コード例 #1
0
ファイル: MachineModuleInfo.cpp プロジェクト: aaasz/SHP
/// AnalyzeModule - Scan the module for global debug information.
///
void MachineModuleInfo::AnalyzeModule(Module &M) {
  // Insert functions in the llvm.used array (but not llvm.compiler.used) into
  // UsedFunctions.
  GlobalVariable *GV = M.getGlobalVariable("llvm.used");
  if (!GV || !GV->hasInitializer()) return;

  // Should be an array of 'i8*'.
  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
  if (InitList == 0) return;

  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
    if (Function *F =
          dyn_cast<Function>(InitList->getOperand(i)->stripPointerCasts()))
      UsedFunctions.insert(F);
}
コード例 #2
0
/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the 
/// function pointers, ignoring the init priority.
void AsmPrinter::EmitXXStructorList(Constant *List) {
  // Should be an array of '{ int, void ()* }' structs.  The first value is the
  // init priority, which we ignore.
  if (!isa<ConstantArray>(List)) return;
  ConstantArray *InitList = cast<ConstantArray>(List);
  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.

      if (CS->getOperand(1)->isNullValue())
        return;  // Found a null terminator, exit printing.
      // Emit the function pointer.
      EmitGlobalConstant(CS->getOperand(1));
    }
}
コード例 #3
0
ファイル: KModule.cpp プロジェクト: MartinNowack/klee
// what a hack
static Function *getStubFunctionForCtorList(Module *m,
                                            GlobalVariable *gv, 
                                            std::string name) {
  assert(!gv->isDeclaration() && !gv->hasInternalLinkage() &&
         "do not support old LLVM style constructor/destructor lists");

  std::vector<Type *> nullary;

  Function *fn = Function::Create(FunctionType::get(Type::getVoidTy(m->getContext()),
						    nullary, false),
				  GlobalVariable::InternalLinkage, 
				  name,
                              m);
  BasicBlock *bb = BasicBlock::Create(m->getContext(), "entry", fn);
  
  // From lli:
  // Should be an array of '{ int, void ()* }' structs.  The first value is
  // the init priority, which we ignore.
  ConstantArray *arr = dyn_cast<ConstantArray>(gv->getInitializer());
  if (arr) {
    for (unsigned i=0; i<arr->getNumOperands(); i++) {
      ConstantStruct *cs = cast<ConstantStruct>(arr->getOperand(i));
#if LLVM_VERSION_CODE >= LLVM_VERSION(3, 5)
      // There is a third *optional* element in global_ctor elements (``i8
      // @data``).
      assert((cs->getNumOperands() == 2 || cs->getNumOperands() == 3) &&
             "unexpected element in ctor initializer list");
#else
      assert(cs->getNumOperands()==2 && "unexpected element in ctor initializer list");
#endif
      Constant *fp = cs->getOperand(1);      
      if (!fp->isNullValue()) {
        if (llvm::ConstantExpr *ce = dyn_cast<llvm::ConstantExpr>(fp))
          fp = ce->getOperand(0);

        if (Function *f = dyn_cast<Function>(fp)) {
	  CallInst::Create(f, "", bb);
        } else {
          assert(0 && "unable to get function pointer from ctor initializer list");
        }
      }
    }
  }
  
  ReturnInst::Create(m->getContext(), bb);

  return fn;
}
コード例 #4
0
ファイル: StructureFieldVisitor.cpp プロジェクト: brills/pfpa
/// VisitGlobalInit - The specified lattice value corresponds to a field (or
/// several) in the specified global.  Merge all of the overlapping initializer
/// values into LV (up-to and until it becomes overdefined).
///
static bool VisitGlobalInit(LatticeValue *LV, Constant *Init,
                            unsigned FieldOffset) {
  const TargetData &TD = LV->getParentGraph().getTargetData();

  if (Init->isNullValue())
    return LV->visitGlobalInit(Constant::getNullValue(LV->getFieldType()));
  if (isa<UndefValue>(Init))
    return LV->visitGlobalInit(UndefValue::get(LV->getFieldType()));

  if (LV->getNode()->isArray() &&
      TD.getTypeSize(Init->getType()) > LV->getNode()->getSize()) {
    ConstantArray *CA = cast<ConstantArray>(Init);
    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
      if (VisitGlobalInit(LV, CA->getOperand(i), FieldOffset))
        return true;
    return false;
  }

NextStep:  // Manual tail recursion

  if (Init->isNullValue())
    return LV->visitGlobalInit(Constant::getNullValue(LV->getFieldType()));
  if (isa<UndefValue>(Init))
    return LV->visitGlobalInit(UndefValue::get(LV->getFieldType()));
  if (Init->getType()->isFirstClassType()) {
    assert(FieldOffset == 0 && "GV Init mismatch!");
    return LV->visitGlobalInit(Init);
  }
  
  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
    const StructLayout *SL = TD.getStructLayout(STy);
    unsigned Field = SL->getElementContainingOffset(FieldOffset);
    FieldOffset -= SL->MemberOffsets[Field];
    Init = cast<ConstantStruct>(Init)->getOperand(Field);
    goto NextStep;
  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
    unsigned ElSz = TD.getTypeSize(ATy->getElementType());
    unsigned Idx = FieldOffset / ElSz;
    FieldOffset -= Idx*ElSz;
    Init = cast<ConstantArray>(Init)->getOperand(Idx);
    goto NextStep;
  } else {
    assert(0 && "Unexpected initializer type!");
    return true;
  }
}
コード例 #5
0
ファイル: CheckInserter.cpp プロジェクト: columbia/loom
bool CheckInserter::doFinalization(Module &M) {
  // We couldn't directly add an element to a constant array, because doing so
  // changes the type of the constant array.

  // element type of llvm.global_ctors
  StructType *ST = StructType::get(IntType,
                                   PointerType::getUnqual(InitFiniType),
                                   NULL); // end with null

  // Move all existing elements of <GlobalName> to <Constants>.
  vector<Constant *> Constants;
  if (GlobalVariable *GlobalCtors = M.getNamedGlobal("llvm.global_ctors")) {
    ConstantArray *CA = cast<ConstantArray>(GlobalCtors->getInitializer());
    for (unsigned j = 0; j < CA->getNumOperands(); ++j) {
      ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(j));
      assert(CS->getType() == ST);
      // Assume nobody is using the highest priority, so that <F> will be the
      // first to run as a ctor.
      assert(!cast<ConstantInt>(CS->getOperand(0))->isMinValue(true));
      Constants.push_back(CS);
    }
    GlobalCtors->eraseFromParent();
  }
  // Add <F> with the highest priority.
  Constants.push_back(ConstantStruct::get(ST,
                                          ConstantInt::get(IntType, INT_MIN),
                                          EnterProcess,
                                          NULL));
  // Create the new llvm.global_ctors.
  ArrayType *ArrType = ArrayType::get(ST, Constants.size());
  new GlobalVariable(M,
                     ArrType,
                     true,
                     GlobalValue::AppendingLinkage,
                     ConstantArray::get(ArrType, Constants),
                     "llvm.global_ctors");

  return true;
}
コード例 #6
0
/// GetConstantStringInfo - This function computes the length of a
/// null-terminated C string pointed to by V.  If successful, it returns true
/// and returns the string in Str.  If unsuccessful, it returns false.
bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
                                 bool StopAtNul) {
  // If V is NULL then return false;
  if (V == NULL) return false;

  // Look through bitcast instructions.
  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
    return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
  
  // If the value is not a GEP instruction nor a constant expression with a
  // GEP instruction, then return false because ConstantArray can't occur
  // any other way
  User *GEP = 0;
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
    GEP = GEPI;
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (CE->getOpcode() == Instruction::BitCast)
      return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
    if (CE->getOpcode() != Instruction::GetElementPtr)
      return false;
    GEP = CE;
  }
  
  if (GEP) {
    // Make sure the GEP has exactly three arguments.
    if (GEP->getNumOperands() != 3)
      return false;
    
    // Make sure the index-ee is a pointer to array of i8.
    const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
    const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
    if (AT == 0 || AT->getElementType() != Type::Int8Ty)
      return false;
    
    // Check to make sure that the first operand of the GEP is an integer and
    // has value 0 so that we are sure we're indexing into the initializer.
    ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
    if (FirstIdx == 0 || !FirstIdx->isZero())
      return false;
    
    // If the second index isn't a ConstantInt, then this is a variable index
    // into the array.  If this occurs, we can't say anything meaningful about
    // the string.
    uint64_t StartIdx = 0;
    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
      StartIdx = CI->getZExtValue();
    else
      return false;
    return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
                                 StopAtNul);
  }
  
  // The GEP instruction, constant or instruction, must reference a global
  // variable that is a constant and is initialized. The referenced constant
  // initializer is the array that we'll use for optimization.
  GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
  if (!GV || !GV->isConstant() || !GV->hasInitializer())
    return false;
  Constant *GlobalInit = GV->getInitializer();
  
  // Handle the ConstantAggregateZero case
  if (isa<ConstantAggregateZero>(GlobalInit)) {
    // This is a degenerate case. The initializer is constant zero so the
    // length of the string must be zero.
    Str.clear();
    return true;
  }
  
  // Must be a Constant Array
  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
  if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
    return false;
  
  // Get the number of elements in the array
  uint64_t NumElts = Array->getType()->getNumElements();
  
  if (Offset > NumElts)
    return false;
  
  // Traverse the constant array from 'Offset' which is the place the GEP refers
  // to in the array.
  Str.reserve(NumElts-Offset);
  for (unsigned i = Offset; i != NumElts; ++i) {
    Constant *Elt = Array->getOperand(i);
    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
    if (!CI) // This array isn't suitable, non-int initializer.
      return false;
    if (StopAtNul && CI->isZero())
      return true; // we found end of string, success!
    Str += (char)CI->getZExtValue();
  }
  
  // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
  return true;
}
コード例 #7
0
void ClassHierarchyUtils::processTypeInfo(GlobalVariable* TI, Module& M) {
  if (find(classes.begin(), classes.end(), TI) == classes.end()) {
    SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "Adding class " << TI->getName() << "\n");
    classes.push_back(TI);

    // First process the correspoding virtual table. We store the indexes of the primary
    // and secondary vtables, indexed by the corresponding subobject offset. This will allow
    // us to quickly jump to a particular sub-vtable.
    if (typeInfoToVTable.find(TI) != typeInfoToVTable.end()) {
      GlobalVariable* VT = typeInfoToVTable[TI]; 
      SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "Found vtable: " << VT->getName() << "\n");
      ConstantStruct* VTinit = cast<ConstantStruct>(VT->getInitializer());
      for (int i=0; i<VTinit->getNumOperands(); i++) {
        ConstantArray* VTinitElem = cast<ConstantArray>(VTinit->getOperand(i));
        for (int j=0; j<VTinitElem->getNumOperands(); j++) {
          // Each sub-vtable is preceded by a reference to the class's type_info instance.
          // (See https://mentorembedded.github.io/cxx-abi/abi.html).
          if (TI == VTinitElem->getOperand(j)->stripPointerCasts()) {
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "Found TI at index " << i << "\n");
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "Storing mapping " << VT->getName() << " <-> " << TI->getName() << "\n");
            
            // the offset to top is the offset from the vptr pointing to this
            // sub-vtable, back to the top of the object. This will be negative,
            // but the absolute value gives us the offset from the start of the
            // object (i.e. first vptr), to the subobject.
            int offsetToTop = 0;
            if (ConstantExpr* offsetValCast = dyn_cast<ConstantExpr>(VTinitElem->getOperand(j-1)->stripPointerCasts())) {
              ConstantInt* offsetVal = cast<ConstantInt>(offsetValCast->getOperand(0));
              offsetToTop = offsetVal->getSExtValue(); // will be 0 for the primary
            }
            if (offsetToTop > 0) {
              report_fatal_error("ERROR: offsetToTop is positive!");
            }
            else {
              offsetToTop *= -1;
            }
            
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "offsetToTop: " << offsetToTop << "\n")
            vTableToSecondaryVTableMaps[VT][offsetToTop] = pair<int, int>(i, j+1);
          }
        }
      }
    }
    else {
      SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "No vtable found for " << TI->getName() << "\n");
    }

    // Now process the type_info struct, extract direct base class info (what
    // their subobject offsets are, or if they are virtual then their
    // virtual-base-offset-offset)
    if (TI->hasInitializer()) {
      ConstantStruct* TIinit = cast<ConstantStruct>(TI->getInitializer());

      int TInumOperands = TIinit->getNumOperands();
      if (TInumOperands > 2) { // first two operands are vptr and type name
        // we have >= 1 base class(es).
        if (TInumOperands == 3) {
          // abi::__si_class_type_info: single, public, non-virtual base at
          // offset 0
          SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "abi::__si_class_type_info\n");
          GlobalVariable* baseTI = cast<GlobalVariable>(TIinit->getOperand(2)->stripPointerCasts());
          classToSubclasses[baseTI].push_back(TI);
          //dbgs() << "  " << *baseTI << "\n";
          classToBaseOffset[TI][baseTI] = 0;
          processTypeInfo(baseTI, M);
        }
        else {
          // abi::__vmi_class_type_info: all other cases
          SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "abi::__vmi_class_type_info\n");
          // (skip over first two additional fields, which are "flags" and "base_count")
          for (int i=4; i<TInumOperands; i+=2) {
            GlobalVariable* baseTI = cast<GlobalVariable>(TIinit->getOperand(i)->stripPointerCasts());
            classToSubclasses[baseTI].push_back(TI);
            long offset_flags = cast<ConstantInt>(TIinit->getOperand(i+1))->getSExtValue();
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << TI->getName() << " -> " << baseTI->getName() << "\n");
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "  offset_flags = " << offset_flags << "\n");
            ptrdiff_t offset = offset_flags >> offset_shift;
            SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "  offset = " << offset << "\n");
            // If this a virtual base class, then we obtain the
            // vbase-offset-offset.  This is the offset from the start of the
            // derived class's (primary) vtable to the location containing the
            // vbase-offset, which is the offset from the start of the object
            // to the virtual base's subobject. Note that virtual base
            // subobjects only exist once and are laid out after all other
            // non-virtual objects. We keep track of the vbase-offset-offset,
            // so that we can find the vbase offset when going down the class
            // hierarchy. (The vbase offset may differ every time but the
            // vbase-offset-offset will remain the same relative to the current
            // class's vtable in subclasses).
            if (offset_flags & virtual_mask) { // is this a virtual base class?
              SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "virtual base class: " << baseTI->getName() << "\n");
              int vbaseOffsetOffset = offset/sizeof(long); // this should be negative
              SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "vbase-offset-offset: " << vbaseOffsetOffset << "\n");
              classToVBaseOffsetOffset[TI][baseTI] = vbaseOffsetOffset;
              if (typeInfoToVTable.find(TI) != typeInfoToVTable.end()) {
                GlobalVariable* VT = typeInfoToVTable[TI];
                int vbaseOffsetIdx = vTableToSecondaryVTableMaps[VT][0].second+vbaseOffsetOffset;
                SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "vbase-offset-idx: " << vbaseOffsetIdx << "\n");
              }
              else {
                SDEBUG("soaap.util.classhierarchy", 3, dbgs() << "No VTable for " << TI->getName() << "\n");
              }
            }
            else {
              // In the non-virtual base class case, we just record the subobj
              // offset. This is the offset from the start of the derived
              // object to the base class's subobject. We use this information
              // together with the offset-to-top info we obtained from the
              // vtable to find the base class's subvtable. Note that the
              // relative position of the base class subobj within the current
              // derived object will always remain the same, even in
              // subclasses.
              classToBaseOffset[TI][baseTI] = offset;
            }
            //dbgs() << "  " << *baseTI << "\n";
            processTypeInfo(baseTI, M);
          }
        }
      }
    }
コード例 #8
0
ファイル: SafeDispatchFix.cpp プロジェクト: UCSD-PL/ivt
bool SDFix::fixDestructors() {
  bool replaced = false;

  for (GlobalVariable& gv : module->getGlobalList()) {
    if (! sd_isVtableName_ref(gv.getName()))
      continue;
    else if (! gv.hasInitializer())
      continue;

    Constant* init = gv.getInitializer();
    assert(init);
    ConstantArray* vtable = dyn_cast<ConstantArray>(init);
    assert(vtable);

    // get an idea about the virtual function regions
    std::vector<vtbl_pair_t> vtblRegions = findSubVtables(vtable);

    // for each subvtable
    for(unsigned vtblInd = 0; vtblInd < vtblRegions.size(); vtblInd++) {
      // record the destructors used in the vtable
      std::vector<DestructorInfo> destructors(3);

      vtbl_pair_t p = vtblRegions[vtblInd];

      for(unsigned i=p.first; i<p.second; i++) {
        Constant* destructor = sd_getDestructorFunction(vtable->getOperand(i));

        if (destructor == NULL)
          continue;

        // get the type from its name
        unsigned s = destructor->getName().size();
        char type = destructor->getName()[s-3];
        assert('0' <= type && type <= '2');
        unsigned typeInt = type - '0';

        // store it temporarily
        destructors[typeInt] = DestructorInfo(destructor, i);
      }

      // deleting destructor should always be defined
      assert(! destructors[0].needsReplacement());

      DestructorInfo* d1 = &destructors[1];
      DestructorInfo* d2 = &destructors[2];

      // only one of the rest could be undefined
      assert(! d1->needsReplacement() || ! d2->needsReplacement());

      // if complete object destructor is missing...
      if (d1->needsReplacement()) {
        std::string gv2Name = d1->function->getName();
        unsigned l = gv2Name.length();
        gv2Name = gv2Name.replace(l-3, 1, "2");

        Function* f1 = d1->getFunction();
        assert(f1);
        Function* f2 = module->getFunction(gv2Name);
        assert(f2);

        sd_print("Replacing %s with %s inside %s\n",
                 d1->function->getName().data(),
                 gv2Name.c_str(),
                 gv.getName().data());

        f1->replaceAllUsesWith(f2);
        replaced = true;

      // if base object destructor is missing...
      } else if (d2->needsReplacement()) {
        std::string gv1Name = d2->function->getName();
        unsigned l = gv1Name.length();
        gv1Name = gv1Name.replace(l-3, 1, "1");

        Function* f2 = d2->getFunction();
        assert(f2);
        Function* f1 = module->getFunction(gv1Name);
        assert(f1);

        sd_print("Replacing %s with %s inside %s\n",
                 d2->function->getName().data(),
                 gv1Name.c_str(),
                 gv.getName().data());

        f2->replaceAllUsesWith(f1);
        replaced = true;
      }
    }
  }

  return replaced;
}
コード例 #9
0
ファイル: BottomUpClosure.cpp プロジェクト: Checkmate50/smack
//
// Method: postOrderInline()
//
// Description:
//  This methods does a post order traversal of the call graph and performs
//  bottom-up inlining of the DSGraphs.
//
void
BUDataStructures::postOrderInline (Module & M) {
  // Variables used for Tarjan SCC-finding algorithm.  These are passed into
  // the recursive function used to find SCCs.
  std::vector<const Function*> Stack;
  std::map<const Function*, unsigned> ValMap;
  unsigned NextID = 1;


  // Do post order traversal on the global ctors. Use this information to update
  // the globals graph.
  const char *Name = "llvm.global_ctors";
  GlobalVariable *GV = M.getNamedGlobal(Name);
  if (GV && !(GV->isDeclaration()) && !(GV->hasLocalLinkage())) {
    // Should be an array of '{ int, void ()* }' structs.  The first value is
    // the init priority, which we ignore.
    ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
    if (InitList) {
      for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
          if (CS->getNumOperands() != 2)
            break; // Not array of 2-element structs.
          Constant *FP = CS->getOperand(1);
          if (FP->isNullValue())
            break;  // Found a null terminator, exit.

          if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
            if (CE->isCast())
              FP = CE->getOperand(0);
          Function *F = dyn_cast<Function>(FP);
          if (F && !F->isDeclaration() && !ValMap.count(F)) {
            calculateGraphs(F, Stack, NextID, ValMap);
            CloneAuxIntoGlobal(getDSGraph(*F));
          }
        }
      GlobalsGraph->removeTriviallyDeadNodes();
      GlobalsGraph->maskIncompleteMarkers();

      // Mark external globals incomplete.
      GlobalsGraph->markIncompleteNodes(DSGraph::IgnoreGlobals);
      GlobalsGraph->computeExternalFlags(DSGraph::DontMarkFormalsExternal);
      GlobalsGraph->computeIntPtrFlags();

      //
      // Create equivalence classes for aliasing globals so that we only need to
      // record one global per DSNode.
      //
      formGlobalECs();
      // propogte information calculated
      // from the globals graph to the other graphs.
      for (Module::iterator F = M.begin(); F != M.end(); ++F) {
        if (!(F->isDeclaration())){
          DSGraph *Graph  = getDSGraph(*F);
          cloneGlobalsInto(Graph, DSGraph::DontCloneCallNodes |
                           DSGraph::DontCloneAuxCallNodes);
          Graph->buildCallGraph(callgraph, GlobalFunctionList, filterCallees);
          Graph->maskIncompleteMarkers();
          Graph->markIncompleteNodes(DSGraph::MarkFormalArgs |
                                     DSGraph::IgnoreGlobals);
          Graph->computeExternalFlags(DSGraph::DontMarkFormalsExternal);
          Graph->computeIntPtrFlags();
        }
      }
    }
  }

  //
  // Start the post order traversal with the main() function.  If there is no
  // main() function, don't worry; we'll have a separate traversal for inlining
  // graphs for functions not reachable from main().
  //
  Function *MainFunc = M.getFunction ("main");
  if (MainFunc && !MainFunc->isDeclaration()) {
    calculateGraphs(MainFunc, Stack, NextID, ValMap);
    CloneAuxIntoGlobal(getDSGraph(*MainFunc));
  }

  //
  // Calculate the graphs for any functions that are unreachable from main...
  //
  for (Function &F : M)
    if (!F.isDeclaration() && !ValMap.count(&F)) {
      if (MainFunc)
        DEBUG(errs() << debugname << ": Function unreachable from main: "
        << F.getName() << "\n");
      calculateGraphs(&F, Stack, NextID, ValMap);     // Calculate all graphs.
      CloneAuxIntoGlobal(getDSGraph(F));

      // Mark this graph as processed.  Do this by finding all functions
      // in the graph that map to it, and mark them visited.
      // Note that this really should be handled neatly by calculateGraphs
      // itself, not here.  However this catches the worst offenders.
      DSGraph *G = getDSGraph(F);
      for(DSGraph::retnodes_iterator RI = G->retnodes_begin(),
          RE = G->retnodes_end(); RI != RE; ++RI) {
        if (getDSGraph(*RI->first) == G) {
          if (!ValMap.count(RI->first))
            ValMap[RI->first] = ~0U;
          else
            assert(ValMap[RI->first] == ~0U);
        }
      }
    }
  return;
}