
    init_renderpass(info, depthPresent);
    init_shaders(info, vertShaderText, fragShaderText);
    init_framebuffers(info, depthPresent);
    init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data),
                       sizeof(g_vb_texture_Data[0]), true);
    init_descriptor_pool(info, true);
    init_descriptor_set(info, true);
    init_pipeline_cache(info);
    init_pipeline(info, depthPresent);
    init_presentable_image(info);

    VkClearValue clear_values[2];
    init_clear_color_and_depth(info, clear_values);

    VkRenderPassBeginInfo rp_begin;
    init_render_pass_begin_info(info, rp_begin);
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);

    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);

    init_viewports(info);
    init_scissors(info);

    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);
    vkCmdEndRenderPass(info.cmd);

    execute_pre_present_barrier(info);

    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    VkFence drawFence = {};
    init_fence(info, drawFence);
    VkPipelineStageFlags pipe_stage_flags =
        VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkSubmitInfo submit_info = {};
    init_submit_info(info, submit_info, pipe_stage_flags);

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */
    VkPresentInfoKHR present = {};
    init_present_info(info, present);

    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    if (info.save_images)
        write_ppm(info, "template");

    vkDestroyFence(info.device, drawFence, NULL);
    vkDestroySemaphore(info.device, info.presentCompleteSemaphore, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_textures(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
コード例 #15
0
// clang-format on
int main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "SPIR-V Assembly";
    const bool depthPresent = true;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    init_texture(info);
    init_uniform_buffer(info);
    init_descriptor_and_pipeline_layouts(info, true);
    init_renderpass(info, depthPresent);

    /* VULKAN_KEY_START */

    // Init the assembler context
    spv_context spvContext = spvContextCreate();

    // Convert the vertex assembly into binary format
    spv_binary vertexBinary = {};
    spv_diagnostic vertexDiag = {};
    spv_result_t vertexResult =
        spvTextToBinary(spvContext, vertexSPIRV.c_str(), vertexSPIRV.length(),
                        &vertexBinary, &vertexDiag);
    if (vertexDiag) {
        printf("Diagnostic info from vertex shader:\n");
        spvDiagnosticPrint(vertexDiag);
    }
    assert(vertexResult == SPV_SUCCESS);

    // Convert the fragment assembly into binary format
    spv_binary fragmentBinary = {};
    spv_diagnostic fragmentDiag = {};
    spv_result_t fragmentResult =
        spvTextToBinary(spvContext, fragmentSPIRV.c_str(),
                        fragmentSPIRV.length(), &fragmentBinary, &fragmentDiag);
    if (fragmentDiag) {
        printf("Diagnostic info from fragment shader:\n");
        spvDiagnosticPrint(fragmentDiag);
    }
    assert(fragmentResult == SPV_SUCCESS);

    info.shaderStages[0].sType =
        VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
    info.shaderStages[0].pNext = NULL;
    info.shaderStages[0].pSpecializationInfo = NULL;
    info.shaderStages[0].flags = 0;
    info.shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
    info.shaderStages[0].pName = "main";
    VkShaderModuleCreateInfo moduleCreateInfo;
    moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
    moduleCreateInfo.pNext = NULL;
    moduleCreateInfo.flags = 0;
    // Use wordCount and code pointers from the spv_binary
    moduleCreateInfo.codeSize = vertexBinary->wordCount * sizeof(unsigned int);
    moduleCreateInfo.pCode = vertexBinary->code;
    res = vkCreateShaderModule(info.device, &moduleCreateInfo, NULL,
                               &info.shaderStages[0].module);
    assert(res == VK_SUCCESS);

    info.shaderStages[1].sType =
        VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
    info.shaderStages[1].pNext = NULL;
    info.shaderStages[1].pSpecializationInfo = NULL;
    info.shaderStages[1].flags = 0;
    info.shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
    info.shaderStages[1].pName = "main";
    moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
    moduleCreateInfo.pNext = NULL;
    moduleCreateInfo.flags = 0;
    // Use wordCount and code pointers from the spv_binary
    moduleCreateInfo.codeSize =
        fragmentBinary->wordCount * sizeof(unsigned int);
    moduleCreateInfo.pCode = fragmentBinary->code;
    res = vkCreateShaderModule(info.device, &moduleCreateInfo, NULL,
                               &info.shaderStages[1].module);
    assert(res == VK_SUCCESS);

    // Clean up the diagnostics
    spvDiagnosticDestroy(vertexDiag);
    spvDiagnosticDestroy(fragmentDiag);

    // Clean up the assembler context
    spvContextDestroy(spvContext);

    /* VULKAN_KEY_END */

    init_framebuffers(info, depthPresent);
    init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data),
                       sizeof(g_vb_texture_Data[0]), true);
    init_descriptor_pool(info, true);
    init_descriptor_set(info, true);
    init_pipeline_cache(info);
    init_pipeline(info, depthPresent);
    init_presentable_image(info);

    VkClearValue clear_values[2];
    init_clear_color_and_depth(info, clear_values);

    VkRenderPassBeginInfo rp_begin;
    init_render_pass_begin_info(info, rp_begin);
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);

    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);

    init_viewports(info);
    init_scissors(info);

    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);
    vkCmdEndRenderPass(info.cmd);

    execute_pre_present_barrier(info);

    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    VkFence drawFence = {};
    init_fence(info, drawFence);
    VkPipelineStageFlags pipe_stage_flags =
        VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkSubmitInfo submit_info = {};
    init_submit_info(info, submit_info, pipe_stage_flags);

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */
    VkPresentInfoKHR present = {};
    init_present_info(info, present);

    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    if (info.save_images)
        write_ppm(info, "spirv_assembly");

    vkDestroyFence(info.device, drawFence, NULL);
    vkDestroySemaphore(info.device, info.presentCompleteSemaphore, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_textures(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
コード例 #16
0
int sample_main(int argc, char **argv) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "Memory Barriers";

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    info.instance_extension_names.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
#ifdef _WIN32
    info.instance_extension_names.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
#elif __ANDROID__
    info.instance_extension_names.push_back(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME);
#else
    info.instance_extension_names.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME);
#endif
    info.device_extension_names.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_device(info);
    info.width = info.height = 500;
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
    // CmdClearColorImage is going to require usage of TRANSFER_DST, but
    // it's not clear which format feature maps to the required TRANSFER_DST usage,
    // BLIT_DST is a reasonable guess and it seems to work
    init_texture(info, nullptr, VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_FORMAT_FEATURE_BLIT_DST_BIT);
    init_uniform_buffer(info);
    init_descriptor_and_pipeline_layouts(info, true);
    init_renderpass(info, DEPTH_PRESENT, false, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
    init_shaders(info, vertShaderText, fragShaderText);
    init_framebuffers(info, DEPTH_PRESENT);
    init_vertex_buffer(info, vb_Data, sizeof(vb_Data), sizeof(vb_Data[0]), true);
    init_descriptor_pool(info, true);
    init_descriptor_set(info, true);
    init_pipeline_cache(info);
    init_pipeline(info, DEPTH_PRESENT);

    /* VULKAN_KEY_START */

    VkImageSubresourceRange srRange = {};
    srRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    srRange.baseMipLevel = 0;
    srRange.levelCount = VK_REMAINING_MIP_LEVELS;
    srRange.baseArrayLayer = 0;
    srRange.layerCount = VK_REMAINING_ARRAY_LAYERS;

    VkClearColorValue clear_color[1];
    clear_color[0].float32[0] = 0.2f;
    clear_color[0].float32[1] = 0.2f;
    clear_color[0].float32[2] = 0.2f;
    clear_color[0].float32[3] = 0.2f;

    VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo;
    presentCompleteSemaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    presentCompleteSemaphoreCreateInfo.pNext = NULL;
    presentCompleteSemaphoreCreateInfo.flags = 0;

    res = vkCreateSemaphore(info.device, &presentCompleteSemaphoreCreateInfo, NULL, &info.imageAcquiredSemaphore);
    assert(res == VK_SUCCESS);

    // Get the index of the next available swapchain image:
    res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX, info.imageAcquiredSemaphore, VK_NULL_HANDLE,
                                &info.current_buffer);
    // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR
    // return codes
    assert(res == VK_SUCCESS);

    set_image_layout(info, info.buffers[info.current_buffer].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
                     VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);

    // We need to do the clear here instead of using a renderpass load op since
    // we will use the same renderpass multiple times in the frame
    vkCmdClearColorImage(info.cmd, info.buffers[info.current_buffer].image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, clear_color, 1,
                         &srRange);

    VkRenderPassBeginInfo rp_begin;
    rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
    rp_begin.pNext = NULL;
    rp_begin.renderPass = info.render_pass;
    rp_begin.framebuffer = info.framebuffers[info.current_buffer];
    rp_begin.renderArea.offset.x = 0;
    rp_begin.renderArea.offset.y = 0;
    rp_begin.renderArea.extent.width = info.width;
    rp_begin.renderArea.extent.height = info.height;
    rp_begin.clearValueCount = 0;
    rp_begin.pClearValues = NULL;

    // Draw a textured quad on the left side of the window
    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);

    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);

    init_viewports(info);
    init_scissors(info);

    vkCmdDraw(info.cmd, 2 * 3, 1, 0, 0);
    // We can't do a clear inside a renderpass, so end this one and start another one
    // for the next draw
    vkCmdEndRenderPass(info.cmd);

    // Send a barrier to change the texture image's layout from SHADER_READ_ONLY
    // to COLOR_ATTACHMENT_GENERAL because we're going to clear it
    VkImageMemoryBarrier textureBarrier = {};
    textureBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    textureBarrier.pNext = NULL;
    textureBarrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
    textureBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
    textureBarrier.oldLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
    textureBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
    textureBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    textureBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    textureBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    textureBarrier.subresourceRange.baseMipLevel = 0;
    textureBarrier.subresourceRange.levelCount = 1;
    textureBarrier.subresourceRange.baseArrayLayer = 0;
    textureBarrier.subresourceRange.layerCount = 1;
    textureBarrier.image = info.textures[0].image;
    vkCmdPipelineBarrier(info.cmd, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1,
                         &textureBarrier);

    clear_color[0].float32[0] = 0.0f;
    clear_color[0].float32[1] = 1.0f;
    clear_color[0].float32[2] = 0.0f;
    clear_color[0].float32[3] = 1.0f;
    /* Clear texture to green */
    vkCmdClearColorImage(info.cmd, info.textures[0].image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, clear_color, 1, &srRange);

    // Send a barrier to change the texture image's layout back to SHADER_READ_ONLY
    // because we're going to use it as a texture again
    textureBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    textureBarrier.pNext = NULL;
    textureBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
    textureBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
    textureBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
    textureBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
    textureBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    textureBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    textureBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    textureBarrier.subresourceRange.baseMipLevel = 0;
    textureBarrier.subresourceRange.levelCount = 1;
    textureBarrier.subresourceRange.baseArrayLayer = 0;
    textureBarrier.subresourceRange.layerCount = 1;
    textureBarrier.image = info.textures[0].image;
    vkCmdPipelineBarrier(info.cmd, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, NULL, 0, NULL, 1,
                         &textureBarrier);

    // Draw the second quad to the right using the (now) green texture
    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    // Draw starting with vertex index 6 to draw to the right of the first quad
    vkCmdDraw(info.cmd, 2 * 3, 1, 6, 0);
    vkCmdEndRenderPass(info.cmd);

    // Change the present buffer from COLOR_ATTACHMENT_OPTIMAL to
    // PRESENT_SOURCE_KHR
    // so it can be presented
    execute_pre_present_barrier(info);

    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    VkSubmitInfo submit_info = {};
    VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
    init_submit_info(info, submit_info, pipe_stage_flags);
    assert(res == VK_SUCCESS);

    VkFence drawFence = {};
    init_fence(info, drawFence);

    // Queue the command buffer for execution
    res = vkQueueSubmit(info.graphics_queue, 1, &submit_info, drawFence);
    assert(res == VK_SUCCESS);

    // Now present the image in the window
    VkPresentInfoKHR present{};
    init_present_info(info, present);

    // Make sure command buffer is finished before presenting
    do {
        res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.present_queue, &present);
    assert(res == VK_SUCCESS);
    /* VULKAN_KEY_END */

    wait_seconds(1);
    if (info.save_images) write_ppm(info, "memory_barriers");

    vkDestroySemaphore(info.device, info.imageAcquiredSemaphore, NULL);
    vkDestroyFence(info.device, drawFence, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_textures(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_window(info);
    destroy_device(info);
    destroy_instance(info);
    return 0;
}
コード例 #17
0
ファイル: tut7_render.c プロジェクト: ShabbyX/vktut
int tut7_render_finish(struct tut7_render_essentials *essentials, struct tut2_device *dev,
		struct tut6_swapchain *swapchain, VkImageLayout from_layout, uint32_t image_index)
{
	tut1_error retval = TUT1_ERROR_NONE;
	VkResult res;

	/* The second memory barrier is similar to the first (in tut7_render_start), but inverted */
	VkImageMemoryBarrier image_barrier = {
		.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
		.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
		.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT,
		.oldLayout = from_layout,
		.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
		.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
		.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
		.image = essentials->images[image_index],
		.subresourceRange = {
			.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
			.baseMipLevel = 0,
			.levelCount = 1,
			.baseArrayLayer = 0,
			.layerCount = 1,
		},
	};

	/*
	 * For the second barrier, we want the opposite of the first barrier.  We want to make sure image reads by the
	 * presentation engine are done after the image is written to during rendering.  Just as top of the pipeline
	 * means before the pipeline begins, bottom of the pipeline means after it ends.
	 *
	 * With the explanation on the previous barrier, this should already makes sense to you:
	 *
	 * All WRITEs anywhere must be done before all READs after the pipeline.
	 */
	vkCmdPipelineBarrier(essentials->cmd_buffer,
			VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
			VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
			0,			/* no flags */
			0, NULL,		/* no memory barriers */
			0, NULL,		/* no buffer barriers */
			1, &image_barrier);	/* our image transition */

	vkEndCommandBuffer(essentials->cmd_buffer);

	res = vkResetFences(dev->device, 1, &essentials->exec_fence);
	tut1_error_set_vkresult(&retval, res);
	if (res)
	{
		tut1_error_printf(&retval, "Failed to reset fence\n");
		return res;
	}

	/*
	 * Having built the command buffer, we are ready to submit it to a queue for presentation.  We wanted our
	 * submission to wait for the image acquisition semaphore and subsequently signal the presentation semaphore,
	 * so we'll simply specify exactly that.  The semaphore wait can be done at different stages of the pipeline,
	 * so that the pipeline could go ahead with its calculations before the stage where it really needs to wait
	 * for the semaphore.  Since we don't have a pipeline yet, we'll ask it to wait at the top of the pipeline.
	 *
	 * Side note: we didn't need to submit the command buffer to the same queue we use for presentation, or even a
	 * queue in the same family, but we do that now for simplicity.
	 */
	VkPipelineStageFlags wait_sem_stages[1] = {VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT};
	VkSubmitInfo submit_info = {
		.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
		.waitSemaphoreCount = 1,
		.pWaitSemaphores = &essentials->sem_post_acquire,
		.pWaitDstStageMask = wait_sem_stages,
		.commandBufferCount = 1,
		.pCommandBuffers = &essentials->cmd_buffer,
		.signalSemaphoreCount = 1,
		.pSignalSemaphores = &essentials->sem_pre_submit,
	};
	vkQueueSubmit(essentials->present_queue, 1, &submit_info, essentials->exec_fence);

	/* Use `vkQueuePresentKHR` to give the image back for presentation */
	VkPresentInfoKHR present_info = {
		.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
		.waitSemaphoreCount = 1,
		.pWaitSemaphores = &essentials->sem_pre_submit,
		.swapchainCount = 1,
		.pSwapchains = &swapchain->swapchain,
		.pImageIndices = &image_index,
	};
	res = vkQueuePresentKHR(essentials->present_queue, &present_info);
	tut1_error_set_vkresult(&retval, res);
	if (res < 0)
	{
		tut1_error_printf(&retval, "Failed to queue image for presentation\n");
		return -1;
	}

	return 0;
}
コード例 #18
0
int sample_main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "Draw Textured Cube";
    const bool depthPresent = true;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    init_texture(info);
    init_uniform_buffer(info);
    init_descriptor_and_pipeline_layouts(info, true);
    init_renderpass(info, depthPresent);
    init_shaders(info, vertShaderText, fragShaderText);
    init_framebuffers(info, depthPresent);
    init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data),
                       sizeof(g_vb_texture_Data[0]), true);
    init_descriptor_pool(info, true);
    init_descriptor_set(info, true);
    init_pipeline_cache(info);
    init_pipeline(info, depthPresent);

    /* VULKAN_KEY_START */

    VkClearValue clear_values[2];
    clear_values[0].color.float32[0] = 0.2f;
    clear_values[0].color.float32[1] = 0.2f;
    clear_values[0].color.float32[2] = 0.2f;
    clear_values[0].color.float32[3] = 0.2f;
    clear_values[1].depthStencil.depth = 1.0f;
    clear_values[1].depthStencil.stencil = 0;

    VkSemaphore presentCompleteSemaphore;
    VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo;
    presentCompleteSemaphoreCreateInfo.sType =
        VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
    presentCompleteSemaphoreCreateInfo.pNext = NULL;
    presentCompleteSemaphoreCreateInfo.flags = 0;

    res = vkCreateSemaphore(info.device, &presentCompleteSemaphoreCreateInfo,
                            NULL, &presentCompleteSemaphore);
    assert(res == VK_SUCCESS);

    // Get the index of the next available swapchain image:
    res = vkAcquireNextImageKHR(info.device, info.swap_chain, UINT64_MAX,
                                presentCompleteSemaphore, VK_NULL_HANDLE,
                                &info.current_buffer);
    // TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR
    // return codes
    assert(res == VK_SUCCESS);

    set_image_layout(info, info.buffers[info.current_buffer].image,
                     VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
                     VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);

    VkRenderPassBeginInfo rp_begin;
    rp_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
    rp_begin.pNext = NULL;
    rp_begin.renderPass = info.render_pass;
    rp_begin.framebuffer = info.framebuffers[info.current_buffer];
    rp_begin.renderArea.offset.x = 0;
    rp_begin.renderArea.offset.y = 0;
    rp_begin.renderArea.extent.width = info.width;
    rp_begin.renderArea.extent.height = info.height;
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);

    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);

    init_viewports(info);
    init_scissors(info);

    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);
    vkCmdEndRenderPass(info.cmd);

    VkImageMemoryBarrier prePresentBarrier = {};
    prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    prePresentBarrier.pNext = NULL;
    prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
    prePresentBarrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
    prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
    prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    prePresentBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    prePresentBarrier.subresourceRange.baseMipLevel = 0;
    prePresentBarrier.subresourceRange.levelCount = 1;
    prePresentBarrier.subresourceRange.baseArrayLayer = 0;
    prePresentBarrier.subresourceRange.layerCount = 1;
    prePresentBarrier.image = info.buffers[info.current_buffer].image;
    vkCmdPipelineBarrier(info.cmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
                         VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0,
                         NULL, 1, &prePresentBarrier);

    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    const VkCommandBuffer cmd_bufs[] = {info.cmd};
    VkFenceCreateInfo fenceInfo;
    VkFence drawFence;
    fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    fenceInfo.pNext = NULL;
    fenceInfo.flags = 0;
    vkCreateFence(info.device, &fenceInfo, NULL, &drawFence);

    VkPipelineStageFlags pipe_stage_flags =
        VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkSubmitInfo submit_info[1] = {};
    submit_info[0].pNext = NULL;
    submit_info[0].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submit_info[0].waitSemaphoreCount = 1;
    submit_info[0].pWaitSemaphores = &presentCompleteSemaphore;
    submit_info[0].pWaitDstStageMask = &pipe_stage_flags;
    submit_info[0].commandBufferCount = 1;
    submit_info[0].pCommandBuffers = cmd_bufs;
    submit_info[0].signalSemaphoreCount = 0;
    submit_info[0].pSignalSemaphores = NULL;

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */

    VkPresentInfoKHR present;
    present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
    present.pNext = NULL;
    present.swapchainCount = 1;
    present.pSwapchains = &info.swap_chain;
    present.pImageIndices = &info.current_buffer;
    present.pWaitSemaphores = NULL;
    present.waitSemaphoreCount = 0;
    present.pResults = NULL;

    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    /* VULKAN_KEY_END */
    if (info.save_images)
        write_ppm(info, "drawtexturedcube");

    vkDestroyFence(info.device, drawFence, NULL);
    vkDestroySemaphore(info.device, presentCompleteSemaphore, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_textures(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
コード例 #19
0
int main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "Pipeline Derivative";
    const bool depthPresent = true;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    init_texture(info);
    init_uniform_buffer(info);
    init_descriptor_and_pipeline_layouts(info, true);
    init_renderpass(info, depthPresent);
    init_shaders(info, vertShaderText, fragShaderText);
    init_framebuffers(info, depthPresent);
    init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data),
                       sizeof(g_vb_texture_Data[0]), true);
    init_descriptor_pool(info, true);
    init_descriptor_set(info, true);
    init_pipeline_cache(info);

    /* VULKAN_KEY_START */

    //
    // Create two pipelines.
    //
    // First pipeline is the same as that generated by init_pipeline(),
    // but with VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT set.
    //
    // Second pipeline has a modified fragment shader and sets the
    // VK_PIPELINE_CREATE_DERIVATIVE_BIT flag.
    //

    bool include_depth = true;
    bool include_vi = true;
    VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE];
    VkPipelineDynamicStateCreateInfo dynamicState = {};
    memset(dynamicStateEnables, 0, sizeof dynamicStateEnables);
    dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
    dynamicState.pNext = NULL;
    dynamicState.pDynamicStates = dynamicStateEnables;
    dynamicState.dynamicStateCount = 0;

    VkPipelineVertexInputStateCreateInfo vi;
    vi.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
    vi.pNext = NULL;
    vi.flags = 0;
    vi.vertexBindingDescriptionCount = 1;
    vi.pVertexBindingDescriptions = &info.vi_binding;
    vi.vertexAttributeDescriptionCount = 2;
    vi.pVertexAttributeDescriptions = info.vi_attribs;

    VkPipelineInputAssemblyStateCreateInfo ia;
    ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
    ia.pNext = NULL;
    ia.flags = 0;
    ia.primitiveRestartEnable = VK_FALSE;
    ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;

    VkPipelineRasterizationStateCreateInfo rs;
    rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
    rs.pNext = NULL;
    rs.flags = 0;
    rs.polygonMode = VK_POLYGON_MODE_FILL;
    rs.cullMode = VK_CULL_MODE_BACK_BIT;
    rs.frontFace = VK_FRONT_FACE_CLOCKWISE;
    rs.depthClampEnable = include_depth;
    rs.rasterizerDiscardEnable = VK_FALSE;
    rs.depthBiasEnable = VK_FALSE;
    rs.depthBiasConstantFactor = 0;
    rs.depthBiasClamp = 0;
    rs.depthBiasSlopeFactor = 0;
    rs.lineWidth = 0;

    VkPipelineColorBlendStateCreateInfo cb;
    cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
    cb.flags = 0;
    cb.pNext = NULL;
    VkPipelineColorBlendAttachmentState att_state[1];
    att_state[0].colorWriteMask = 0xf;
    att_state[0].blendEnable = VK_FALSE;
    att_state[0].alphaBlendOp = VK_BLEND_OP_ADD;
    att_state[0].colorBlendOp = VK_BLEND_OP_ADD;
    att_state[0].srcColorBlendFactor = VK_BLEND_FACTOR_ZERO;
    att_state[0].dstColorBlendFactor = VK_BLEND_FACTOR_ZERO;
    att_state[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
    att_state[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
    cb.attachmentCount = 1;
    cb.pAttachments = att_state;
    cb.logicOpEnable = VK_FALSE;
    cb.logicOp = VK_LOGIC_OP_NO_OP;
    cb.blendConstants[0] = 1.0f;
    cb.blendConstants[1] = 1.0f;
    cb.blendConstants[2] = 1.0f;
    cb.blendConstants[3] = 1.0f;

    VkPipelineViewportStateCreateInfo vp = {};
    vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
    vp.pNext = NULL;
    vp.flags = 0;
    vp.viewportCount = NUM_VIEWPORTS;
    dynamicStateEnables[dynamicState.dynamicStateCount++] =
        VK_DYNAMIC_STATE_VIEWPORT;
    vp.scissorCount = NUM_SCISSORS;
    dynamicStateEnables[dynamicState.dynamicStateCount++] =
        VK_DYNAMIC_STATE_SCISSOR;
    vp.pScissors = NULL;
    vp.pViewports = NULL;

    VkPipelineDepthStencilStateCreateInfo ds;
    ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
    ds.pNext = NULL;
    ds.flags = 0;
    ds.depthTestEnable = include_depth;
    ds.depthWriteEnable = include_depth;
    ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
    ds.depthBoundsTestEnable = VK_FALSE;
    ds.stencilTestEnable = VK_FALSE;
    ds.back.failOp = VK_STENCIL_OP_KEEP;
    ds.back.passOp = VK_STENCIL_OP_KEEP;
    ds.back.compareOp = VK_COMPARE_OP_ALWAYS;
    ds.back.compareMask = 0;
    ds.back.reference = 0;
    ds.back.depthFailOp = VK_STENCIL_OP_KEEP;
    ds.back.writeMask = 0;
    ds.minDepthBounds = 0;
    ds.maxDepthBounds = 0;
    ds.stencilTestEnable = VK_FALSE;
    ds.front = ds.back;

    VkPipelineMultisampleStateCreateInfo ms;
    ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
    ms.pNext = NULL;
    ms.flags = 0;
    ms.pSampleMask = NULL;
    ms.rasterizationSamples = NUM_SAMPLES;
    ms.sampleShadingEnable = VK_FALSE;
    ms.alphaToCoverageEnable = VK_FALSE;
    ms.alphaToOneEnable = VK_FALSE;
    ms.minSampleShading = 0.0;

    VkGraphicsPipelineCreateInfo pipeline;
    pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
    pipeline.pNext = NULL;
    pipeline.layout = info.pipeline_layout;
    pipeline.basePipelineHandle = VK_NULL_HANDLE;
    pipeline.basePipelineIndex = 0;

    // Specify that we will be creating a derivative of this pipeline.
    pipeline.flags = VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT;

    pipeline.pVertexInputState = include_vi ? &vi : NULL;
    pipeline.pInputAssemblyState = &ia;
    pipeline.pRasterizationState = &rs;
    pipeline.pColorBlendState = &cb;
    pipeline.pTessellationState = NULL;
    pipeline.pMultisampleState = &ms;
    pipeline.pDynamicState = &dynamicState;
    pipeline.pViewportState = &vp;
    pipeline.pDepthStencilState = &ds;
    pipeline.pStages = info.shaderStages;
    pipeline.stageCount = 2;
    pipeline.renderPass = info.render_pass;
    pipeline.subpass = 0;

    // Create the base pipeline without storing it in the info struct
    // NOTE:  If desired, we can add timing info around pipeline creation to
    //        demonstrate any perf benefits to derivation.
    VkPipeline basePipeline;
    res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1,
                                    &pipeline, NULL, &basePipeline);
    assert(res == VK_SUCCESS);

    // Now create the derivative pipeline, using a different fragment shader
    // This shader will shade the cube faces with interpolated colors
    // NOTE:  If this step is too heavyweight to show any benefit of derivation,
    // then
    //        create a pipeline that differs in some other, simpler way.
    const char *fragShaderText2 = "#version 450\n"
                                  "layout (location = 0) in vec2 texcoord;\n"
                                  "layout (location = 0) out vec4 outColor;\n"
                                  "void main() {\n"
                                  "   outColor = vec4(texcoord.x, texcoord.y, "
                                  "1.0 - texcoord.x - texcoord.y, 1.0f);\n"
                                  "}\n";

    // Convert GLSL to SPIR-V
    init_glslang();
    std::vector<unsigned int> fragSpv;
    bool U_ASSERT_ONLY retVal =
        GLSLtoSPV(VK_SHADER_STAGE_FRAGMENT_BIT, fragShaderText2, fragSpv);
    assert(retVal);
    finalize_glslang();

    // Replace the module entry of info.shaderStages to change the fragment
    // shader
    vkDestroyShaderModule(info.device, info.shaderStages[1].module, NULL);
    VkShaderModuleCreateInfo moduleCreateInfo = {};
    moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
    moduleCreateInfo.pNext = NULL;
    moduleCreateInfo.flags = 0;
    moduleCreateInfo.codeSize = fragSpv.size() * sizeof(unsigned int);
    moduleCreateInfo.pCode = fragSpv.data();
    res = vkCreateShaderModule(info.device, &moduleCreateInfo, NULL,
                               &info.shaderStages[1].module);
    assert(res == VK_SUCCESS);

    // Modify pipeline info to reflect derivation
    pipeline.flags = VK_PIPELINE_CREATE_DERIVATIVE_BIT;
    pipeline.basePipelineHandle = basePipeline;
    pipeline.basePipelineIndex = -1;

    // And create the derived pipeline, assigning to info.pipeline for use by
    // later helpers
    res = vkCreateGraphicsPipelines(info.device, info.pipelineCache, 1,
                                    &pipeline, NULL, &info.pipeline);
    assert(res == VK_SUCCESS);

    /* VULKAN_KEY_END */

    init_presentable_image(info);

    VkClearValue clear_values[2];
    init_clear_color_and_depth(info, clear_values);

    VkRenderPassBeginInfo rp_begin;
    init_render_pass_begin_info(info, rp_begin);
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);

    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);

    init_viewports(info);
    init_scissors(info);

    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);
    vkCmdEndRenderPass(info.cmd);

    execute_pre_present_barrier(info);

    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    VkFence drawFence = {};
    init_fence(info, drawFence);
    VkPipelineStageFlags pipe_stage_flags =
        VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkSubmitInfo submit_info = {};
    init_submit_info(info, submit_info, pipe_stage_flags);

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */
    VkPresentInfoKHR present = {};
    init_present_info(info, present);

    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    if (info.save_images)
        write_ppm(info, "pipeline_derivative");

    vkDestroyFence(info.device, drawFence, NULL);
    vkDestroySemaphore(info.device, info.presentCompleteSemaphore, NULL);
    vkDestroyPipeline(info.device, basePipeline, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_textures(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}