void CParEMLearningEngine::LearnContMPI() { CStaticGraphicalModel *pGrModel = this->GetStaticModel(); PNL_CHECK_IS_NULL_POINTER(pGrModel); PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1); CInfEngine *pInfEng = NULL; pInfEng = CJtreeInfEngine::Create(pGrModel); float loglik = 0.0f; int domainNodes; CFactor *parameter = NULL; int numberOfParameters = pGrModel->GetNumberOfParameters(); int nFactors = pGrModel->GetNumberOfFactors(); const CEvidence *pEv; CFactor *pFactor; int iteration = 0; int ev; int i,numSelfEvidences,NumberOfProcesses, MyRank; int start_mpi, finish_mpi; MPI_Comm_size(MPI_COMM_WORLD, &NumberOfProcesses); MPI_Comm_rank(MPI_COMM_WORLD, &MyRank); if (IsAllObserved()) { int i; float **evid = NULL; EDistributionType dt; CFactor *factor = NULL; for (i = 0; i < nFactors; i++) { factor = pGrModel->GetFactor(i); factor->UpdateStatisticsML(&m_Vector_pEvidences[GetNumberProcEv()], GetNumEv() - GetNumberProcEv()); } m_critValue.push_back(UpdateModel()); } else { bool bContinue; const CPotential * pot; do { ClearStatisticData(); iteration++; numSelfEvidences = (GetNumEv() - GetNumberProcEv()) / NumberOfProcesses; start_mpi = GetNumberProcEv() + numSelfEvidences * MyRank; if (MyRank < NumberOfProcesses - 1) finish_mpi = start_mpi + numSelfEvidences; else finish_mpi = GetNumEv(); for(int ev = start_mpi; ev < finish_mpi; ev++) { bool bInfIsNeed = !GetObsFlags(ev)->empty(); pEv = m_Vector_pEvidences[ev]; if( bInfIsNeed ) { pInfEng->EnterEvidence(pEv, 0, 0); } int i; for( i = 0; i < nFactors; i++ ) { pFactor = pGrModel->GetFactor(i); int nnodes; const int * domain; pFactor->GetDomain( &nnodes, &domain ); if( bInfIsNeed && !IsDomainObserved(nnodes, domain, ev ) ) { pInfEng->MarginalNodes( domain, nnodes, 1 ); pot = pInfEng->GetQueryJPD(); pFactor->UpdateStatisticsEM( /*pInfEng->GetQueryJPD */ pot, pEv ); } else { pFactor->UpdateStatisticsML( &pEv, 1 ); } } } for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++ ) { parameter = pGrModel->GetFactor(domainNodes); C2DNumericDenseMatrix<float> *matMeanForSending; C2DNumericDenseMatrix<float> *matCovForSending; int dataLengthM,dataLengthC; const float *pMeanDataForSending; const float *pCovDataForSending; matMeanForSending = static_cast<C2DNumericDenseMatrix<float>*> ((parameter->GetDistribFun())->GetStatisticalMatrix(stMatMu)); matMeanForSending->GetRawData(&dataLengthM, &pMeanDataForSending); matCovForSending = static_cast<C2DNumericDenseMatrix<float>*> ((parameter->GetDistribFun())->GetStatisticalMatrix(stMatSigma)); matCovForSending->GetRawData(&dataLengthC, &pCovDataForSending); float *pMeanDataRecv = new float[dataLengthM]; float *pCovDataRecv = new float[dataLengthC]; MPI_Status status; MPI_Allreduce((void*)pMeanDataForSending, pMeanDataRecv, dataLengthM, MPI_FLOAT, MPI_SUM, MPI_COMM_WORLD); MPI_Allreduce((void*)pCovDataForSending, pCovDataRecv, dataLengthC, MPI_FLOAT, MPI_SUM, MPI_COMM_WORLD); memcpy((void*)pMeanDataForSending,pMeanDataRecv,dataLengthM*sizeof(float)); memcpy((void*)pCovDataForSending,pCovDataRecv,dataLengthC*sizeof(float)); } loglik = UpdateModel(); if( GetMaxIterEM() != 1) { bool flag = iteration == 1 ? true : (fabs(2*(m_critValue.back()-loglik)/(m_critValue.back() + loglik)) > GetPrecisionEM() ); bContinue = GetMaxIterEM() > iteration && flag; } else { bContinue = false; } m_critValue.push_back(loglik); }while(bContinue); } SetNumProcEv( GetNumEv() ); }
void CEMLearningEngine::Learn() { CStaticGraphicalModel *pGrModel = this->GetStaticModel(); PNL_CHECK_IS_NULL_POINTER(pGrModel); PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1); CInfEngine *pInfEng = NULL; if (m_pInfEngine) { pInfEng = m_pInfEngine; } else { if (!m_bAllObserved) { pInfEng = CJtreeInfEngine::Create(pGrModel); m_pInfEngine = pInfEng; } } float loglik = 0.0f; int nFactors = pGrModel->GetNumberOfFactors(); const CEvidence *pEv; CFactor *pFactor; int iteration = 0; int ev; bool IsCastNeed = false; int i; for( i = 0; i < nFactors; i++ ) { pFactor = pGrModel->GetFactor(i); EDistributionType dt = pFactor->GetDistributionType(); if ( dt == dtSoftMax ) IsCastNeed = true; } float ** full_evid = NULL; if (IsCastNeed) { BuildFullEvidenceMatrix(&full_evid); } if (IsAllObserved()) { int i; float **evid = NULL; EDistributionType dt; CFactor *factor = NULL; for (i = 0; i < nFactors; i++) { factor = pGrModel->GetFactor(i); dt = factor->GetDistributionType(); if (dt != dtSoftMax) { factor->UpdateStatisticsML(&m_Vector_pEvidences[GetNumberProcEv()], GetNumEv() - GetNumberProcEv()); } else { intVector family; family.resize(0); pGrModel->GetGraph()->GetParents(i, &family); family.push_back(i); CSoftMaxCPD* SoftMaxFactor = static_cast<CSoftMaxCPD*>(factor); SoftMaxFactor->BuildCurrentEvidenceMatrix(&full_evid, &evid,family,m_Vector_pEvidences.size()); SoftMaxFactor->InitLearnData(); SoftMaxFactor->SetMaximizingMethod(m_MaximizingMethod); SoftMaxFactor->MaximumLikelihood(evid, m_Vector_pEvidences.size(), 0.00001f, 0.01f); SoftMaxFactor->CopyLearnDataToDistrib(); for (int k = 0; k < factor->GetDomainSize(); k++) { delete [] evid[k]; } delete [] evid; } } m_critValue.push_back(UpdateModel()); } else { bool bContinue; const CPotential * pot; /* bool IsCastNeed = false; int i; for( i = 0; i < nFactors; i++ ) { pFactor = pGrModel->GetFactor(i); EDistributionType dt = pFactor->GetDistributionType(); if ( dt == dtSoftMax ) IsCastNeed = true; } float ** full_evid; if (IsCastNeed) { BuildFullEvidenceMatrix(full_evid); }*/ do { ClearStatisticData(); iteration++; for( ev = GetNumberProcEv(); ev < GetNumEv() ; ev++ ) { bool bInfIsNeed = !GetObsFlags(ev)->empty(); pEv = m_Vector_pEvidences[ev]; if( bInfIsNeed ) { pInfEng->EnterEvidence(pEv, 0, 0); } int i; for( i = 0; i < nFactors; i++ ) { pFactor = pGrModel->GetFactor(i); int nnodes; const int * domain; pFactor->GetDomain( &nnodes, &domain ); if( bInfIsNeed && !IsDomainObserved(nnodes, domain, ev ) ) { pInfEng->MarginalNodes( domain, nnodes, 1 ); pot = pInfEng->GetQueryJPD(); if ( (!(m_Vector_pEvidences[ev])->IsNodeObserved(i)) && (IsCastNeed) ) { Cast(pot, i, ev, &full_evid); } EDistributionType dt; dt = pFactor->GetDistributionType(); if ( !(dt == dtSoftMax) ) pFactor->UpdateStatisticsEM( /*pInfEng->GetQueryJPD */ pot, pEv ); } else { if ((pFactor->GetDistributionType()) != dtSoftMax) pFactor->UpdateStatisticsML( &pEv, 1 ); } } } int i; /* printf ("\n My Full Evidence Matrix"); for (i=0; i<nFactors; i++) { for (j=0; j<GetNumEv(); j++) { printf ("%f ", full_evid[i][j]); } printf("\n"); } */ float **evid = NULL; EDistributionType dt; CFactor *factor = NULL; // int i; for (i = 0; i < nFactors; i++) { factor = pGrModel->GetFactor(i); dt = factor->GetDistributionType(); if (dt == dtSoftMax) { intVector family; family.resize(0); pGrModel->GetGraph()->GetParents(i, &family); family.push_back(i); CSoftMaxCPD* SoftMaxFactor = static_cast<CSoftMaxCPD*>(factor); SoftMaxFactor->BuildCurrentEvidenceMatrix(&full_evid, &evid,family,m_Vector_pEvidences.size()); SoftMaxFactor->InitLearnData(); SoftMaxFactor->SetMaximizingMethod(m_MaximizingMethod); // SoftMaxFactor->MaximumLikelihood(evid, m_numberOfLastEvidences, SoftMaxFactor->MaximumLikelihood(evid, m_Vector_pEvidences.size(), 0.00001f, 0.01f); SoftMaxFactor->CopyLearnDataToDistrib(); for (int k = 0; k < factor->GetDomainSize(); k++) { delete [] evid[k]; } delete [] evid; } } loglik = UpdateModel(); if( GetMaxIterEM() != 1) { bool flag = iteration == 1 ? true : (fabs(2*(m_critValue.back()-loglik)/(m_critValue.back() + loglik)) > GetPrecisionEM() ); bContinue = GetMaxIterEM() > iteration && flag; } else { bContinue = false; } m_critValue.push_back(loglik); }while(bContinue); } SetNumProcEv( GetNumEv() ); if (IsCastNeed) { int NumOfNodes = pGrModel->GetGraph()->GetNumberOfNodes(); for (i=0; i<NumOfNodes; i++) { delete [] full_evid[i]; } delete [] full_evid; } }