double ChLcpIterativePCG::Solve( ChLcpSystemDescriptor& sysd ///< system description with constraints and variables ) { std::vector<ChLcpConstraint*>& mconstraints = sysd.GetConstraintsList(); std::vector<ChLcpVariables*>& mvariables = sysd.GetVariablesList(); tot_iterations = 0; double maxviolation = 0.; // Update auxiliary data in all constraints before starting, // that is: g_i=[Cq_i]*[invM_i]*[Cq_i]' and [Eq_i]=[invM_i]*[Cq_i]' for (unsigned int ic = 0; ic< mconstraints.size(); ic++) mconstraints[ic]->Update_auxiliary(); // Allocate auxiliary vectors; int nc = sysd.CountActiveConstraints(); if (verbose) GetLog() <<"\n-----Projected CG, solving nc=" << nc << "unknowns \n"; ChMatrixDynamic<> ml(nc,1); ChMatrixDynamic<> mb(nc,1); ChMatrixDynamic<> mu(nc,1); ChMatrixDynamic<> mp(nc,1); ChMatrixDynamic<> mw(nc,1); ChMatrixDynamic<> mz(nc,1); ChMatrixDynamic<> mNp(nc,1); ChMatrixDynamic<> mtmp(nc,1); double graddiff= 0.00001; // explorative search step for gradient // ***TO DO*** move the following thirty lines in a short function ChLcpSystemDescriptor::ShurBvectorCompute() ? // Compute the b_shur vector in the Shur complement equation N*l = b_shur // with // N_shur = D'* (M^-1) * D // b_shur = - c + D'*(M^-1)*k = b_i + D'*(M^-1)*k // but flipping the sign of lambdas, b_shur = - b_i - D'*(M^-1)*k // Do this in three steps: // Put (M^-1)*k in q sparse vector of each variable.. for (unsigned int iv = 0; iv< mvariables.size(); iv++) if (mvariables[iv]->IsActive()) mvariables[iv]->Compute_invMb_v(mvariables[iv]->Get_qb(), mvariables[iv]->Get_fb()); // q = [M]'*fb // ...and now do b_shur = - D' * q .. int s_i = 0; for (unsigned int ic = 0; ic< mconstraints.size(); ic++) if (mconstraints[ic]->IsActive()) { mb(s_i, 0) = - mconstraints[ic]->Compute_Cq_q(); ++s_i; } // ..and finally do b_shur = b_shur - c sysd.BuildBiVector(mtmp); // b_i = -c = phi/h mb.MatrDec(mtmp); // Optimization: backup the q sparse data computed above, // because (M^-1)*k will be needed at the end when computing primals. ChMatrixDynamic<> mq; sysd.FromVariablesToVector(mq, true); // Initialize lambdas if (warm_start) sysd.FromConstraintsToVector(ml); else ml.FillElem(0); // Initial projection of ml ***TO DO***? // ... std::vector<bool> en_l(nc); // Initially all constraints are enabled for (int ie= 0; ie < nc; ie++) en_l[ie] = true; // u = -N*l+b sysd.ShurComplementProduct(mu, &ml, &en_l); // 1) u = N*l ... #### MATR.MULTIPLICATION!!!### mu.MatrNeg(); // 2) u =-N*l mu.MatrInc(mb); // 3) u =-N*l+b mp = mu; // // THE LOOP // std::vector<double> f_hist; for (int iter = 0; iter < max_iterations; iter++) { // alpha = u'*p / p'*N*p sysd.ShurComplementProduct(mNp, &mp, &en_l);// 1) Np = N*p ... #### MATR.MULTIPLICATION!!!### double pNp = mp.MatrDot(&mp,&mNp); // 2) pNp = p'*N*p double up = mu.MatrDot(&mu,&mp); // 3) up = u'*p double alpha = up/pNp; // 4) alpha = u'*p / p'*N*p if (fabs(pNp)<10e-10) GetLog() << "Rayleygh quotient pNp breakdown \n"; // l = l + alpha * p; mtmp.CopyFromMatrix(mp); mtmp.MatrScale(alpha); ml.MatrInc(mtmp); double maxdeltalambda = mtmp.NormInf(); // l = Proj(l) sysd.ConstraintsProject(ml); // 5) l = P(l) // u = -N*l+b sysd.ShurComplementProduct(mu, &ml, 0); // 6) u = N*l ... #### MATR.MULTIPLICATION!!!### mu.MatrNeg(); // 7) u =-N*l mu.MatrInc(mb); // 8) u =-N*l+b // w = (Proj(l+lambda*u) -l) /lambda; mw.CopyFromMatrix(mu); mw.MatrScale(graddiff); mw.MatrInc(ml); sysd.ConstraintsProject(mw); // 9) w = P(l+lambda*u) ... mw.MatrDec(ml); mw.MatrScale(1.0/graddiff); //10) w = (P(l+lambda*u)-l)/lambda ... // z = (Proj(l+lambda*p) -l) /lambda; mz.CopyFromMatrix(mp); mz.MatrScale(graddiff); mz.MatrInc(ml); sysd.ConstraintsProject(mz); //11) z = P(l+lambda*u) ... mz.MatrDec(ml); mz.MatrScale(1.0/graddiff); //12) z = (P(l+lambda*u)-l)/lambda ... // beta = w'*Np / pNp; double wNp = mw.MatrDot(&mw, &mNp); double beta = wNp / pNp; // p = w + beta * z; mp.CopyFromMatrix(mz); mp.MatrScale(beta); mp.MatrInc(mw); // METRICS - convergence, plots, etc double maxd = mu.NormInf(); // ***TO DO*** should be max violation, but just for test... // For recording into correction/residuals/violation history, if debugging if (this->record_violation_history) AtIterationEnd(maxd, maxdeltalambda, iter); tot_iterations++; } // Resulting DUAL variables: // store ml temporary vector into ChLcpConstraint 'l_i' multipliers sysd.FromVectorToConstraints(ml); // Resulting PRIMAL variables: // compute the primal variables as v = (M^-1)(k + D*l) // v = (M^-1)*k ... (by rewinding to the backup vector computed ad the beginning) sysd.FromVectorToVariables(mq); // ... + (M^-1)*D*l (this increment and also stores 'qb' in the ChLcpVariable items) for (unsigned int ic = 0; ic < mconstraints.size(); ic++) { if (mconstraints[ic]->IsActive()) mconstraints[ic]->Increment_q( mconstraints[ic]->Get_l_i() ); } if (verbose) GetLog() <<"-----\n"; return maxviolation; }
double ChLcpInteriorPoint::Solve( ChLcpSystemDescriptor& sysd ///< system description with constraints and variables ) { std::cout << "-------using interior point solver!!------" << std::endl; std::vector<ChLcpConstraint*>& mconstraints = sysd.GetConstraintsList(); std::vector<ChLcpVariables*>& mvariables = sysd.GetVariablesList(); ChMatrixDynamic <double> mv0; ChSparseMatrix mM; ChSparseMatrix mCq; ChSparseMatrix mE; ChMatrixDynamic <double> mf; ChMatrixDynamic <double> mb; ChMatrixDynamic <double> mfric; sysd.ConvertToMatrixForm(&mCq, &mM, &mE, &mf, &mb, &mfric); sysd.FromVariablesToVector(mv0); ChStreamOutAsciiFile file_V0( "dump_V_old.dat" ) ; mv0.StreamOUTdenseMatlabFormat(file_V0) ; ChStreamOutAsciiFile file_M ( "dump_M.dat" ) ; mM.StreamOUTsparseMatlabFormat ( file_M ) ; ChStreamOutAsciiFile file_Cq ( "dump_Cq.dat" ) ; mCq.StreamOUTsparseMatlabFormat ( file_Cq ) ; ChStreamOutAsciiFile file_E ( "dump_E.dat" ) ; mE.StreamOUTsparseMatlabFormat ( file_E ) ; ChStreamOutAsciiFile file_f ( "dump_f.dat" ) ; mf.StreamOUTdenseMatlabFormat ( file_f ) ; ChStreamOutAsciiFile file_b ( "dump_b.dat" ) ; mb.StreamOUTdenseMatlabFormat ( file_b ) ; ChStreamOutAsciiFile file_fric ( "dump_fric.dat" ) ; mfric.StreamOUTdenseMatlabFormat ( file_fric ) ; printf("Successfully writing chickenbutt files!\n"); /* file_f.GetFstream().close(); file_fric.GetFstream().close(); file_V0.GetFstream().close(); file_M.GetFstream().close(); file_Cq.GetFstream().close(); file_b.GetFstream().close(); */ int nBodies = mM.GetColumns()/6; size_t nVariables = mvariables.size(); size_t nConstraints = sysd.CountActiveConstraints(); int numContacts = nConstraints/3; size_t nOfConstraints = mconstraints.size(); /* ALWYAS DO THIS IN THE LCP SOLVER!!!*/ for (unsigned int ic = 0; ic < nConstraints; ic++) mconstraints[ic]->Update_auxiliary(); //Get sparse info for contact jacobian and Minv matrix to pass on to Ang's solver std::vector<int> index_i_Cq; std::vector<int> index_j_Cq; std::vector<double> val_Cq; double val; // fprintf(stderr, "------------Cq(from C::E)----------\n"); for (int ii = 0; ii < mCq.GetRows(); ii++){ for (int jj = 0; jj < mCq.GetColumns(); jj++){ val = mCq.GetElement(ii,jj); if (val){ index_i_Cq.push_back(jj); index_j_Cq.push_back(ii); val_Cq.push_back(val); // fprintf(stderr, "%d %d %.20g\n", ii, jj, val); } } } /* for (int iv = 0; iv < mvariables.size(); iv++) if (mvariables[iv]->IsActive()) mvariables[iv]->Compute_invMb_v(mvariables[iv]->Get_qb(), mvariables[iv]->Get_fb()); */ // int count = 0; // for (std::vector<int>::iterator it = index_i_Cq.begin(); it != index_i_Cq.end(); it ++){ // std::cout << "(" << index_i_Cq[count] <<"," << index_j_Cq[count] <<"):" << val_Cq[count] << std::endl; // count ++; // } // Minv matrix std::vector<int> index_i_Minv; std::vector<int> index_j_Minv; std::vector<double> val_Minv; for (int i = 0; i < nBodies*6; i++){ index_i_Minv.push_back(i); index_j_Minv.push_back(i); val_Minv.push_back(1.0/mM.GetElement(i,i)); } // create reference to pass on to SPIKE int *Cq_i = &index_i_Cq[0]; int *Cq_j = &index_j_Cq[0]; int Cq_nnz = val_Cq.size(); double *Cq_val = &val_Cq[0]; int *Minv_i = &index_i_Minv[0]; int *Minv_j = &index_j_Minv[0]; double *Minv_val = &val_Minv[0]; // formulate rhs of optimization problem f(x) = 1/2 *x'*N*x + r'*x ChMatrixDynamic <double> opt_r_tmp(nConstraints,1); // assemble r vector /** 1. put [M^-1]*k in q sparse vector of each variable **/ for (unsigned int iv = 0; iv < nVariables; iv ++) if (mvariables[iv]->IsActive()){ mvariables[iv]->Compute_invMb_v(mvariables[iv]->Get_qb(), mvariables[iv]->Get_fb()); ChMatrix<double> k = mvariables[iv]->Get_fb(); ChMatrix<double> Mk = mvariables[iv]->Get_qb(); // fprintf(stderr, "Body %d k: %.12f %.12f %.12f\n", iv, k(0,0), k(1,0), k(2,0)); // fprintf(stderr, "Body %d M^[-1]*k: %.12f %.12f %.12f\n", iv, Mk(0,0), Mk(1,0), Mk(2,0)); } /** 2. now do rhs = D'*q = D'*(M^-1)*k **/ int s_i = 0; opt_r.Resize(nConstraints,1); for (unsigned int ic = 0; ic < nConstraints; ic ++) if (mconstraints[ic]->IsActive()){ opt_r(s_i,0) = mconstraints[ic]->Compute_Cq_q(); ++s_i; } // fprintf(stderr, "------D'*M^(-1)*k-------\n"); // for (int i = 0; i < opt_r.GetRows(); i++) // fprintf(stderr, "%.16f\n", opt_r(i,0)); /** 3. rhs = rhs + c **/ sysd.BuildBiVector(opt_r_tmp); opt_r.MatrInc(opt_r_tmp); // fprintf(stderr, "------opt_r-------\n"); // for (int i = 0; i < opt_r.GetRows(); i++) // fprintf(stderr, "%.12f\n", opt_r(i,0)); /////////////////// //velocity update// /////////////////// ChMatrixDynamic<> mq; sysd.FromVariablesToVector(mq, true); for (int i = 0; i < mq.GetRows(); i++){ // mq.SetElementN(i, mf.GetElementN(i)/mM.GetElement(i,i) + mv0.GetElementN(i)); // mq.SetElementN(i, mf.GetElementN(i)/mM.GetElement(i,i)); // fprintf(stderr, "%d: %g / %g + %g = %g\n",i, mf.GetElementN(i), mM.GetElement(i,i), mv0.GetElementN(i), mq.GetElementN(i)); // fprintf(stderr, "%g\n", mq.GetElementN(i)); } //////////////////////////// //assign solver parameters// //////////////////////////// double barrier_t = 1; double eta_hat; int numStages = 500; int mu1 = 10; double b1 = 0.5; double a1 = 0.01; // assign vectors here ff.Resize(numContacts*2,1); lambda_k.Resize(numContacts*2,1); /*initialize lambda_k*/ xk.Resize(numContacts*3,1); r_dual.Resize(numContacts*3,1); r_cent.Resize(numContacts*2,1); d_x.Resize(numContacts*3,1); d_lambda.Resize(numContacts*2,1); Schur_rhs.Resize(3*numContacts,1); grad_f.Resize(3*numContacts,1); if (mconstraints.size() == 0){ sysd.FromVectorToConstraints(xk); sysd.FromVectorToVariables(mq); for (size_t ic = 0; ic < mconstraints.size(); ic ++){ if (mconstraints[ic]->IsActive()) mconstraints[ic]->Increment_q(mconstraints[ic]->Get_l_i()); } return 1e-8; } double *BlockDiagonal_val = new double[9*numContacts]; int *BlockDiagonal_i = new int[9*numContacts]; int *BlockDiagonal_j = new int[9*numContacts]; double *spike_rhs = new double[3*numContacts]; int tmp0, tmp1, tmp2; for (int i = 0; i < numContacts; i ++){ tmp0 = 3*i; tmp1 = 3*i+1; tmp2 = 3*i+2; *(BlockDiagonal_i + 9*i) = tmp0; *(BlockDiagonal_i + 9*i+1) = tmp0; *(BlockDiagonal_i + 9*i+2) = tmp0; *(BlockDiagonal_i + 9*i+3) = tmp1; *(BlockDiagonal_i + 9*i+4) = tmp1; *(BlockDiagonal_i + 9*i+5) = tmp1; *(BlockDiagonal_i + 9*i+6) = tmp2; *(BlockDiagonal_i + 9*i+7) = tmp2; *(BlockDiagonal_i + 9*i+8) = tmp2; *(BlockDiagonal_j + 9*i) = tmp0; *(BlockDiagonal_j + 9*i+1) = tmp1; *(BlockDiagonal_j + 9*i+2) = tmp2; *(BlockDiagonal_j + 9*i+3) = tmp0; *(BlockDiagonal_j + 9*i+4) = tmp1; *(BlockDiagonal_j + 9*i+5) = tmp2; *(BlockDiagonal_j + 9*i+6) = tmp0; *(BlockDiagonal_j + 9*i+7) = tmp1; *(BlockDiagonal_j + 9*i+8) = tmp2; } // initialize xk for (int i = 0; i < numContacts; i ++){ xk(3*i, 0) = 1; xk(3*i+1, 0) = 0; xk(3*i+2, 0) = 0; } evaluateConstraints(mfric.GetAddress(), numContacts, false); //initialize lambda for (int i = 0; i < lambda_k.GetRows(); i++) lambda_k(i,0) = -1/(barrier_t * ff(i,0)); ///////////////////////////// ////GO THROUGH EACH STAGE//// ///////////////////////////// for (int stage = 0; stage < numStages; stage++){ eta_hat = - lambda_k.MatrDot(&lambda_k, &ff); barrier_t = mu1 * (2*numContacts)/eta_hat; // assemble grad_f = N*x + r sysd.ShurComplementProduct(grad_f, &xk, 0); // fprintf(stderr, "----------N*x----------\n"); // for (int i = 0; i < grad_f.GetRows(); i++) // fprintf(stderr, "%.20f\n", grad_f.GetElementN(i)); grad_f.MatrInc(opt_r); // fprintf(stderr, "----------grad_f----------\n"); // for (int i = 0; i < grad_f.GetRows(); i++) // fprintf(stderr, "%.20f\n", grad_f.GetElementN(i)); // compute r_d and r_c for schur implementation computeSchurRHS(grad_f.GetAddress(), mfric.GetAddress(), numContacts, barrier_t); // fprintf(stderr, "----------r_dual----------\n"); // for (int i = 0; i < r_dual.GetRows(); i++) // fprintf(stderr, "%.16f\n", r_dual.GetElementN(i)); // fprintf(stderr, "----------r_cent----------\n"); // for (int i = 0; i < r_cent.GetRows(); i++) // fprintf(stderr, "%.16f\n", r_cent.GetElementN(i)); // assemble block diagonal matrix computeBlockDiagonal(BlockDiagonal_val, mfric.GetAddress(), numContacts, barrier_t); // assemble rhs vector for spike solver computeSpikeRHS(spike_rhs, mfric.GetAddress(), numContacts, barrier_t); // fprintf(stderr, "----------spike_rhs----------\n"); // for (int i = 0; i < 3*numContacts; i++){ // fprintf(stderr, "%.16f\n", *(spike_rhs + i)); // } double *spike_dx = new double [3*numContacts]; //call ang's solver here.... bool solveSuc = solveSPIKE(nBodies, numContacts, Cq_i, Cq_j, Cq_nnz, Cq_val, Minv_i, Minv_j, Minv_val, BlockDiagonal_i, BlockDiagonal_j, BlockDiagonal_val, spike_dx, spike_rhs); if (solveSuc == false) std::cerr << "Solve Failed!" << std::endl; // assume d_x is calculated perfectly! for (int i = 0; i < numContacts; i++){ d_x(3*i,0) = *(spike_dx + 3*i); d_x(3*i+1,0) = *(spike_dx + 3*i + 1); d_x(3*i+2,0) = *(spike_dx + 3*i + 2); } /* fprintf(stderr, "-------d_x---------\n"); for (int i = 0; i < d_x.GetRows(); i++){ fprintf(stderr, "%.20f\n", d_x(i,0)); } */ // free the heap! delete [] spike_dx; // evaluate d_lambda for (int i = 0; i < numContacts; i++){ d_lambda(i) = lambda_k(i,0)/ff(i,0) * (pow(mfric(3*i,0),2)*xk(3*i,0)*d_x(3*i,0) - xk(3*i+1,0)*d_x(3*i+1,0) -xk(3*i+2,0)*d_x(3*i+2,0) - r_cent(i,0) ); d_lambda(i + numContacts) = lambda_k(i+numContacts,0)/ff(i+numContacts)*(d_x(3*i) - r_cent(i + numContacts)); } /* fprintf(stderr, "----------d_lambda----------\n"); for (int i = 0; i < 2*numContacts; i++){ fprintf(stderr, "%.16f\n", d_lambda(i,0)); } */ /////////////// //LINE SEARCH// /////////////// double s_max = 1; double tmp; for (int i = 0; i < 2*numContacts; i ++){ if (d_lambda(i,0) < 0){ tmp = -lambda_k(i,0)/d_lambda(i,0); // fprintf(stderr, "i = %d, tmp = %.20f\n", i, tmp); if (tmp < s_max){ s_max = tmp; } } } double bla = 0.99; double ss = bla * s_max; // fprintf(stderr, "s_max = %.20g\n", s_max); ff_tmp.Resize(2*numContacts,1); lambda_k_tmp.Resize(2*numContacts,1); xk_tmp.Resize(3*numContacts,1);; r_dual_tmp.Resize(3*numContacts,1);; r_cent_tmp.Resize(3*numContacts,1);; bool DO = true; int count = 0; // fprintf(stderr, "----line search----\n"); while (DO){ xk_tmp = d_x; // fprintf(stderr, "-----d_x----\n"); // for (int i = 0; i < 3*numContacts; i ++) // fprintf(stderr, "%.20g\n", xk_tmp(i,0)); xk_tmp.MatrScale(ss); // fprintf(stderr, "-----ss*d_x----\n"); // for (int i = 0; i < 3*numContacts; i ++) // fprintf(stderr, "%.20g\n", xk_tmp(i,0)); xk_tmp.MatrAdd(xk,xk_tmp); // fprintf(stderr, "-----xk+ss*d_x----\n"); // for (int i = 0; i < 3*numContacts; i ++) // fprintf(stderr, "%.20g\n", xk_tmp(i,0)); evaluateConstraints(mfric.GetAddress(), numContacts, true); // fprintf(stderr, "-----tmp_ff----\n"); // for (int i = 0; i < 2*numContacts; i ++) // fprintf(stderr, "%.20g\n", ff_tmp(i,0)); // fprintf(stderr, "max_ff = %.20g\n", ff_tmp.Max()); if (ff_tmp.Max()<0){ DO = false; } else{ count++; ss = b1 * ss; // fprintf(stderr,"ss[%d] = %.20g\n", count, ss); } } DO = true; double norm_r_t = sqrt(pow(r_dual.NormTwo(),2) + pow(r_cent.NormTwo(),2)); double norm_r_t_ss; count = 0; while (DO){ xk_tmp = d_x; xk_tmp.MatrScale(ss); xk_tmp.MatrAdd(xk,xk_tmp); lambda_k_tmp = d_lambda; lambda_k_tmp.MatrScale(ss); lambda_k_tmp.MatrAdd(lambda_k, lambda_k_tmp); evaluateConstraints(mfric.GetAddress(),numContacts,true); sysd.ShurComplementProduct(grad_f, &xk_tmp, 0); grad_f.MatrInc(opt_r); computeSchurKKT(grad_f.GetAddress(), mfric.GetAddress(), numContacts, barrier_t, true); norm_r_t_ss = sqrt(pow(r_dual_tmp.NormTwo(),2) + pow(r_cent_tmp.NormTwo(),2)); if (norm_r_t_ss < (1 - a1*ss)*norm_r_t) DO = false; else{ count ++; ss = b1*ss; // fprintf(stderr,"ss[%d] = %.20g\n", count, ss); } } // upadate xk and lambda_k d_x.MatrScale(ss); // fprintf(stderr, "-------ss*d_x---------\n"); // for (int i = 0; i < d_x.GetRows(); i++) // fprintf(stderr, "%.20f\n", d_x(i,0)); // fprintf(stderr, "----------xk = xk + ss*d_x--------\n"); xk.MatrInc(d_x); // for (int i = 0; i < xk.GetRows(); i++) // fprintf(stderr, "%.20f\n", xk(i,0)); d_lambda.MatrScale(ss); lambda_k.MatrInc(d_lambda); // fprintf(stderr, "-------lambda_k------\n"); // for (int i = 0; i < lambda_k.GetRows(); i++) // fprintf(stderr, "%.20f\n", lambda_k(i,0)); sysd.ShurComplementProduct(grad_f, &xk, 0); grad_f.MatrInc(opt_r); evaluateConstraints(mfric.GetAddress(), numContacts, false); computeSchurKKT(grad_f.GetAddress(), mfric.GetAddress(), numContacts, barrier_t, false); // std::cout << "----r_dual-----" << std::endl; // for (int i = 0; i < r_dual.GetRows(); i++) // std::cout << r_dual(i,0) << std::endl; // std::cout << "-----r_cent-----" << std::endl; // for (int i = 0; i < r_cent.GetRows(); i++) // std::cout << r_cent(i,0) << std::endl; fprintf(stderr, "stage[%d], rd = %e, rg = %e, s = %f, t = %f\n", stage+1, r_dual.NormInf(), r_cent.NormInf(), ss, barrier_t); if (r_cent.NormInf() < 1e-10 ||stage == (numStages - 1)){ fprintf(stderr, "solution found after %d stages!\n", stage+1); // fprintf(stderr, "stage[%d], rd = %e, rg = %e, s = %f, t = %f\n", stage+1, r_dual.NormInf(), r_cent.NormInf(), ss, barrier_t); delete [] BlockDiagonal_val; delete [] BlockDiagonal_i; delete [] BlockDiagonal_j; delete [] spike_rhs; ///////////////////////////////////////////// //set small-magnitude contact force to zero// ///////////////////////////////////////////// // for (int i = 0; i < numContacts; i++){ // if (sqrt(pow(xk(3*i,0),2) + pow(xk(3*i+1,0),2) + pow(xk(3*i+2,0),2)) < 1e-6){ /// xk(3*i,0) = 0; // xk(3*i+1,0) = 0; // xk(3*i+2, 0) = 0; // } // } sysd.FromVectorToConstraints(xk); sysd.FromVectorToVariables(mq); for (size_t ic = 0; ic < mconstraints.size(); ic ++){ if (mconstraints[ic]->IsActive()) mconstraints[ic]->Increment_q(mconstraints[ic]->Get_l_i()); } // return r_cent.NormInf(); return 1e-8; } evaluateConstraints(mfric.GetAddress(), numContacts, false); } }
double ChLcpSimplexSolver::Solve( ChLcpSystemDescriptor& sysd ///< system description with constraints and variables ) { std::vector<ChLcpConstraint*>& mconstraints = sysd.GetConstraintsList(); std::vector<ChLcpVariables*>& mvariables = sysd.GetVariablesList(); std::vector<ChLcpKblock*>& mstiffness = sysd.GetKblocksList(); double maxviolation = 0.; // -- // Count active linear constraints.. int n_c=0; int n_d=0; for (unsigned int ic = 0; ic< mconstraints.size(); ic++) { if (mconstraints[ic]->IsActive()) if (mconstraints[ic]->IsLinear()) if (mconstraints[ic]->IsUnilateral()) n_d++; else n_c++; } // -- // Count active variables, by scanning through all variable blocks.. int n_q=0; for (unsigned int iv = 0; iv< mvariables.size(); iv++) { if (mvariables[iv]->IsActive()) { mvariables[iv]->SetOffset(n_q); // also store offsets in state and MC matrix n_q += mvariables[iv]->Get_ndof(); } } if (n_q==0) return 0; int n_docs = n_c + n_d; int n_vars = n_q + n_docs; int nv = sysd.CountActiveVariables(); // also sets offsets int nc = sysd.CountActiveConstraints(); int nx = nv+nc; // total scalar unknowns, in x vector for full KKT system Z*x-d=0 // -- // Reset and resize (if needed) auxiliary vectors MC->Reset(n_vars,n_vars); // fast! Reset() method does not realloc if size doesn't change B->Reset(n_vars,1); X->Reset(n_vars,1); if (unilaterals != 0) {delete[]unilaterals; unilaterals = 0;} if (n_d > 0) { unilaterals = new ChUnilateralData[n_d]; } // -- // Fills the MC matrix and B vector, to pass to the sparse LCP simplex solver. // The original problem, stated as // | M -Cq'|*|q|- | f|= |0| , c>=0, l>=0, l*c=0; // | Cq 0 | |l| |-b| |c| // will be used with a small modification as: // | M Cq'|*| q|- | f|= |0| , c>=0, l>=0, l*c=0; // | Cq 0 | |-l| |-b| |c| // so that it uses a symmetric MC matrix (the LDL factorization at each // pivot is happier:) // .. fills M submasses and 'f' part of B int s_q=0; for (unsigned int iv = 0; iv< mvariables.size(); iv++) { if (mvariables[iv]->IsActive()) { mvariables[iv]->Build_M(*MC, s_q, s_q); // .. fills MC (M part) B->PasteMatrix(&mvariables[iv]->Get_fb(),s_q, 0); // .. fills B (f part) s_q += mvariables[iv]->Get_ndof(); } } // ..if some stiffness / hessian matrix has been added to M , // also add it to the sparse M int s_k=0; for (unsigned int ik = 0; ik< mstiffness.size(); ik++) { mstiffness[ik]->Build_K(*MC, true); } // .. fills M jacobians (only lower part) and 'b' part of B int s_c=0; int s_d=0; for (unsigned int ic = 0; ic< mconstraints.size(); ic++) { if (mconstraints[ic]->IsActive()) if (mconstraints[ic]->IsLinear()) if (mconstraints[ic]->IsUnilateral()) { mconstraints[ic]->Build_Cq (*MC, n_q + n_c + s_d);// .. fills MC (Cq part) mconstraints[ic]->Build_CqT(*MC, n_q + n_c + s_d);// .. fills MC (Cq' part) B->SetElement(n_q + n_c + s_d, 0, -mconstraints[ic]->Get_b_i() ); // .. fills B (c part) unilaterals[s_d].status = CONSTR_UNILATERAL_OFF; s_d++; } else { mconstraints[ic]->Build_Cq (*MC, n_q + s_c); mconstraints[ic]->Build_CqT(*MC, n_q + s_c); B->SetElement(n_q + s_c, 0, -mconstraints[ic]->Get_b_i() ); s_c++; } } //***DEBUG*** double max_err=0; int err_r = -1; int err_c = -1; for (int row = 0; row < MC->GetRows(); ++row) for (int col = 0; col < MC->GetColumns(); ++col) { double diff = fabs (MC->GetElement(row,col)-MC->GetElement(col,row)); if (diff > max_err) { max_err = diff; err_r = row; err_c = col; } } if (max_err > 1e-10) GetLog() << "simplex solver: NONSYMMETRIC MC! error " << max_err << " at " << err_r << "," << err_c << "\n"; // -- // Solve the LCP MC->SolveLCP(B, X, n_c, n_d, truncation_step, false, unilaterals); // -- // Update results into variable-interface objects s_q=0; for (unsigned int iv = 0; iv< mvariables.size(); iv++) { if (mvariables[iv]->IsActive()) { mvariables[iv]->Get_qb().PasteClippedMatrix(X, s_q,0, mvariables[iv]->Get_ndof(),1, 0,0); s_q += mvariables[iv]->Get_ndof(); } } // -- // Update results into constraint-interface objects s_c=0; s_d=0; for (unsigned int ic = 0; ic< mconstraints.size(); ic++) { if (mconstraints[ic]->IsActive()) if (mconstraints[ic]->IsLinear()) if (mconstraints[ic]->IsUnilateral()) { //(change sign of multipliers!) mconstraints[ic]->Set_l_i( -X->GetElement(n_q + n_c + s_d , 0)); s_d++; } else { //(change sign of multipliers!) mconstraints[ic]->Set_l_i( -X->GetElement(n_q + s_c , 0)); s_c++; } } return maxviolation; }
double ChLcpIterativeAPGD::Solve( ChLcpSystemDescriptor& sysd ///< system description with constraints and variables ) { std::vector<ChLcpConstraint*>& mconstraints = sysd.GetConstraintsList(); std::vector<ChLcpVariables*>& mvariables = sysd.GetVariablesList(); double gdiff= 0.000001; double maxviolation = 0.; int i_friction_comp = 0; double theta_k=1.0; double theta_k1=theta_k; double beta_k1=0.0; double L_k=0.0; double t_k=0.0; tot_iterations = 0; // Allocate auxiliary vectors; int nc = sysd.CountActiveConstraints(); if (verbose) GetLog() <<"\n-----Accelerated Projected Gradient Descent, solving nc=" << nc << "unknowns \n"; //ChMatrixDynamic<> ml(nc,1); //I made this into a class variable so I could print it easier -Hammad ml.Resize(nc,1); ChMatrixDynamic<> mx(nc,1); ChMatrixDynamic<> ms(nc,1); ChMatrixDynamic<> my(nc,1); ChMatrixDynamic<> ml_candidate(nc,1); ChMatrixDynamic<> mg(nc,1); ChMatrixDynamic<> mg_tmp(nc,1); ChMatrixDynamic<> mg_tmp1(nc,1); ChMatrixDynamic<> mg_tmp2(nc,1); //ChMatrixDynamic<> mb(nc,1); //I made this into a class variable so I could print it easier -Hammad mb.Resize(nc,1); ChMatrixDynamic<> mb_tmp(nc,1); // Update auxiliary data in all constraints before starting, // that is: g_i=[Cq_i]*[invM_i]*[Cq_i]' and [Eq_i]=[invM_i]*[Cq_i]' for (unsigned int ic = 0; ic< mconstraints.size(); ic++) mconstraints[ic]->Update_auxiliary(); // Average all g_i for the triplet of contact constraints n,u,v. // Can be used for the fixed point phase and/or by preconditioner. int j_friction_comp = 0; double gi_values[3]; for (unsigned int ic = 0; ic< mconstraints.size(); ic++) { if (mconstraints[ic]->GetMode() == CONSTRAINT_FRIC) { gi_values[j_friction_comp] = mconstraints[ic]->Get_g_i(); j_friction_comp++; if (j_friction_comp==3) { double average_g_i = (gi_values[0]+gi_values[1]+gi_values[2])/3.0; mconstraints[ic-2]->Set_g_i(average_g_i); mconstraints[ic-1]->Set_g_i(average_g_i); mconstraints[ic-0]->Set_g_i(average_g_i); j_friction_comp=0; } } } // ***TO DO*** move the following thirty lines in a short function ChLcpSystemDescriptor::ShurBvectorCompute() ? // Compute the b_shur vector in the Shur complement equation N*l = b_shur // with // N_shur = D'* (M^-1) * D // b_shur = - c + D'*(M^-1)*k = b_i + D'*(M^-1)*k // but flipping the sign of lambdas, b_shur = - b_i - D'*(M^-1)*k // Do this in three steps: // Put (M^-1)*k in q sparse vector of each variable.. for (unsigned int iv = 0; iv< mvariables.size(); iv++) if (mvariables[iv]->IsActive()) mvariables[iv]->Compute_invMb_v(mvariables[iv]->Get_qb(), mvariables[iv]->Get_fb()); // q = [M]'*fb // ...and now do b_shur = - D'*q = - D'*(M^-1)*k .. int s_i = 0; for (unsigned int ic = 0; ic< mconstraints.size(); ic++) if (mconstraints[ic]->IsActive()) { mb(s_i, 0) = - mconstraints[ic]->Compute_Cq_q(); ++s_i; } // ..and finally do b_shur = b_shur - c sysd.BuildBiVector(mb_tmp); // b_i = -c = phi/h mb.MatrDec(mb_tmp); // Optimization: backup the q sparse data computed above, // because (M^-1)*k will be needed at the end when computing primals. ChMatrixDynamic<> mq; sysd.FromVariablesToVector(mq, true); // Initialize lambdas if (warm_start) sysd.FromConstraintsToVector(ml); else ml.FillElem(0); // Initial projection of ml ***TO DO***? sysd.ConstraintsProject(ml); // Fallback solution double lastgoodres = 10e30; double lastgoodfval = 10e30; ml_candidate.CopyFromMatrix(ml); // g = gradient of 0.5*l'*N*l-l'*b // g = N*l-b sysd.ShurComplementProduct(mg, &ml, 0); // 1) g = N*l ... #### MATR.MULTIPLICATION!!!### mg.MatrDec(mb); // 2) g = N*l - b_shur ... // // THE LOOP // double mf_p =0; mb_tmp.FillElem(-1.0); mb_tmp.MatrInc(ml); sysd.ShurComplementProduct(mg_tmp,&mb_tmp,0); // 1) g = N*l ... #### MATR.MULTIPLICATION!!!### if(mb_tmp.NormTwo()==0){ L_k=1; }else{ L_k=mg_tmp.NormTwo()/mb_tmp.NormTwo(); } t_k=1/L_k; double obj1=0; double obj2=0; my.CopyFromMatrix(ml); mx.CopyFromMatrix(ml); for (int iter = 0; iter < max_iterations; iter++) { sysd.ShurComplementProduct(mg_tmp1, &my, 0); // 1) g_tmp1 = N*yk ... #### MATR.MULTIPLICATION!!!### mg.MatrSub(mg_tmp1,mb); // 2) g = N*yk - b_shur ... mx.CopyFromMatrix(mg); // 1) xk1=g mx.MatrScale(-t_k); // 2) xk1=-tk*g mx.MatrInc(my); // 3) xk1=y-tk*g sysd.ConstraintsProject(mx); // 4) xk1=P(y-tk*g) //Now do backtracking for the steplength sysd.ShurComplementProduct(mg_tmp, &mx, 0); // 1) g_tmp = N*xk1 ... #### MATR.MULTIPLICATION!!!### mg_tmp2.MatrSub(mg_tmp,mb); // 2) g_tmp2 = N*xk1 - b_shur ... mg_tmp.MatrScale(0.5); // 3) g_tmp=0.5*N*xk1 mg_tmp.MatrDec(mb); // 4) g_tmp=0.5*N*xk1-b_shur obj1 = mx.MatrDot(&mx,&mg_tmp); // 5) obj1=xk1'*(0.5*N*x_k1-b_shur) mg_tmp1.MatrScale(0.5); // 1) g_tmp1 = 0.5*N*yk mg_tmp1.MatrDec(mb); // 2) g_tmp1 = 0.5*N*yk-b_shur obj2 = my.MatrDot(&my,&mg_tmp1); // 3) obj2 = yk'*(0.5*N*yk-b_shur) ms.MatrSub(mx,my); // 1) s=xk1-yk while(obj1>obj2+mg.MatrDot(&mg,&ms)+0.5*L_k*pow(ms.NormTwo(),2.0)) { L_k=2*L_k; t_k=1/L_k; mx.CopyFromMatrix(mg); // 1) xk1=g mx.MatrScale(-t_k); // 2) xk1=-tk*g mx.MatrInc(my); // 3) xk1=yk-tk*g sysd.ConstraintsProject(mx); // 4) xk1=P(yk-tk*g) sysd.ShurComplementProduct(mg_tmp, &mx, 0); // 1) g_tmp = N*xk1 ... #### MATR.MULTIPLICATION!!!### mg_tmp2.MatrSub(mg_tmp,mb); // 2) g_tmp2 = N*xk1 - b_shur ... mg_tmp.MatrScale(0.5); // 3) g_tmp=0.5*N*xk1 mg_tmp.MatrDec(mb); // 4) g_tmp=0.5*N*xk1-b_shur obj1 = mx.MatrDot(&mx,&mg_tmp); // 5) obj1=xk1'*(0.5*N*x_k1-b_shur) ms.MatrSub(mx,my); // 1) s=xk1-yk if (verbose) GetLog() << "APGD halving stepsize at it " << iter << "\n"; } theta_k1=(-pow(theta_k,2)+theta_k*sqrt(pow(theta_k,2)+4))/2.0; beta_k1=theta_k*(1.0-theta_k)/(pow(theta_k,2)+theta_k1); my.CopyFromMatrix(mx); // 1) y=xk1; my.MatrDec(ml); // 2) y=xk1-xk; my.MatrScale(beta_k1); // 3) y=beta_k1*(xk1-xk); my.MatrInc(mx); // 4) y=xk1+beta_k1*(xk1-xk); ms.MatrSub(mx,ml); // 0) s = xk1 - xk; // Restarting logic if momentum is not appropriate if (mg.MatrDot(&mg,&ms)>0) { my.CopyFromMatrix(mx); // 1) y=xk1 theta_k1=1.0; // 2) theta_k=1 if (verbose) GetLog() << "Restarting APGD at it " << iter << "\n"; } //Allow the step to grow... L_k=0.9*L_k; t_k=1/L_k; ml.CopyFromMatrix(mx); // 1) xk=xk1; theta_k=theta_k1; // 2) theta_k=theta_k1; //****METHOD 1 for residual, same as ChLcpIterativeBB // Project the gradient (for rollback strategy) // g_proj = (l-project_orthogonal(l - gdiff*g, fric))/gdiff; mb_tmp.CopyFromMatrix(mg_tmp2); mb_tmp.MatrScale(-gdiff); mb_tmp.MatrInc(ml); sysd.ConstraintsProject(mb_tmp); mb_tmp.MatrDec(ml); mb_tmp.MatrDivScale(-gdiff); double g_proj_norm = mb_tmp.NormTwo(); // NormInf() is faster.. //****End of METHOD 1 for residual, same as ChLcpIterativeBB //****METHOD 2 for residual, same as ChLcpIterativeSOR maxviolation = 0; i_friction_comp = 0; for (unsigned int ic = 0; ic< mconstraints.size(); ic++) { if (mconstraints[ic]->IsActive()) { // true constraint violation may be different from 'mresidual' (ex:clamped if unilateral) double candidate_violation = fabs(mconstraints[ic]->Violation(mg_tmp2.ElementN(ic))); if (mconstraints[ic]->GetMode() == CONSTRAINT_FRIC) { candidate_violation = 0; i_friction_comp++; if (i_friction_comp==1) candidate_violation = fabs(ChMin(0.0,mg_tmp2.ElementN(ic))); if (i_friction_comp==3) i_friction_comp =0; } else { } maxviolation = ChMax(maxviolation, fabs(candidate_violation)); } } g_proj_norm=maxviolation; //****End of METHOD 2 for residual, same as ChLcpIterativeSOR // Rollback solution: the last best candidate ('l' with lowest projected gradient) // in fact the method is not monotone and it is quite 'noisy', if we do not // do this, a prematurely truncated iteration might give a crazy result. if(g_proj_norm < lastgoodres) { lastgoodres = g_proj_norm; ml_candidate = ml; } // METRICS - convergence, plots, etc if (verbose) { // f_p = 0.5*l_candidate'*N*l_candidate - l_candidate'*b = l_candidate'*(0.5*Nl_candidate - b); sysd.ShurComplementProduct(mg_tmp, &ml_candidate, 0); // 1) g_tmp = N*l_candidate ... #### MATR.MULTIPLICATION!!!### mg_tmp.MatrScale(0.5); // 2) g_tmp = 0.5*N*l_candidate mg_tmp.MatrDec(mb); // 3) g_tmp = 0.5*N*l_candidate-b_shur mf_p = ml_candidate.MatrDot(&ml_candidate,&mg_tmp); // 4) mf_p = l_candidate'*(0.5*N*l_candidate-b_shur) } double maxdeltalambda = ms.NormInf(); double maxd = lastgoodres; // For recording into correction/residuals/violation history, if debugging if (this->record_violation_history) AtIterationEnd(maxd, maxdeltalambda, iter); if (verbose) GetLog() << " iter=" << iter << " f=" << mf_p << " |d|=" << maxd << " |s|=" << maxdeltalambda << "\n"; tot_iterations++; // Terminate the loop if violation in constraints has been succesfully limited. // ***TO DO*** a reliable termination creterion.. ///* if (maxd < this->tolerance) { if (verbose) GetLog() <<"APGD premature converged at i=" << iter << "\n"; break; } //*/ } // Fallback to best found solution (might be useful because of nonmonotonicity) ml.CopyFromMatrix(ml_candidate); // Resulting DUAL variables: // store ml temporary vector into ChLcpConstraint 'l_i' multipliers sysd.FromVectorToConstraints(ml); // Resulting PRIMAL variables: // compute the primal variables as v = (M^-1)(k + D*l) // v = (M^-1)*k ... (by rewinding to the backup vector computed ad the beginning) sysd.FromVectorToVariables(mq); // ... + (M^-1)*D*l (this increment and also stores 'qb' in the ChLcpVariable items) for (unsigned int ic = 0; ic < mconstraints.size(); ic++) { if (mconstraints[ic]->IsActive()) mconstraints[ic]->Increment_q( mconstraints[ic]->Get_l_i() ); } if (verbose) GetLog() <<"-----\n"; current_residual = lastgoodres; return lastgoodres; }