コード例 #1
0
ファイル: demo_LCPsolver.cpp プロジェクト: DavidHammen/chrono
void test_1()
{
	GetLog() << "\n-------------------------------------------------\n";
	GetLog() << "TEST: generic system with two constraints \n\n";

	// Important: create a 'system descriptor' object that 
	// contains variables and constraints:

	ChLcpSystemDescriptor mdescriptor;

	// Now let's add variables and constraints, as sparse data:

	mdescriptor.BeginInsertion();  // ----- system description starts here

		// create C++ objects representing 'variables':

	ChLcpVariablesGeneric mvarA(3);
	mvarA.GetMass().SetIdentity();
	mvarA.GetMass()*=10;
	ChLinearAlgebra::Invert(mvarA.GetInvMass(),&mvarA.GetMass());
	mvarA.Get_fb()(0)=1;
	mvarA.Get_fb()(1)=2;

	ChLcpVariablesGeneric mvarB(3);
	mvarB.GetMass().SetIdentity();
	mvarB.GetMass()*=20;
	ChLinearAlgebra::Invert(mvarB.GetInvMass(),&mvarB.GetMass());

	
	mdescriptor.InsertVariables(&mvarA);
	mdescriptor.InsertVariables(&mvarB);

		// create C++ objects representing 'constraints' between variables:

	ChLcpConstraintTwoGeneric mca(&mvarA, &mvarB);
	mca.Set_b_i(-5);
	mca.Get_Cq_a()->ElementN(0)=1;
	mca.Get_Cq_a()->ElementN(1)=2;
	mca.Get_Cq_a()->ElementN(2)=-1;
	mca.Get_Cq_b()->ElementN(0)=1;
	mca.Get_Cq_b()->ElementN(1)=-2;
	mca.Get_Cq_b()->ElementN(2)=0;

	ChLcpConstraintTwoGeneric mcb(&mvarA, &mvarB);
	mcb.Set_b_i( 1);
	mcb.Get_Cq_a()->ElementN(0)=0;
	mcb.Get_Cq_a()->ElementN(1)=1;
	mcb.Get_Cq_a()->ElementN(2)=0;
	mcb.Get_Cq_b()->ElementN(0)=0;
	mcb.Get_Cq_b()->ElementN(1)=-2;
	mcb.Get_Cq_b()->ElementN(2)=0;

	
	mdescriptor.InsertConstraint(&mca);	
	mdescriptor.InsertConstraint(&mcb);


	mdescriptor.EndInsertion();  // ----- system description ends here

  
	// Solve the problem with an iterative fixed-point solver, for an
	// approximate (but very fast) solution:
	//
	// .. create the solver 

	ChLcpIterativeSOR msolver_iter( 1,		// max iterations
									false,	// don't use warm start
									0.0,	// termination tolerance
									0.8);   // omega

	// .. pass the constraint and the variables to the solver 
	//    to solve - that's all.
	msolver_iter.Solve(mdescriptor);


	// Ok, now present the result to the user, with some
	// statistical information:
	double max_res, max_LCPerr;
	mdescriptor.ComputeFeasabilityViolation(max_res, max_LCPerr);

	// If needed, dump the full system M and Cq matrices 
	// on disk, in Matlab sparse format:
	ChSparseMatrix matrM;
	ChSparseMatrix matrCq;

	mdescriptor.BuildMatrices(&matrCq, &matrM);

	try
	{
		ChStreamOutAsciiFile fileM ("dump_M.dat");
		ChStreamOutAsciiFile fileCq ("dump_Cq.dat");
		matrM.StreamOUTsparseMatlabFormat(fileM);
		matrCq.StreamOUTsparseMatlabFormat(fileCq);
	}
	catch (ChException myex)
	{
		GetLog() << "FILE ERROR: " << myex.what();
	}


	// Other checks

	GetLog() << "**** Using ChLcpIterativeSOR  ********** \n\n"; 
	GetLog() << "METRICS: max residual: " << max_res << "  max LCP error: " << max_LCPerr << "  \n\n";
	GetLog() << "vars q_a and q_b -------------------\n";
	GetLog() << mvarA.Get_qb();
	GetLog() << mvarB.Get_qb() << "  \n";;
	GetLog() << "multipliers l_1 and l_2 ------------\n\n";
	GetLog() << mca.Get_l_i() << " \n";
	GetLog() << mcb.Get_l_i() << " \n\n";
	GetLog() << "constraint residuals c_1 and c_2 ---\n";
	GetLog() << mca.Get_c_i() << "  \n";
	GetLog() << mcb.Get_c_i() << "  \n\n\n";

	// reset variables
	mvarA.Get_qb().FillElem(0.);
	mvarB.Get_qb().FillElem(0.);


	// Now solve it again, but using the simplex solver.
	// The simplex solver is much slower, and it cannot handle
	// the case of unilateral constraints. This is reccomended 
	// only for reference or very precise solution of systems with only 
	// bilateral constraints, in a limited number.

	ChLcpSimplexSolver msolver_simpl;

	msolver_simpl.Solve(mdescriptor);
 
	mdescriptor.ComputeFeasabilityViolation(max_res, max_LCPerr);
	GetLog() << "**** Using ChLcpSimplexSolver ********* \n\n"; 
	GetLog() << "METRICS: max residual: " << max_res << "  max LCP error: " << max_LCPerr << "  \n\n";
	GetLog() << "vars q_a and q_b -------------------\n";
	GetLog() << mvarA.Get_qb();
	GetLog() << mvarB.Get_qb() << "  \n";;
	GetLog() << "multipliers l_1 and l_2 ------------\n\n";
	GetLog() << mca.Get_l_i() << " \n";
	GetLog() << mcb.Get_l_i() << " \n\n";
	GetLog() << "constraint residuals c_1 and c_2 ---\n";
	GetLog() << mca.Get_c_i() << "  \n";
	GetLog() << mcb.Get_c_i() << "  \n";

}
コード例 #2
0
ファイル: demo_LCPsolver.cpp プロジェクト: DavidHammen/chrono
void test_2()
{
	
	GetLog() << "\n-------------------------------------------------\n";
	GetLog() << "TEST: 1D vertical pendulum - ChLcpIterativePMINRES \n\n";

	ChLcpSystemDescriptor mdescriptor;

	mdescriptor.BeginInsertion(); 	// ----- system description starts here
	
	int n_masses = 11;

	std::vector<ChLcpVariablesGeneric*> vars;
	std::vector<ChLcpConstraintTwoGeneric*> constraints;

	for (int im = 0; im < n_masses; im++)
	{
		vars.push_back (new ChLcpVariablesGeneric(1));
		vars[im]->GetMass()(0)=10;
		vars[im]->GetInvMass()(0)=1./vars[im]->GetMass()(0);
		vars[im]->Get_fb()(0)= -9.8*vars[im]->GetMass()(0)*0.01; 
		//if (im==5) vars[im]->Get_fb()(0)= 50;
		mdescriptor.InsertVariables(vars[im]);
		if (im>0)
		{
			constraints.push_back (new ChLcpConstraintTwoGeneric(vars[im], vars[im-1]) );
			constraints[im-1]->Set_b_i(0);
			constraints[im-1]->Get_Cq_a()->ElementN(0)=  1;
			constraints[im-1]->Get_Cq_b()->ElementN(0)= -1;
			//constraints[im-1]->SetMode(CONSTRAINT_UNILATERAL); // not supported by  ChLcpSimplexSolver
			mdescriptor.InsertConstraint(constraints[im-1]);
		}
	}
	
	// First variable of 1st domain is 'fixed' like in a hanging chain	
	vars[0]->SetDisabled(true);

	mdescriptor.EndInsertion();		// ----- system description is finished


			try
			{
				chrono::ChSparseMatrix mdM;
				chrono::ChSparseMatrix mdCq;
				chrono::ChSparseMatrix mdE;
				chrono::ChMatrixDynamic<double> mdf;
				chrono::ChMatrixDynamic<double> mdb;
				chrono::ChMatrixDynamic<double> mdfric;
				mdescriptor.ConvertToMatrixForm(&mdCq, &mdM, &mdE, &mdf, &mdb, &mdfric);
				chrono::ChStreamOutAsciiFile file_M("dump_M.dat");
				mdM.StreamOUTsparseMatlabFormat(file_M);
				chrono::ChStreamOutAsciiFile file_Cq("dump_Cq.dat");
				mdCq.StreamOUTsparseMatlabFormat(file_Cq);
				chrono::ChStreamOutAsciiFile file_E("dump_E.dat");
				mdE.StreamOUTsparseMatlabFormat(file_E);
				chrono::ChStreamOutAsciiFile file_f("dump_f.dat");
				mdf.StreamOUTdenseMatlabFormat(file_f);
				chrono::ChStreamOutAsciiFile file_b("dump_b.dat");
				mdb.StreamOUTdenseMatlabFormat(file_b);
				chrono::ChStreamOutAsciiFile file_fric("dump_fric.dat");
				mdfric.StreamOUTdenseMatlabFormat(file_fric);
			} 
			catch(chrono::ChException myexc)
			{
				chrono::GetLog() << myexc.what();
			}

	// Create a solver of Krylov type
	ChLcpIterativePMINRES msolver_krylov(20,		// max iterations
										false,		// warm start
										0.00001);	// tolerance  


	// .. pass the constraint and the variables to the solver 
	//    to solve - that's all.
	msolver_krylov.Solve(mdescriptor);

	// Output values
	GetLog() << "VARIABLES: \n";
	for (int im = 0; im < vars.size(); im++)
		GetLog() << "   " << vars[im]->Get_qb()(0) << "\n";

	GetLog() << "CONSTRAINTS: \n";
	for (int ic = 0; ic < constraints.size(); ic++)
		GetLog() << "   " << constraints[ic]->Get_l_i() << "\n"; 


	// Try again, for reference, using a direct solver.
	// This type of solver is much slower, and it cannot handle
	// the case of unilateral constraints. This is reccomended 
	// only for reference or very precise solution of systems with only 
	// bilateral constraints, in a limited number.

	GetLog() << "\n\nTEST: 1D vertical pendulum - ChLcpSimplexSolver \n\n";

	ChLcpSimplexSolver msolver_simpl;
	msolver_simpl.Solve(mdescriptor);

	GetLog() << "VARIABLES: \n";
	for (int im = 0; im < vars.size(); im++)
		GetLog() << "   " << vars[im]->Get_qb()(0) << "\n";

	GetLog() << "CONSTRAINTS: \n";
	for (int ic = 0; ic < constraints.size(); ic++)
		GetLog() << "   " << constraints[ic]->Get_l_i() << "\n"; 

}
コード例 #3
0
ファイル: demo_LCPsolver.cpp プロジェクト: DavidHammen/chrono
void test_3()
{
	GetLog() << "\n-------------------------------------------------\n";
	GetLog() << "TEST: generic system with stiffness blocks \n\n";

	// Important: create a 'system descriptor' object that 
	// contains variables and constraints:

	ChLcpSystemDescriptor mdescriptor;

	// Now let's add variables, constraints and stiffness, as sparse data:

	mdescriptor.BeginInsertion();  // ----- system description 

		// Create C++ objects representing 'variables', set their M blocks
		// (the masses) and set their known terms 'fb'

	ChMatrix33<> minertia;
	minertia.FillDiag(6);

	ChLcpVariablesBodyOwnMass mvarA;
	mvarA.SetBodyMass(5);
	mvarA.SetBodyInertia(&minertia);
	mvarA.Get_fb().FillRandom(-3,5);

	ChLcpVariablesBodyOwnMass mvarB;
	mvarB.SetBodyMass(4);
	mvarB.SetBodyInertia(&minertia);
	mvarB.Get_fb().FillRandom(1,3);

	ChLcpVariablesBodyOwnMass mvarC;
	mvarC.SetBodyMass(5.5);
	mvarC.SetBodyInertia(&minertia);
	mvarC.Get_fb().FillRandom(-8,3);

	mdescriptor.InsertVariables(&mvarA);
	mdescriptor.InsertVariables(&mvarB);
	mdescriptor.InsertVariables(&mvarC);

		// Create two C++ objects representing 'constraints' between variables
		// and set the jacobian to random values; 
		// Also set cfm term (E diagonal = -cfm)

	ChLcpConstraintTwoBodies mca(&mvarA, &mvarB);
	mca.Set_b_i(3);
	mca.Get_Cq_a()->FillRandom(-1,1);
	mca.Get_Cq_b()->FillRandom(-1,1);
	mca.Set_cfm_i(0.2);

	ChLcpConstraintTwoBodies mcb(&mvarA, &mvarB);
	mcb.Set_b_i(5);
	mcb.Get_Cq_a()->FillRandom(-1,1);
	mcb.Get_Cq_b()->FillRandom(-1,1);
	mcb.Set_cfm_i(0.1);

	mdescriptor.InsertConstraint(&mca);
	mdescriptor.InsertConstraint(&mcb);


		// Create two C++ objects representing 'stiffness' between variables:

	ChLcpKstiffnessGeneric mKa;
	// set the affected variables (so this K is a 12x12 matrix, relative to 4 6x6 blocks)
	std::vector<ChLcpVariables*> mvarsa;
	mvarsa.push_back(&mvarA);
	mvarsa.push_back(&mvarB);
	mKa.SetVariables(mvarsa); 

	// just fill K with random values (but symmetric, by making a product of matr*matrtransposed)
	ChMatrixDynamic<> mtempA = *mKa.Get_K(); // easy init to same size of K
	mtempA.FillRandom(-0.3,0.3);
	ChMatrixDynamic<> mtempB;
	mtempB.CopyFromMatrixT(mtempA);
	*mKa.Get_K() = -mtempA*mtempB;

	mdescriptor.InsertKstiffness(&mKa);
	

	ChLcpKstiffnessGeneric mKb;
	// set the affected variables (so this K is a 12x12 matrix, relative to 4 6x6 blocks)
	std::vector<ChLcpVariables*> mvarsb;
	mvarsb.push_back(&mvarB);
	mvarsb.push_back(&mvarC);
	mKb.SetVariables(mvarsb); 

	*mKb.Get_K() =  *mKa.Get_K(); 
	
	mdescriptor.InsertKstiffness(&mKb);


	mdescriptor.EndInsertion();  // ----- system description ends here

 
	// SOLVE the problem with an iterative Krylov solver.
	// In this case we use a MINRES-like solver, that features
	// very good convergence, it supports indefinite cases (ex. 
	// redundant constraints) and also supports the presence
	// of ChStiffness blocks (other solvers cannot cope with this!)

	// .. create the solver 

	ChLcpIterativePMINRES msolver_mr(80,		// max iterations
									 false,		// don't use warm start
									 1e-12);	// termination tolerance
	
	// .. set optional parameters of solver
	msolver_mr.SetDiagonalPreconditioning(true);
	msolver_mr.SetVerbose(true);

	// .. solve the system (passing variables, constraints, stiffness
	//    blocks with the ChSystemDescriptor that we populated above)

	msolver_mr.Solve(mdescriptor);


	// .. optional: get the result as a single vector (it collects all q_i and l_i 
	//    solved values stored in variables and constraints), just for check.
	chrono::ChMatrixDynamic<double> mx;
	mdescriptor.FromUnknownsToVector(mx);		// x ={q,-l}



	// CHECK. Test if, with the solved x, we really have Z*x-d=0 ...
	// to this end do the multiplication with the special function
	// SystemProduct() that is 'sparse-friendly' and does not build Z explicitly:
	
	chrono::ChMatrixDynamic<double> md;
	mdescriptor.BuildDiVector(md);				// d={f;-b}

	chrono::ChMatrixDynamic<double> mZx;
	mdescriptor.SystemProduct(mZx, &mx);		// Zx = Z*x
	
	GetLog() << "CHECK: norm of solver residual: ||Z*x-d|| -------------------\n";
	GetLog() << (mZx - md).NormInf() << "\n";

	/*
	// Alternatively, instead of using FromUnknownsToVector, to fetch
	// result, you could just loop over the variables (q values) and 
	// over the constraints (l values), as already shown in previous examples:

	for (int im = 0; im < mdescriptor.GetVariablesList().size(); im++)
		GetLog() << "   " << mdescriptor.GetVariablesList()[im]->Get_qb()(0) << "\n";

	for (int ic = 0; ic < mdescriptor.GetConstraintsList().size(); ic++)
		GetLog() << "   " << mdescriptor.GetConstraintsList()[ic]->Get_l_i() << "\n"; 
	*/

	



	

}
コード例 #4
0
ファイル: ChMesh.cpp プロジェクト: DavidHammen/chrono
void ChMesh::InjectVariables(ChLcpSystemDescriptor& mdescriptor)
{
	for (unsigned int ie = 0; ie < this->vnodes.size(); ie++)
		mdescriptor.InsertVariables(&this->vnodes[ie]->Variables());
}