コード例 #1
0
void ParmetisPartitioner::assign_partitioning (MeshBase & mesh)
{
  // This function must be run on all processors at once
  libmesh_parallel_only(mesh.comm());

  const dof_id_type
    first_local_elem = _pmetis->vtxdist[mesh.processor_id()];

  std::vector<std::vector<dof_id_type> >
    requested_ids(mesh.n_processors()),
    requests_to_fill(mesh.n_processors());

  MeshBase::element_iterator elem_it  = mesh.active_elements_begin();
  MeshBase::element_iterator elem_end = mesh.active_elements_end();

  for (; elem_it != elem_end; ++elem_it)
    {
      Elem * elem = *elem_it;

      // we need to get the index from the owning processor
      // (note we cannot assign it now -- we are iterating
      // over elements again and this will be bad!)
      libmesh_assert_less (elem->processor_id(), requested_ids.size());
      requested_ids[elem->processor_id()].push_back(elem->id());
    }

  // Trade with all processors (including self) to get their indices
  for (processor_id_type pid=0; pid<mesh.n_processors(); pid++)
    {
      // Trade my requests with processor procup and procdown
      const processor_id_type procup = (mesh.processor_id() + pid) % mesh.n_processors();
      const processor_id_type procdown = (mesh.n_processors() +
                                          mesh.processor_id() - pid) % mesh.n_processors();

      mesh.comm().send_receive (procup,   requested_ids[procup],
                                procdown, requests_to_fill[procdown]);

      // we can overwrite these requested ids in-place.
      for (std::size_t i=0; i<requests_to_fill[procdown].size(); i++)
        {
          const dof_id_type requested_elem_index =
            requests_to_fill[procdown][i];

          libmesh_assert(_global_index_by_pid_map.count(requested_elem_index));

          const dof_id_type global_index_by_pid =
            _global_index_by_pid_map[requested_elem_index];

          const dof_id_type local_index =
            global_index_by_pid - first_local_elem;

          libmesh_assert_less (local_index, _pmetis->part.size());
          libmesh_assert_less (local_index, mesh.n_active_local_elem());

          const unsigned int elem_procid =
            static_cast<unsigned int>(_pmetis->part[local_index]);

          libmesh_assert_less (elem_procid, static_cast<unsigned int>(_pmetis->nparts));

          requests_to_fill[procdown][i] = elem_procid;
        }

      // Trade back
      mesh.comm().send_receive (procdown, requests_to_fill[procdown],
                                procup,   requested_ids[procup]);
    }

  // and finally assign the partitioning.
  // note we are iterating in exactly the same order
  // used to build up the request, so we can expect the
  // required entries to be in the proper sequence.
  elem_it  = mesh.active_elements_begin();
  elem_end = mesh.active_elements_end();

  for (std::vector<unsigned int> counters(mesh.n_processors(), 0);
       elem_it != elem_end; ++elem_it)
    {
      Elem * elem = *elem_it;

      const processor_id_type current_pid = elem->processor_id();

      libmesh_assert_less (counters[current_pid], requested_ids[current_pid].size());

      const processor_id_type elem_procid =
        requested_ids[current_pid][counters[current_pid]++];

      libmesh_assert_less (elem_procid, static_cast<unsigned int>(_pmetis->nparts));
      elem->processor_id() = elem_procid;
    }
}
コード例 #2
0
ファイル: partitioner.C プロジェクト: borisboutkov/libmesh
void Partitioner::partition_unpartitioned_elements (MeshBase & mesh,
                                                    const unsigned int n_subdomains)
{
  MeshBase::element_iterator       it  = mesh.unpartitioned_elements_begin();
  const MeshBase::element_iterator end = mesh.unpartitioned_elements_end();

  const dof_id_type n_unpartitioned_elements = MeshTools::n_elem (it, end);

  // the unpartitioned elements must exist on all processors. If the range is empty on one
  // it is empty on all, and we can quit right here.
  if (!n_unpartitioned_elements) return;

  // find the target subdomain sizes
  std::vector<dof_id_type> subdomain_bounds(mesh.n_processors());

  for (processor_id_type pid=0; pid<mesh.n_processors(); pid++)
    {
      dof_id_type tgt_subdomain_size = 0;

      // watch out for the case that n_subdomains < n_processors
      if (pid < n_subdomains)
        {
          tgt_subdomain_size = n_unpartitioned_elements/n_subdomains;

          if (pid < n_unpartitioned_elements%n_subdomains)
            tgt_subdomain_size++;

        }

      //libMesh::out << "pid, #= " << pid << ", " << tgt_subdomain_size << std::endl;
      if (pid == 0)
        subdomain_bounds[0] = tgt_subdomain_size;
      else
        subdomain_bounds[pid] = subdomain_bounds[pid-1] + tgt_subdomain_size;
    }

  libmesh_assert_equal_to (subdomain_bounds.back(), n_unpartitioned_elements);

  // create the unique mapping for all unpartitioned elements independent of partitioning
  // determine the global indexing for all the unpartitoned elements
  std::vector<dof_id_type> global_indices;

  // Calling this on all processors a unique range in [0,n_unpartitioned_elements) is constructed.
  // Only the indices for the elements we pass in are returned in the array.
  MeshCommunication().find_global_indices (mesh.comm(),
                                           MeshTools::bounding_box(mesh), it, end,
                                           global_indices);

  for (dof_id_type cnt=0; it != end; ++it)
    {
      Elem * elem = *it;

      libmesh_assert_less (cnt, global_indices.size());
      const dof_id_type global_index =
        global_indices[cnt++];

      libmesh_assert_less (global_index, subdomain_bounds.back());
      libmesh_assert_less (global_index, n_unpartitioned_elements);

      const processor_id_type subdomain_id =
        cast_int<processor_id_type>
        (std::distance(subdomain_bounds.begin(),
                       std::upper_bound(subdomain_bounds.begin(),
                                        subdomain_bounds.end(),
                                        global_index)));
      libmesh_assert_less (subdomain_id, n_subdomains);

      elem->processor_id() = subdomain_id;
      //libMesh::out << "assigning " << global_index << " to " << subdomain_id << std::endl;
    }
}
コード例 #3
0
ファイル: metis_partitioner.C プロジェクト: balborian/libmesh
void MetisPartitioner::partition_range(MeshBase & mesh,
                                       MeshBase::element_iterator beg,
                                       MeshBase::element_iterator end,
                                       unsigned int n_pieces)
{
  libmesh_assert_greater (n_pieces, 0);

  // We don't yet support distributed meshes with this Partitioner
  if (!mesh.is_serial())
    libmesh_not_implemented();

  // Check for an easy return
  if (n_pieces == 1)
    {
      this->single_partition_range (beg, end);
      return;
    }

  // What to do if the Metis library IS NOT present
#ifndef LIBMESH_HAVE_METIS

  libmesh_here();
  libMesh::err << "ERROR: The library has been built without"    << std::endl
               << "Metis support.  Using a space-filling curve"  << std::endl
               << "partitioner instead!"                         << std::endl;

  SFCPartitioner sfcp;
  sfcp.partition_range (mesh, beg, end, n_pieces);

  // What to do if the Metis library IS present
#else

  LOG_SCOPE("partition_range()", "MetisPartitioner");

  const dof_id_type n_range_elem = std::distance(beg, end);

  // Metis will only consider the elements in the range.
  // We need to map the range element ids into a
  // contiguous range.  Further, we want the unique range indexing to be
  // independent of the element ordering, otherwise a circular dependency
  // can result in which the partitioning depends on the ordering which
  // depends on the partitioning...
  vectormap<dof_id_type, dof_id_type> global_index_map;
  global_index_map.reserve (n_range_elem);

  {
    std::vector<dof_id_type> global_index;

    MeshCommunication().find_global_indices (mesh.comm(),
                                             MeshTools::create_bounding_box(mesh),
                                             beg, end, global_index);

    libmesh_assert_equal_to (global_index.size(), n_range_elem);

    MeshBase::element_iterator it = beg;
    for (std::size_t cnt=0; it != end; ++it)
      {
        const Elem * elem = *it;

        global_index_map.insert (std::make_pair(elem->id(), global_index[cnt++]));
      }
    libmesh_assert_equal_to (global_index_map.size(), n_range_elem);
  }

  // If we have boundary elements in this mesh, we want to account for
  // the connectivity between them and interior elements.  We can find
  // interior elements from boundary elements, but we need to build up
  // a lookup map to do the reverse.
  typedef std::unordered_multimap<const Elem *, const Elem *> map_type;
  map_type interior_to_boundary_map;

  {
    MeshBase::element_iterator it = beg;
    for (; it != end; ++it)
      {
        const Elem * elem = *it;

        // If we don't have an interior_parent then there's nothing
        // to look us up.
        if ((elem->dim() >= LIBMESH_DIM) ||
            !elem->interior_parent())
          continue;

        // get all relevant interior elements
        std::set<const Elem *> neighbor_set;
        elem->find_interior_neighbors(neighbor_set);

        std::set<const Elem *>::iterator n_it = neighbor_set.begin();
        for (; n_it != neighbor_set.end(); ++n_it)
          {
            // FIXME - non-const versions of the std::set<const Elem
            // *> returning methods would be nice
            Elem * neighbor = const_cast<Elem *>(*n_it);

#if defined(LIBMESH_HAVE_UNORDERED_MULTIMAP) ||         \
  defined(LIBMESH_HAVE_TR1_UNORDERED_MULTIMAP) ||       \
  defined(LIBMESH_HAVE_HASH_MULTIMAP) ||                \
  defined(LIBMESH_HAVE_EXT_HASH_MULTIMAP)
            interior_to_boundary_map.insert(std::make_pair(neighbor, elem));
#else
            interior_to_boundary_map.insert(interior_to_boundary_map.begin(),
                                            std::make_pair(neighbor, elem));
#endif
          }
      }
  }

  // Data structure that Metis will fill up on processor 0 and broadcast.
  std::vector<Metis::idx_t> part(n_range_elem);

  // Invoke METIS, but only on processor 0.
  // Then broadcast the resulting decomposition
  if (mesh.processor_id() == 0)
    {
      // Data structures and parameters needed only on processor 0 by Metis.
      // std::vector<Metis::idx_t> options(5);
      std::vector<Metis::idx_t> vwgt(n_range_elem);

      Metis::idx_t
        n = static_cast<Metis::idx_t>(n_range_elem),   // number of "nodes" (elements) in the graph
        // wgtflag = 2,                                // weights on vertices only, none on edges
        // numflag = 0,                                // C-style 0-based numbering
        nparts  = static_cast<Metis::idx_t>(n_pieces), // number of subdomains to create
        edgecut = 0;                                   // the numbers of edges cut by the resulting partition

      // Set the options
      // options[0] = 0; // use default options

      // build the graph
      METIS_CSR_Graph<Metis::idx_t> csr_graph;

      csr_graph.offsets.resize(n_range_elem + 1, 0);

      // Local scope for these
      {
        // build the graph in CSR format.  Note that
        // the edges in the graph will correspond to
        // face neighbors

#ifdef LIBMESH_ENABLE_AMR
        std::vector<const Elem *> neighbors_offspring;
#endif

#ifndef NDEBUG
        std::size_t graph_size=0;
#endif

        // (1) first pass - get the row sizes for each element by counting the number
        // of face neighbors.  Also populate the vwght array if necessary
        MeshBase::element_iterator it = beg;
        for (; it != end; ++it)
          {
            const Elem * elem = *it;

            const dof_id_type elem_global_index =
              global_index_map[elem->id()];

            libmesh_assert_less (elem_global_index, vwgt.size());

            // maybe there is a better weight?
            // The weight is used to define what a balanced graph is
            if (!_weights)
              vwgt[elem_global_index] = elem->n_nodes();
            else
              vwgt[elem_global_index] = static_cast<Metis::idx_t>((*_weights)[elem->id()]);

            unsigned int num_neighbors = 0;

            // Loop over the element's neighbors.  An element
            // adjacency corresponds to a face neighbor
            for (auto neighbor : elem->neighbor_ptr_range())
              {
                if (neighbor != libmesh_nullptr)
                  {
                    // If the neighbor is active, but is not in the
                    // range of elements being partitioned, treat it
                    // as a NULL neighbor.
                    if (neighbor->active() && !global_index_map.count(neighbor->id()))
                      continue;

                    // If the neighbor is active treat it
                    // as a connection
                    if (neighbor->active())
                      num_neighbors++;

#ifdef LIBMESH_ENABLE_AMR

                    // Otherwise we need to find all of the
                    // neighbor's children that are connected to
                    // us and add them
                    else
                      {
                        // The side of the neighbor to which
                        // we are connected
                        const unsigned int ns =
                          neighbor->which_neighbor_am_i (elem);
                        libmesh_assert_less (ns, neighbor->n_neighbors());

                        // Get all the active children (& grandchildren, etc...)
                        // of the neighbor.

                        // FIXME - this is the wrong thing, since we
                        // should be getting the active family tree on
                        // our side only.  But adding too many graph
                        // links may cause hanging nodes to tend to be
                        // on partition interiors, which would reduce
                        // communication overhead for constraint
                        // equations, so we'll leave it.
                        neighbor->active_family_tree (neighbors_offspring);

                        // Get all the neighbor's children that
                        // live on that side and are thus connected
                        // to us
                        for (std::size_t nc=0; nc<neighbors_offspring.size(); nc++)
                          {
                            const Elem * child =
                              neighbors_offspring[nc];

                            // Skip neighbor offspring which are not in the range of elements being partitioned.
                            if (!global_index_map.count(child->id()))
                              continue;

                            // This does not assume a level-1 mesh.
                            // Note that since children have sides numbered
                            // coincident with the parent then this is a sufficient test.
                            if (child->neighbor_ptr(ns) == elem)
                              {
                                libmesh_assert (child->active());
                                num_neighbors++;
                              }
                          }
                      }

#endif /* ifdef LIBMESH_ENABLE_AMR */

                  }
              }

            // Check for any interior neighbors
            if ((elem->dim() < LIBMESH_DIM) && elem->interior_parent())
              {
                // get all relevant interior elements
                std::set<const Elem *> neighbor_set;
                elem->find_interior_neighbors(neighbor_set);

                num_neighbors += neighbor_set.size();
              }

            // Check for any boundary neighbors
            typedef map_type::iterator map_it_type;
            std::pair<map_it_type, map_it_type>
              bounds = interior_to_boundary_map.equal_range(elem);
            num_neighbors += std::distance(bounds.first, bounds.second);

            csr_graph.prep_n_nonzeros(elem_global_index, num_neighbors);
#ifndef NDEBUG
            graph_size += num_neighbors;
#endif
          }

        csr_graph.prepare_for_use();

        // (2) second pass - fill the compressed adjacency array
        it = beg;

        for (; it != end; ++it)
          {
            const Elem * elem = *it;

            const dof_id_type elem_global_index =
              global_index_map[elem->id()];

            unsigned int connection=0;

            // Loop over the element's neighbors.  An element
            // adjacency corresponds to a face neighbor
            for (auto neighbor : elem->neighbor_ptr_range())
              {
                if (neighbor != libmesh_nullptr)
                  {
                    // If the neighbor is active, but is not in the
                    // range of elements being partitioned, treat it
                    // as a NULL neighbor.
                    if (neighbor->active() && !global_index_map.count(neighbor->id()))
                      continue;

                    // If the neighbor is active treat it
                    // as a connection
                    if (neighbor->active())
                      csr_graph(elem_global_index, connection++) = global_index_map[neighbor->id()];

#ifdef LIBMESH_ENABLE_AMR

                    // Otherwise we need to find all of the
                    // neighbor's children that are connected to
                    // us and add them
                    else
                      {
                        // The side of the neighbor to which
                        // we are connected
                        const unsigned int ns =
                          neighbor->which_neighbor_am_i (elem);
                        libmesh_assert_less (ns, neighbor->n_neighbors());

                        // Get all the active children (& grandchildren, etc...)
                        // of the neighbor.
                        neighbor->active_family_tree (neighbors_offspring);

                        // Get all the neighbor's children that
                        // live on that side and are thus connected
                        // to us
                        for (std::size_t nc=0; nc<neighbors_offspring.size(); nc++)
                          {
                            const Elem * child =
                              neighbors_offspring[nc];

                            // Skip neighbor offspring which are not in the range of elements being partitioned.
                            if (!global_index_map.count(child->id()))
                              continue;

                            // This does not assume a level-1 mesh.
                            // Note that since children have sides numbered
                            // coincident with the parent then this is a sufficient test.
                            if (child->neighbor_ptr(ns) == elem)
                              {
                                libmesh_assert (child->active());

                                csr_graph(elem_global_index, connection++) = global_index_map[child->id()];
                              }
                          }
                      }

#endif /* ifdef LIBMESH_ENABLE_AMR */

                  }
              }

            if ((elem->dim() < LIBMESH_DIM) &&
                elem->interior_parent())
              {
                // get all relevant interior elements
                std::set<const Elem *> neighbor_set;
                elem->find_interior_neighbors(neighbor_set);

                std::set<const Elem *>::iterator n_it = neighbor_set.begin();
                for (; n_it != neighbor_set.end(); ++n_it)
                  {
                    const Elem * neighbor = *n_it;

                    // Not all interior neighbors are necessarily in
                    // the same Mesh (hence not in the global_index_map).
                    // This will be the case when partitioning a
                    // BoundaryMesh, whose elements all have
                    // interior_parents() that belong to some other
                    // Mesh.
                    const Elem * queried_elem = mesh.query_elem_ptr(neighbor->id());

                    // Compare the neighbor and the queried_elem
                    // pointers, make sure they are the same.
                    if (queried_elem && queried_elem == neighbor)
                      {
                        vectormap<dof_id_type, dof_id_type>::iterator global_index_map_it =
                          global_index_map.find(neighbor->id());

                        // If the interior_neighbor is in the Mesh but
                        // not in the global_index_map, we have other issues.
                        if (global_index_map_it == global_index_map.end())
                          libmesh_error_msg("Interior neighbor with id " << neighbor->id() << " not found in global_index_map.");

                        else
                          csr_graph(elem_global_index, connection++) = global_index_map_it->second;
                      }
                  }
              }

            // Check for any boundary neighbors
            for (const auto & pr : as_range(interior_to_boundary_map.equal_range(elem)))
              {
                const Elem * neighbor = pr.second;
                csr_graph(elem_global_index, connection++) =
                  global_index_map[neighbor->id()];
              }
          }

        // We create a non-empty vals for a disconnected graph, to
        // work around a segfault from METIS.
        libmesh_assert_equal_to (csr_graph.vals.size(),
                                 std::max(graph_size, std::size_t(1)));
      } // done building the graph

      Metis::idx_t ncon = 1;

      // Select which type of partitioning to create

      // Use recursive if the number of partitions is less than or equal to 8
      if (n_pieces <= 8)
        Metis::METIS_PartGraphRecursive(&n,
                                        &ncon,
                                        &csr_graph.offsets[0],
                                        &csr_graph.vals[0],
                                        &vwgt[0],
                                        libmesh_nullptr,
                                        libmesh_nullptr,
                                        &nparts,
                                        libmesh_nullptr,
                                        libmesh_nullptr,
                                        libmesh_nullptr,
                                        &edgecut,
                                        &part[0]);

      // Otherwise  use kway
      else
        Metis::METIS_PartGraphKway(&n,
                                   &ncon,
                                   &csr_graph.offsets[0],
                                   &csr_graph.vals[0],
                                   &vwgt[0],
                                   libmesh_nullptr,
                                   libmesh_nullptr,
                                   &nparts,
                                   libmesh_nullptr,
                                   libmesh_nullptr,
                                   libmesh_nullptr,
                                   &edgecut,
                                   &part[0]);

    } // end processor 0 part

  // Broadcast the resulting partition
  mesh.comm().broadcast(part);

  // Assign the returned processor ids.  The part array contains
  // the processor id for each active element, but in terms of
  // the contiguous indexing we defined above
  {
    MeshBase::element_iterator it = beg;
    for (; it!=end; ++it)
      {
        Elem * elem = *it;

        libmesh_assert (global_index_map.count(elem->id()));

        const dof_id_type elem_global_index =
          global_index_map[elem->id()];

        libmesh_assert_less (elem_global_index, part.size());
        const processor_id_type elem_procid =
          static_cast<processor_id_type>(part[elem_global_index]);

        elem->processor_id() = elem_procid;
      }
  }
#endif
}
コード例 #4
0
  void setUp() {
    mesh.reset(new Mesh(*TestCommWorld));
    MeshTools::Generation::build_cube(*mesh, 1, 1, 1);
    es.reset(new EquationSystems(*mesh));
    sys = &(es->add_system<System> ("SimpleSystem"));
    sys->add_variable("x2");
    sys->add_variable("x3");
    sys->add_variable("c05");
    sys->add_variable("y4");
    sys->add_variable("xy");
    sys->add_variable("yz");
    sys->add_variable("xyz");

    es->init();

    NumericVector<Number> & sol = *sys->solution;
    Elem *elem = mesh->query_elem_ptr(0);

    if (elem && elem->processor_id() == TestCommWorld->rank())
      {
        // Set x2 = 2*x
        sol.set(elem->node_ref(1).dof_number(0,0,0), 2);
        sol.set(elem->node_ref(2).dof_number(0,0,0), 2);
        sol.set(elem->node_ref(5).dof_number(0,0,0), 2);
        sol.set(elem->node_ref(6).dof_number(0,0,0), 2);

        // Set x3 = 3*x
        sol.set(elem->node_ref(1).dof_number(0,1,0), 3);
        sol.set(elem->node_ref(2).dof_number(0,1,0), 3);
        sol.set(elem->node_ref(5).dof_number(0,1,0), 3);
        sol.set(elem->node_ref(6).dof_number(0,1,0), 3);

        // Set c05 = 0.5
        sol.set(elem->node_ref(0).dof_number(0,2,0), 0.5);
        sol.set(elem->node_ref(1).dof_number(0,2,0), 0.5);
        sol.set(elem->node_ref(2).dof_number(0,2,0), 0.5);
        sol.set(elem->node_ref(3).dof_number(0,2,0), 0.5);
        sol.set(elem->node_ref(4).dof_number(0,2,0), 0.5);
        sol.set(elem->node_ref(5).dof_number(0,2,0), 0.5);
        sol.set(elem->node_ref(6).dof_number(0,2,0), 0.5);
        sol.set(elem->node_ref(7).dof_number(0,2,0), 0.5);

        // Set y4 = 4*y
        sol.set(elem->node_ref(2).dof_number(0,3,0), 4);
        sol.set(elem->node_ref(3).dof_number(0,3,0), 4);
        sol.set(elem->node_ref(6).dof_number(0,3,0), 4);
        sol.set(elem->node_ref(7).dof_number(0,3,0), 4);

        // Set xy = x*y
        sol.set(elem->node_ref(2).dof_number(0,4,0), 1);
        sol.set(elem->node_ref(6).dof_number(0,4,0), 1);

        // Set yz = y*z
        sol.set(elem->node_ref(6).dof_number(0,5,0), 1);
        sol.set(elem->node_ref(7).dof_number(0,5,0), 1);

        // Set xyz = x*y*z
        sol.set(elem->node_ref(6).dof_number(0,6,0), 1);
      }

    sol.close();
    sys->update();

    c.reset(new FEMContext(*sys));
    s.reset(new FEMContext(*sys));
    if (elem && elem->processor_id() == TestCommWorld->rank())
      {
        c->pre_fe_reinit(*sys, elem);
        c->elem_fe_reinit();
        s->pre_fe_reinit(*sys, elem);
        s->side = 3;
        s->side_fe_reinit();
      }
  }
コード例 #5
0
//---------------------------------------------------------
// CentroidPartitioner methods
void CentroidPartitioner::_do_partition (MeshBase& mesh,
                                         const unsigned int n)
{
  // Check for an easy return
  if (n == 1)
    {
      this->single_partition (mesh);
      return;
    }


  // Possibly reconstruct centroids
  if (mesh.n_elem() != _elem_centroids.size())
    this->compute_centroids (mesh);



  switch (this->sort_method())
    {
    case X:
      {
        std::sort(_elem_centroids.begin(),
                  _elem_centroids.end(),
                  CentroidPartitioner::sort_x);

        break;
      }


    case Y:
      {
        std::sort(_elem_centroids.begin(),
                  _elem_centroids.end(),
                  CentroidPartitioner::sort_y);

        break;

      }


    case Z:
      {
        std::sort(_elem_centroids.begin(),
                  _elem_centroids.end(),
                  CentroidPartitioner::sort_z);

        break;
      }


    case RADIAL:
      {
        std::sort(_elem_centroids.begin(),
                  _elem_centroids.end(),
                  CentroidPartitioner::sort_radial);

        break;
      }
    default:
      libmesh_error();
    }


  // Make sure the user has not handed us an
  // invalid number of partitions.
  libmesh_assert_greater (n, 0);

  // the number of elements, e.g. 1000
  const dof_id_type n_elem      = mesh.n_elem();
  // the number of elements per processor, e.g 400
  const dof_id_type target_size = n_elem / n;

  // Make sure the mesh hasn't changed since the
  // last time we computed the centroids.
  libmesh_assert_equal_to (mesh.n_elem(), _elem_centroids.size());

  for (dof_id_type i=0; i<n_elem; i++)
    {
      Elem* elem = _elem_centroids[i].second;

      elem->processor_id() =
        std::min (libmesh_cast_int<processor_id_type>(i / target_size),
                  libmesh_cast_int<processor_id_type>(n-1));
    }
}
コード例 #6
0
ファイル: elem_refinement.C プロジェクト: mikegraham/libmesh
void Elem::refine (MeshRefinement& mesh_refinement)
{
  libmesh_assert (this->refinement_flag() == Elem::REFINE);
  libmesh_assert (this->active());

  // Create my children if necessary
  if (!_children)
    {
      _children = new Elem*[this->n_children()];

      unsigned int parent_p_level = this->p_level();
      for (unsigned int c=0; c<this->n_children(); c++)
        {
	  _children[c] = Elem::build(this->type(), this).release();
	  _children[c]->set_refinement_flag(Elem::JUST_REFINED);
	  _children[c]->set_p_level(parent_p_level);
	  _children[c]->set_p_refinement_flag(this->p_refinement_flag());
        }

      // Compute new nodal locations
      // and asssign nodes to children
      // Make these static.  It is unlikely the
      // sizes will change from call to call, so having these
      // static should save on reallocations
      std::vector<std::vector<Point> >        p    (this->n_children());
      std::vector<std::vector<Node*> >        nodes(this->n_children());


      // compute new nodal locations
      for (unsigned int c=0; c<this->n_children(); c++)
        {
          Elem *child = this->child(c);
	  p[c].resize    (child->n_nodes());
	  nodes[c].resize(child->n_nodes());

	  for (unsigned int nc=0; nc<child->n_nodes(); nc++)
	    {
	      // zero entries
	      p[c][nc].zero();
	      nodes[c][nc] = NULL;

	      for (unsigned int n=0; n<this->n_nodes(); n++)
	        {
		  // The value from the embedding matrix
		  const float em_val = this->embedding_matrix(c,nc,n);

		  if (em_val != 0.)
		    {
		      p[c][nc].add_scaled (this->point(n), em_val);

		      // We may have found the node, in which case we
		      // won't need to look it up later.
		      if (em_val == 1.)
		        nodes[c][nc] = this->get_node(n);
		    }
	        }
	    }

	// assign nodes to children & add them to the mesh
          const Real pointtol = this->hmin() * TOLERANCE;
	  for (unsigned int nc=0; nc<child->n_nodes(); nc++)
	    {
	      if (nodes[c][nc] != NULL)
	        {
		  child->set_node(nc) = nodes[c][nc];
	        }
	      else
	        {
		  child->set_node(nc) =
		    mesh_refinement.add_point(p[c][nc],
					      child->processor_id(),
                                              pointtol);
		  child->get_node(nc)->set_n_systems
                    (this->n_systems());
	        }
	    }

	  mesh_refinement.add_elem (child);
          child->set_n_systems(this->n_systems());
        }
    }
  else
    {
      unsigned int parent_p_level = this->p_level();
      for (unsigned int c=0; c<this->n_children(); c++)
        {
          Elem *child = this->child(c);
          libmesh_assert(child->subactive());
          child->set_refinement_flag(Elem::JUST_REFINED);
          child->set_p_level(parent_p_level);
          child->set_p_refinement_flag(this->p_refinement_flag());
        }
    }

  // Un-set my refinement flag now
  this->set_refinement_flag(Elem::INACTIVE);
  this->set_p_refinement_flag(Elem::INACTIVE);

  for (unsigned int c=0; c<this->n_children(); c++)
    {
      libmesh_assert(this->child(c)->parent() == this);
      libmesh_assert(this->child(c)->active());
    }
  libmesh_assert (this->ancestor());
}
コード例 #7
0
void UnstructuredMesh::copy_nodes_and_elements(const UnstructuredMesh & other_mesh,
                                               const bool skip_find_neighbors)
{
  // We're assuming our subclass data needs no copy
  libmesh_assert_equal_to (_n_parts, other_mesh._n_parts);
  libmesh_assert (std::equal(_elem_dims.begin(), _elem_dims.end(), other_mesh._elem_dims.begin()));
  libmesh_assert_equal_to (_is_prepared, other_mesh._is_prepared);

  // We're assuming the other mesh has proper element number ordering,
  // so that we add parents before their children.
#ifdef DEBUG
  MeshTools::libmesh_assert_valid_amr_elem_ids(other_mesh);
#endif

  //Copy in Nodes
  {
    //Preallocate Memory if necessary
    this->reserve_nodes(other_mesh.n_nodes());

    const_node_iterator it = other_mesh.nodes_begin();
    const_node_iterator end = other_mesh.nodes_end();

    for (; it != end; ++it)
      {
        const Node * oldn = *it;

        // Add new nodes in old node Point locations
#ifdef LIBMESH_ENABLE_UNIQUE_ID
        Node *newn =
#endif
          this->add_point(*oldn, oldn->id(), oldn->processor_id());

#ifdef LIBMESH_ENABLE_UNIQUE_ID
        newn->set_unique_id() = oldn->unique_id();
#endif
      }
  }

  //Copy in Elements
  {
    //Preallocate Memory if necessary
    this->reserve_elem(other_mesh.n_elem());

    // Declare a map linking old and new elements, needed to copy the neighbor lists
    std::map<const Elem *, Elem *> old_elems_to_new_elems;

    // Loop over the elements
    MeshBase::const_element_iterator it = other_mesh.elements_begin();
    const MeshBase::const_element_iterator end = other_mesh.elements_end();

    // FIXME: Where do we set element IDs??
    for (; it != end; ++it)
      {
        //Look at the old element
        const Elem * old = *it;
        //Build a new element
        Elem * newparent = old->parent() ?
          this->elem_ptr(old->parent()->id()) : libmesh_nullptr;
        UniquePtr<Elem> ap = Elem::build(old->type(), newparent);
        Elem * el = ap.release();

        el->subdomain_id() = old->subdomain_id();

        for (unsigned int s=0; s != old->n_sides(); ++s)
          if (old->neighbor_ptr(s) == remote_elem)
            el->set_neighbor(s, const_cast<RemoteElem *>(remote_elem));

#ifdef LIBMESH_ENABLE_AMR
        if (old->has_children())
          for (unsigned int c=0; c != old->n_children(); ++c)
            if (old->child_ptr(c) == remote_elem)
              el->add_child(const_cast<RemoteElem *>(remote_elem), c);

        //Create the parent's child pointers if necessary
        if (newparent)
          {
            unsigned int oldc = old->parent()->which_child_am_i(old);
            newparent->add_child(el, oldc);
          }

        // Copy the refinement flags
        el->set_refinement_flag(old->refinement_flag());

        // Use hack_p_level since we may not have sibling elements
        // added yet
        el->hack_p_level(old->p_level());

        el->set_p_refinement_flag(old->p_refinement_flag());
#endif // #ifdef LIBMESH_ENABLE_AMR

        //Assign all the nodes
        for(unsigned int i=0;i<el->n_nodes();i++)
          el->set_node(i) = this->node_ptr(old->node_id(i));

        // And start it off in the same subdomain
        el->processor_id() = old->processor_id();

        // Give it the same ids
        el->set_id(old->id());

#ifdef LIBMESH_ENABLE_UNIQUE_ID
        el->set_unique_id() = old->unique_id();
#endif

        //Hold onto it
        if(!skip_find_neighbors)
          {
            this->add_elem(el);
          }
        else
          {
            Elem * new_el = this->add_elem(el);
            old_elems_to_new_elems[old] = new_el;
          }

        // Add the link between the original element and this copy to the map
        if(skip_find_neighbors)
          old_elems_to_new_elems[old] = el;
      }

    // Loop (again) over the elements to fill in the neighbors
    if(skip_find_neighbors)
      {
        it = other_mesh.elements_begin();
        for (; it != end; ++it)
          {
            Elem * old_elem = *it;
            Elem * new_elem = old_elems_to_new_elems[old_elem];
            for (unsigned int s=0; s != old_elem->n_neighbors(); ++s)
              {
                const Elem * old_neighbor = old_elem->neighbor_ptr(s);
                Elem * new_neighbor = old_elems_to_new_elems[old_neighbor];
                new_elem->set_neighbor(s, new_neighbor);
              }
          }
      }
  }

  //Finally prepare the new Mesh for use.  Keep the same numbering and
  //partitioning but also the same renumbering and partitioning
  //policies as our source mesh.
  this->allow_renumbering(false);
  this->skip_partitioning(true);
  this->prepare_for_use(false, skip_find_neighbors);
  this->allow_renumbering(other_mesh.allow_renumbering());
  this->skip_partitioning(other_mesh.skip_partitioning());
}
コード例 #8
0
ファイル: sfc_partitioner.C プロジェクト: paulovieira/libmesh
// ------------------------------------------------------------
// SFCPartitioner implementation
void SFCPartitioner::_do_partition (MeshBase& mesh,
				    const unsigned int n)
{

  libmesh_assert_greater (n, 0);

  // Check for an easy return
  if (n == 1)
    {
      this->single_partition (mesh);
      return;
    }

// What to do if the sfcurves library IS NOT present
#ifndef LIBMESH_HAVE_SFCURVES

  libmesh_here();
  libMesh::err << "ERROR: The library has been built without"    << std::endl
	        << "Space Filling Curve support.  Using a linear" << std::endl
	        << "partitioner instead!" << std::endl;

  LinearPartitioner lp;

  lp.partition (mesh, n);

// What to do if the sfcurves library IS present
#else

  START_LOG("sfc_partition()", "SFCPartitioner");

  const unsigned int n_active_elem = mesh.n_active_elem();
  const unsigned int n_elem        = mesh.n_elem();

  // the forward_map maps the active element id
  // into a contiguous block of indices
  std::vector<unsigned int>
    forward_map (n_elem, libMesh::invalid_uint);

  // the reverse_map maps the contiguous ids back
  // to active elements
  std::vector<Elem*> reverse_map (n_active_elem, NULL);

  int size = static_cast<int>(n_active_elem);
  std::vector<double> x      (size);
  std::vector<double> y      (size);
  std::vector<double> z      (size);
  std::vector<int>    table  (size);


  // We need to map the active element ids into a
  // contiguous range.
  {
//     active_elem_iterator       elem_it (mesh.elements_begin());
//     const active_elem_iterator elem_end(mesh.elements_end());

    MeshBase::element_iterator       elem_it  = mesh.active_elements_begin();
    const MeshBase::element_iterator elem_end = mesh.active_elements_end();

    unsigned int el_num = 0;

    for (; elem_it != elem_end; ++elem_it)
      {
	libmesh_assert_less ((*elem_it)->id(), forward_map.size());
	libmesh_assert_less (el_num, reverse_map.size());

	forward_map[(*elem_it)->id()] = el_num;
	reverse_map[el_num]           = *elem_it;
	el_num++;
      }
    libmesh_assert_equal_to (el_num, n_active_elem);
  }


  // Get the centroid for each active element
  {
//     const_active_elem_iterator       elem_it (mesh.const_elements_begin());
//     const const_active_elem_iterator elem_end(mesh.const_elements_end());

    MeshBase::element_iterator       elem_it  = mesh.active_elements_begin();
    const MeshBase::element_iterator elem_end = mesh.active_elements_end();

    for (; elem_it != elem_end; ++elem_it)
      {
	const Elem* elem = *elem_it;

	libmesh_assert_less (elem->id(), forward_map.size());

	const Point p = elem->centroid();

	x[forward_map[elem->id()]] = p(0);
	y[forward_map[elem->id()]] = p(1);
	z[forward_map[elem->id()]] = p(2);
      }
  }

  // build the space-filling curve
  if (_sfc_type == "Hilbert")
    Sfc::hilbert (&x[0], &y[0], &z[0], &size, &table[0]);

  else if (_sfc_type == "Morton")
    Sfc::morton  (&x[0], &y[0], &z[0], &size, &table[0]);

  else
    {
      libmesh_here();
      libMesh::err << "ERROR: Unknown type: " << _sfc_type << std::endl
		    << " Valid types are"                   << std::endl
		    << "  \"Hilbert\""                      << std::endl
		    << "  \"Morton\""                       << std::endl
		    << " "                                  << std::endl
		    << "Proceeding with a Hilbert curve."   << std::endl;

      Sfc::hilbert (&x[0], &y[0], &z[0], &size, &table[0]);
    }


  // Assign the partitioning to the active elements
  {
//      {
//        std::ofstream out ("sfc.dat");
//        out << "variables=x,y,z" << std::endl;
//        out << "zone f=point" << std::endl;

//        for (unsigned int i=0; i<n_active_elem; i++)
//  	out << x[i] << " "
//  	    << y[i] << " "
//  	    << z[i] << std::endl;
//      }

    const unsigned int blksize = (n_active_elem+n-1)/n;

    for (unsigned int i=0; i<n_active_elem; i++)
      {
	libmesh_assert_less (static_cast<unsigned int>(table[i]-1), reverse_map.size());

	Elem* elem = reverse_map[table[i]-1];

	elem->processor_id() = i/blksize;
      }
  }

  STOP_LOG("sfc_partition()", "SFCPartitioner");

#endif

}
コード例 #9
0
ファイル: parallel_elem.C プロジェクト: dengchangtao/libmesh
void unpack(std::vector<largest_id_type>::const_iterator in,
            Elem** out,
            MeshBase* mesh)
{
#ifndef NDEBUG
  const std::vector<largest_id_type>::const_iterator original_in = in;

  const largest_id_type incoming_header = *in++;
  libmesh_assert_equal_to (incoming_header, elem_magic_header);
#endif

  // int 0: level
  const unsigned int level =
    static_cast<unsigned int>(*in++);

#ifdef LIBMESH_ENABLE_AMR
  // int 1: p level
  const unsigned int p_level =
    static_cast<unsigned int>(*in++);

  // int 2: refinement flag
  const int rflag = *in++;
  libmesh_assert_greater_equal (rflag, 0);
  libmesh_assert_less (rflag, Elem::INVALID_REFINEMENTSTATE);
  const Elem::RefinementState refinement_flag =
    static_cast<Elem::RefinementState>(rflag);

  // int 3: p refinement flag
  const int pflag = *in++;
  libmesh_assert_greater_equal (pflag, 0);
  libmesh_assert_less (pflag, Elem::INVALID_REFINEMENTSTATE);
  const Elem::RefinementState p_refinement_flag =
    static_cast<Elem::RefinementState>(pflag);
#else
  in += 3;
#endif // LIBMESH_ENABLE_AMR

  // int 4: element type
  const int typeint = *in++;
  libmesh_assert_greater_equal (typeint, 0);
  libmesh_assert_less (typeint, INVALID_ELEM);
  const ElemType type =
    static_cast<ElemType>(typeint);

  const unsigned int n_nodes =
    Elem::type_to_n_nodes_map[type];

  // int 5: processor id
  const processor_id_type processor_id =
    static_cast<processor_id_type>(*in++);
  libmesh_assert (processor_id < mesh->n_processors() ||
                  processor_id == DofObject::invalid_processor_id);

  // int 6: subdomain id
  const subdomain_id_type subdomain_id =
    static_cast<subdomain_id_type>(*in++);

  // int 7: dof object id
  const dof_id_type id =
    static_cast<dof_id_type>(*in++);
  libmesh_assert_not_equal_to (id, DofObject::invalid_id);

#ifdef LIBMESH_ENABLE_UNIQUE_ID
  // int 8: dof object unique id
  const unique_id_type unique_id =
    static_cast<unique_id_type>(*in++);
#endif

#ifdef LIBMESH_ENABLE_AMR
  // int 9: parent dof object id
  const dof_id_type parent_id =
    static_cast<dof_id_type>(*in++);
  libmesh_assert (level == 0 || parent_id != DofObject::invalid_id);
  libmesh_assert (level != 0 || parent_id == DofObject::invalid_id);

  // int 10: local child id
  const unsigned int which_child_am_i =
    static_cast<unsigned int>(*in++);
#else
  in += 2;
#endif // LIBMESH_ENABLE_AMR

  // Make sure we don't miscount above when adding the "magic" header
  // plus the real data header
  libmesh_assert_equal_to (in - original_in, header_size + 1);

  Elem *elem = mesh->query_elem(id);

  // if we already have this element, make sure its
  // properties match, and update any missing neighbor
  // links, but then go on
  if (elem)
    {
      libmesh_assert_equal_to (elem->level(), level);
      libmesh_assert_equal_to (elem->id(), id);
//#ifdef LIBMESH_ENABLE_UNIQUE_ID
      // No check for unqiue id sanity
//#endif
      libmesh_assert_equal_to (elem->processor_id(), processor_id);
      libmesh_assert_equal_to (elem->subdomain_id(), subdomain_id);
      libmesh_assert_equal_to (elem->type(), type);
      libmesh_assert_equal_to (elem->n_nodes(), n_nodes);

#ifndef NDEBUG
      // All our nodes should be correct
      for (unsigned int i=0; i != n_nodes; ++i)
        libmesh_assert(elem->node(i) ==
                       static_cast<dof_id_type>(*in++));
#else
      in += n_nodes;
#endif

#ifdef LIBMESH_ENABLE_AMR
      libmesh_assert_equal_to (elem->p_level(), p_level);
      libmesh_assert_equal_to (elem->refinement_flag(), refinement_flag);
      libmesh_assert_equal_to (elem->p_refinement_flag(), p_refinement_flag);

      libmesh_assert (!level || elem->parent() != NULL);
      libmesh_assert (!level || elem->parent()->id() == parent_id);
      libmesh_assert (!level || elem->parent()->child(which_child_am_i) == elem);
#endif

      // Our neighbor links should be "close to" correct - we may have
      // to update them, but we can check for some inconsistencies.
      for (unsigned int n=0; n != elem->n_neighbors(); ++n)
        {
          const dof_id_type neighbor_id =
            static_cast<dof_id_type>(*in++);

	  // If the sending processor sees a domain boundary here,
	  // we'd better agree.
          if (neighbor_id == DofObject::invalid_id)
            {
              libmesh_assert (!(elem->neighbor(n)));
              continue;
            }

	  // If the sending processor has a remote_elem neighbor here,
	  // then all we know is that we'd better *not* have a domain
	  // boundary.
          if (neighbor_id == remote_elem->id())
            {
              libmesh_assert(elem->neighbor(n));
              continue;
            }

          Elem *neigh = mesh->query_elem(neighbor_id);

          // The sending processor sees a neighbor here, so if we
          // don't have that neighboring element, then we'd better
          // have a remote_elem signifying that fact.
          if (!neigh)
            {
              libmesh_assert_equal_to (elem->neighbor(n), remote_elem);
              continue;
            }

          // The sending processor has a neighbor here, and we have
          // that element, but that does *NOT* mean we're already
	  // linking to it.  Perhaps we initially received both elem
	  // and neigh from processors on which their mutual link was
	  // remote?
          libmesh_assert(elem->neighbor(n) == neigh ||
			 elem->neighbor(n) == remote_elem);

	  // If the link was originally remote, we should update it,
	  // and make sure the appropriate parts of its family link
	  // back to us.
	  if (elem->neighbor(n) == remote_elem)
            {
              elem->set_neighbor(n, neigh);

              elem->make_links_to_me_local(n);
	    }
	}

      // FIXME: We should add some debug mode tests to ensure that the
      // encoded indexing and boundary conditions are consistent.
    }
  else
    {
      // We don't already have the element, so we need to create it.

      // Find the parent if necessary
      Elem *parent = NULL;
#ifdef LIBMESH_ENABLE_AMR
      // Find a child element's parent
      if (level > 0)
        {
	  // Note that we must be very careful to construct the send
	  // connectivity so that parents are encountered before
	  // children.  If we get here and can't find the parent that
	  // is a fatal error.
          parent = mesh->elem(parent_id);
        }
      // Or assert that the sending processor sees no parent
      else
        libmesh_assert_equal_to (parent_id, static_cast<dof_id_type>(-1));
#else
      // No non-level-0 elements without AMR
      libmesh_assert_equal_to (level, 0);
#endif

      elem = Elem::build(type,parent).release();
      libmesh_assert (elem);

#ifdef LIBMESH_ENABLE_AMR
      if (level != 0)
        {
          // Since this is a newly created element, the parent must
          // have previously thought of this child as a remote element.
          libmesh_assert_equal_to (parent->child(which_child_am_i), remote_elem);

          parent->add_child(elem, which_child_am_i);
        }

      // Assign the refinement flags and levels
      elem->set_p_level(p_level);
      elem->set_refinement_flag(refinement_flag);
      elem->set_p_refinement_flag(p_refinement_flag);
      libmesh_assert_equal_to (elem->level(), level);

      // If this element definitely should have children, assign
      // remote_elem to all of them for now, for consistency.  Later
      // unpacked elements may overwrite that.
      if (!elem->active())
        for (unsigned int c=0; c != elem->n_children(); ++c)
          elem->add_child(const_cast<RemoteElem*>(remote_elem), c);

#endif // LIBMESH_ENABLE_AMR

      // Assign the IDs
      elem->subdomain_id()  = subdomain_id;
      elem->processor_id()  = processor_id;
      elem->set_id()        = id;
#ifdef LIBMESH_ENABLE_UNIQUE_ID
      elem->set_unique_id() = unique_id;
#endif

      // Assign the connectivity
      libmesh_assert_equal_to (elem->n_nodes(), n_nodes);

      for (unsigned int n=0; n != n_nodes; n++)
        elem->set_node(n) =
          mesh->node_ptr
	    (static_cast<dof_id_type>(*in++));

      for (unsigned int n=0; n<elem->n_neighbors(); n++)
        {
          const dof_id_type neighbor_id =
            static_cast<dof_id_type>(*in++);

          if (neighbor_id == DofObject::invalid_id)
	    continue;

          // We may be unpacking an element that was a ghost element on the
          // sender, in which case the element's neighbors may not all be
          // known by the packed element.  We'll have to set such
          // neighbors to remote_elem ourselves and wait for a later
          // packed element to give us better information.
          if (neighbor_id == remote_elem->id())
            {
              elem->set_neighbor(n, const_cast<RemoteElem*>(remote_elem));
	      continue;
	    }

          // If we don't have the neighbor element, then it's a
          // remote_elem until we get it.
          Elem *neigh = mesh->query_elem(neighbor_id);
          if (!neigh)
            {
              elem->set_neighbor(n, const_cast<RemoteElem*>(remote_elem));
	      continue;
	    }

          // If we have the neighbor element, then link to it, and
          // make sure the appropriate parts of its family link back
          // to us.
          elem->set_neighbor(n, neigh);

          elem->make_links_to_me_local(n);
        }

      elem->unpack_indexing(in);
    }

  in += elem->packed_indexing_size();

  // If this is a coarse element,
  // add any element side boundary condition ids
  if (level == 0)
    for (unsigned int s = 0; s != elem->n_sides(); ++s)
      {
        const int num_bcs = *in++;
        libmesh_assert_greater_equal (num_bcs, 0);

        for(int bc_it=0; bc_it < num_bcs; bc_it++)
          mesh->boundary_info->add_side (elem, s, *in++);
      }

  // Return the new element
  *out = elem;
}
コード例 #10
0
void UnstructuredMesh::find_neighbors (const bool reset_remote_elements,
                                       const bool reset_current_list)
{
  // We might actually want to run this on an empty mesh
  // (e.g. the boundary mesh for a nonexistant bcid!)
  // libmesh_assert_not_equal_to (this->n_nodes(), 0);
  // libmesh_assert_not_equal_to (this->n_elem(), 0);

  // This function must be run on all processors at once
  parallel_object_only();

  LOG_SCOPE("find_neighbors()", "Mesh");

  const element_iterator el_end = this->elements_end();

  //TODO:[BSK] This should be removed later?!
  if (reset_current_list)
    for (element_iterator el = this->elements_begin(); el != el_end; ++el)
      {
        Elem * e = *el;
        for (unsigned int s=0; s<e->n_neighbors(); s++)
          if (e->neighbor_ptr(s) != remote_elem ||
              reset_remote_elements)
            e->set_neighbor(s, libmesh_nullptr);
      }

  // Find neighboring elements by first finding elements
  // with identical side keys and then check to see if they
  // are neighbors
  {
    // data structures -- Use the hash_multimap if available
    typedef unsigned int                    key_type;
    typedef std::pair<Elem *, unsigned char> val_type;
    typedef std::pair<key_type, val_type>   key_val_pair;

    typedef LIBMESH_BEST_UNORDERED_MULTIMAP<key_type, val_type> map_type;

    // A map from side keys to corresponding elements & side numbers
    map_type side_to_elem_map;



    for (element_iterator el = this->elements_begin(); el != el_end; ++el)
      {
        Elem * element = *el;

        for (unsigned char ms=0; ms<element->n_neighbors(); ms++)
          {
          next_side:
            // If we haven't yet found a neighbor on this side, try.
            // Even if we think our neighbor is remote, that
            // information may be out of date.
            if (element->neighbor_ptr(ms) == libmesh_nullptr ||
                element->neighbor_ptr(ms) == remote_elem)
              {
                // Get the key for the side of this element
                const unsigned int key = element->key(ms);

                // Look for elements that have an identical side key
                std::pair <map_type::iterator, map_type::iterator>
                  bounds = side_to_elem_map.equal_range(key);

                // May be multiple keys, check all the possible
                // elements which _might_ be neighbors.
                if (bounds.first != bounds.second)
                  {
                    // Get the side for this element
                    const UniquePtr<Elem> my_side(element->side_ptr(ms));

                    // Look at all the entries with an equivalent key
                    while (bounds.first != bounds.second)
                      {
                        // Get the potential element
                        Elem * neighbor = bounds.first->second.first;

                        // Get the side for the neighboring element
                        const unsigned int ns = bounds.first->second.second;
                        const UniquePtr<Elem> their_side(neighbor->side_ptr(ns));
                        //libmesh_assert(my_side.get());
                        //libmesh_assert(their_side.get());

                        // If found a match with my side
                        //
                        // We need special tests here for 1D:
                        // since parents and children have an equal
                        // side (i.e. a node), we need to check
                        // ns != ms, and we also check level() to
                        // avoid setting our neighbor pointer to
                        // any of our neighbor's descendants
                        if( (*my_side == *their_side) &&
                            (element->level() == neighbor->level()) &&
                            ((element->dim() != 1) || (ns != ms)) )
                          {
                            // So share a side.  Is this a mixed pair
                            // of subactive and active/ancestor
                            // elements?
                            // If not, then we're neighbors.
                            // If so, then the subactive's neighbor is

                            if (element->subactive() ==
                                neighbor->subactive())
                              {
                                // an element is only subactive if it has
                                // been coarsened but not deleted
                                element->set_neighbor (ms,neighbor);
                                neighbor->set_neighbor(ns,element);
                              }
                            else if (element->subactive())
                              {
                                element->set_neighbor(ms,neighbor);
                              }
                            else if (neighbor->subactive())
                              {
                                neighbor->set_neighbor(ns,element);
                              }
                            side_to_elem_map.erase (bounds.first);

                            // get out of this nested crap
                            goto next_side;
                          }

                        ++bounds.first;
                      }
                  }

                // didn't find a match...
                // Build the map entry for this element
                key_val_pair kvp;

                kvp.first         = key;
                kvp.second.first  = element;
                kvp.second.second = ms;

                // use the lower bound as a hint for
                // where to put it.
#if defined(LIBMESH_HAVE_UNORDERED_MAP) || defined(LIBMESH_HAVE_TR1_UNORDERED_MAP) || defined(LIBMESH_HAVE_HASH_MAP) || defined(LIBMESH_HAVE_EXT_HASH_MAP)
                side_to_elem_map.insert (kvp);
#else
                side_to_elem_map.insert (bounds.first,kvp);
#endif
              }
          }
      }
  }

#ifdef LIBMESH_ENABLE_AMR

  /**
   * Here we look at all of the child elements which
   * don't already have valid neighbors.
   *
   * If a child element has a NULL neighbor it is
   * either because it is on the boundary or because
   * its neighbor is at a different level.  In the
   * latter case we must get the neighbor from the
   * parent.
   *
   * If a child element has a remote_elem neighbor
   * on a boundary it shares with its parent, that
   * info may have become out-dated through coarsening
   * of the neighbor's parent.  In this case, if the
   * parent's neighbor is active then the child should
   * share it.
   *
   * Furthermore, that neighbor better be active,
   * otherwise we missed a child somewhere.
   *
   *
   * We also need to look through children ordered by increasing
   * refinement level in order to add new interior_parent() links in
   * boundary elements which have just been generated by refinement,
   * and fix links in boundary elements whose previous
   * interior_parent() has just been coarsened away.
   */
  const unsigned int n_levels = MeshTools::n_levels(*this);
  for (unsigned int level = 1; level < n_levels; ++level)
    {
      element_iterator end = this->level_elements_end(level);
      for (element_iterator el = this->level_elements_begin(level);
           el != end; ++el)
        {
          Elem * current_elem = *el;
          libmesh_assert(current_elem);
          Elem * parent = current_elem->parent();
          libmesh_assert(parent);
          const unsigned int my_child_num = parent->which_child_am_i(current_elem);

          for (unsigned int s=0; s < current_elem->n_neighbors(); s++)
            {
              if (current_elem->neighbor_ptr(s) == libmesh_nullptr ||
                  (current_elem->neighbor_ptr(s) == remote_elem &&
                   parent->is_child_on_side(my_child_num, s)))
                {
                  Elem * neigh = parent->neighbor_ptr(s);

                  // If neigh was refined and had non-subactive children
                  // made remote earlier, then a non-subactive elem should
                  // actually have one of those remote children as a
                  // neighbor
                  if (neigh && (neigh->ancestor()) && (!current_elem->subactive()))
                    {
#ifdef DEBUG
                      // Let's make sure that "had children made remote"
                      // situation is actually the case
                      libmesh_assert(neigh->has_children());
                      bool neigh_has_remote_children = false;
                      for (unsigned int c = 0; c != neigh->n_children(); ++c)
                        {
                          if (neigh->child_ptr(c) == remote_elem)
                            neigh_has_remote_children = true;
                        }
                      libmesh_assert(neigh_has_remote_children);

                      // And let's double-check that we don't have
                      // a remote_elem neighboring a local element
                      libmesh_assert_not_equal_to (current_elem->processor_id(),
                                                   this->processor_id());
#endif // DEBUG
                      neigh = const_cast<RemoteElem *>(remote_elem);
                    }

                  if (!current_elem->subactive())
                    current_elem->set_neighbor(s, neigh);
#ifdef DEBUG
                  if (neigh != libmesh_nullptr && neigh != remote_elem)
                    // We ignore subactive elements here because
                    // we don't care about neighbors of subactive element.
                    if ((!neigh->active()) && (!current_elem->subactive()))
                      {
                        libMesh::err << "On processor " << this->processor_id()
                                     << std::endl;
                        libMesh::err << "Bad element ID = " << current_elem->id()
                                     << ", Side " << s << ", Bad neighbor ID = " << neigh->id() << std::endl;
                        libMesh::err << "Bad element proc_ID = " << current_elem->processor_id()
                                     << ", Bad neighbor proc_ID = " << neigh->processor_id() << std::endl;
                        libMesh::err << "Bad element size = " << current_elem->hmin()
                                     << ", Bad neighbor size = " << neigh->hmin() << std::endl;
                        libMesh::err << "Bad element center = " << current_elem->centroid()
                                     << ", Bad neighbor center = " << neigh->centroid() << std::endl;
                        libMesh::err << "ERROR: "
                                     << (current_elem->active()?"Active":"Ancestor")
                                     << " Element at level "
                                     << current_elem->level() << std::endl;
                        libMesh::err << "with "
                                     << (parent->active()?"active":
                                         (parent->subactive()?"subactive":"ancestor"))
                                     << " parent share "
                                     << (neigh->subactive()?"subactive":"ancestor")
                                     << " neighbor at level " << neigh->level()
                                     << std::endl;
                        NameBasedIO(*this).write ("bad_mesh.gmv");
                        libmesh_error_msg("Problematic mesh written to bad_mesh.gmv.");
                      }
#endif // DEBUG
                }
            }

          // We can skip to the next element if we're full-dimension
          // and therefore don't have any interior parents
          if (current_elem->dim() >= LIBMESH_DIM)
            continue;

          // We have no interior parents unless we can find one later
          current_elem->set_interior_parent(libmesh_nullptr);

          Elem * pip = parent->interior_parent();

          if (!pip)
            continue;

          // If there's no interior_parent children, whether due to a
          // remote element or a non-conformity, then there's no
          // children to search.
          if (pip == remote_elem || pip->active())
            {
              current_elem->set_interior_parent(pip);
              continue;
            }

          // For node comparisons we'll need a sensible tolerance
          Real node_tolerance = current_elem->hmin() * TOLERANCE;

          // Otherwise our interior_parent should be a child of our
          // parent's interior_parent.
          for (unsigned int c=0; c != pip->n_children(); ++c)
            {
              Elem * child = pip->child_ptr(c);

              // If we have a remote_elem, that might be our
              // interior_parent.  We'll set it provisionally now and
              // keep trying to find something better.
              if (child == remote_elem)
                {
                  current_elem->set_interior_parent
                    (const_cast<RemoteElem *>(remote_elem));
                  continue;
                }

              bool child_contains_our_nodes = true;
              for (unsigned int n=0; n != current_elem->n_nodes();
                   ++n)
                {
                  bool child_contains_this_node = false;
                  for (unsigned int cn=0; cn != child->n_nodes();
                       ++cn)
                    if (child->point(cn).absolute_fuzzy_equals
                        (current_elem->point(n), node_tolerance))
                      {
                        child_contains_this_node = true;
                        break;
                      }
                  if (!child_contains_this_node)
                    {
                      child_contains_our_nodes = false;
                      break;
                    }
                }
              if (child_contains_our_nodes)
                {
                  current_elem->set_interior_parent(child);
                  break;
                }
            }

          // We should have found *some* interior_parent at this
          // point, whether semilocal or remote.
          libmesh_assert(current_elem->interior_parent());
        }
    }

#endif // AMR


#ifdef DEBUG
  MeshTools::libmesh_assert_valid_neighbors(*this,
                                            !reset_remote_elements);
  MeshTools::libmesh_assert_valid_amr_interior_parents(*this);
#endif
}
コード例 #11
0
ファイル: checkpoint_io.C プロジェクト: borisboutkov/libmesh
void CheckpointIO::read_connectivity (Xdr & io)
{
  // convenient reference to our mesh
  MeshBase & mesh = MeshInput<MeshBase>::mesh();

  unsigned int n_active_levels;
  io.data(n_active_levels, "# n_active_levels");

  // Keep track of the highest dimensional element we've added to the mesh
  unsigned int highest_elem_dim = 1;

  for(unsigned int level=0; level < n_active_levels; level++)
    {
      xdr_id_type n_elem_at_level = 0;
      io.data (n_elem_at_level, "");

      for (unsigned int i=0; i<n_elem_at_level; i++)
        {
          // id type pid subdomain_id parent_id
          std::vector<largest_id_type> elem_data(5);
          io.data_stream
            (&elem_data[0], cast_int<unsigned int>(elem_data.size()),
             cast_int<unsigned int>(elem_data.size()));

#ifdef LIBMESH_ENABLE_UNIQUE_ID
          largest_id_type unique_id = 0;
          io.data(unique_id, "# unique id");
#endif

#ifdef LIBMESH_ENABLE_AMR
          unsigned int p_level = 0;

          io.data(p_level, "# p_level");
#endif

          unsigned int n_nodes = Elem::type_to_n_nodes_map[elem_data[1]];

          // Snag the node ids this element was connected to
          std::vector<largest_id_type> conn_data(n_nodes);
          io.data_stream
            (&conn_data[0], cast_int<unsigned int>(conn_data.size()),
             cast_int<unsigned int>(conn_data.size()));

          const dof_id_type id                 =
            cast_int<dof_id_type>      (elem_data[0]);
          const ElemType elem_type             =
            static_cast<ElemType>      (elem_data[1]);
          const processor_id_type proc_id      =
            cast_int<processor_id_type>(elem_data[2]);
          const subdomain_id_type subdomain_id =
            cast_int<subdomain_id_type>(elem_data[3]);
          const dof_id_type parent_id          =
            cast_int<dof_id_type>      (elem_data[4]);

          Elem * parent =
            (parent_id == DofObject::invalid_processor_id) ?
            libmesh_nullptr : mesh.elem_ptr(parent_id);

          // Create the element
          Elem * elem = Elem::build(elem_type, parent).release();

#ifdef LIBMESH_ENABLE_UNIQUE_ID
          elem->set_unique_id() = unique_id;
#endif

          if(elem->dim() > highest_elem_dim)
            highest_elem_dim = elem->dim();

          elem->set_id()       = id;
          elem->processor_id() = proc_id;
          elem->subdomain_id() = subdomain_id;

#ifdef LIBMESH_ENABLE_AMR
          elem->hack_p_level(p_level);

          // Set parent connections
          if(parent)
            {
              parent->add_child(elem);
              parent->set_refinement_flag (Elem::INACTIVE);
              elem->set_refinement_flag   (Elem::JUST_REFINED);
            }
#endif

          libmesh_assert(elem->n_nodes() == conn_data.size());

          // Connect all the nodes to this element
          for (unsigned int n=0; n<conn_data.size(); n++)
            elem->set_node(n) =
              mesh.node_ptr(cast_int<dof_id_type>(conn_data[n]));

          mesh.add_elem(elem);
        }
    }

  mesh.set_mesh_dimension(cast_int<unsigned char>(highest_elem_dim));
}
コード例 #12
0
ファイル: metis_partitioner.C プロジェクト: guyer/libmesh
// ------------------------------------------------------------
// MetisPartitioner implementation
void MetisPartitioner::_do_partition (MeshBase& mesh,
				      const unsigned int n_pieces)
{
  libmesh_assert_greater (n_pieces, 0);
  libmesh_assert (mesh.is_serial());

  // Check for an easy return
  if (n_pieces == 1)
    {
      this->single_partition (mesh);
      return;
    }

// What to do if the Metis library IS NOT present
#ifndef LIBMESH_HAVE_METIS

  libmesh_here();
  libMesh::err << "ERROR: The library has been built without"    << std::endl
	        << "Metis support.  Using a space-filling curve"  << std::endl
	        << "partitioner instead!"                         << std::endl;

  SFCPartitioner sfcp;

  sfcp.partition (mesh, n_pieces);

// What to do if the Metis library IS present
#else

  START_LOG("partition()", "MetisPartitioner");

  const dof_id_type n_active_elem = mesh.n_active_elem();

  // build the graph
  // std::vector<int> options(5);
  std::vector<int> vwgt(n_active_elem);
  std::vector<int> part(n_active_elem);

  int
    n = static_cast<int>(n_active_elem),  // number of "nodes" (elements)
                                          //   in the graph
//    wgtflag = 2,                          // weights on vertices only,
//                                          //   none on edges
//    numflag = 0,                          // C-style 0-based numbering
    nparts  = static_cast<int>(n_pieces), // number of subdomains to create
    edgecut = 0;                          // the numbers of edges cut by the
                                          //   resulting partition

  // Set the options
  // options[0] = 0; // use default options

  // Metis will only consider the active elements.
  // We need to map the active element ids into a
  // contiguous range.  Further, we want the unique range indexing to be
  // independednt of the element ordering, otherwise a circular dependency
  // can result in which the partitioning depends on the ordering which
  // depends on the partitioning...
  std::map<const Elem*, dof_id_type> global_index_map;
  {
    std::vector<dof_id_type> global_index;

    MeshBase::element_iterator       it  = mesh.active_elements_begin();
    const MeshBase::element_iterator end = mesh.active_elements_end();

    MeshCommunication().find_global_indices (MeshTools::bounding_box(mesh),
					     it, end, global_index);

    libmesh_assert_equal_to (global_index.size(), n_active_elem);

    for (std::size_t cnt=0; it != end; ++it)
      {
	const Elem *elem = *it;
	libmesh_assert (!global_index_map.count(elem));

	global_index_map[elem]  = global_index[cnt++];
      }
    libmesh_assert_equal_to (global_index_map.size(), n_active_elem);
  }


  // build the graph in CSR format.  Note that
  // the edges in the graph will correspond to
  // face neighbors
  std::vector<int> xadj, adjncy;
  {
    std::vector<const Elem*> neighbors_offspring;

    MeshBase::element_iterator       elem_it  = mesh.active_elements_begin();
    const MeshBase::element_iterator elem_end = mesh.active_elements_end();

    // This will be exact when there is no refinement and all the
    // elements are of the same type.
    std::size_t graph_size=0;
    std::vector<std::vector<dof_id_type> > graph(n_active_elem);

    for (; elem_it != elem_end; ++elem_it)
      {
	const Elem* elem = *elem_it;

	libmesh_assert (global_index_map.count(elem));

	const dof_id_type elem_global_index =
	  global_index_map[elem];

	libmesh_assert_less (elem_global_index, vwgt.size());
	libmesh_assert_less (elem_global_index, graph.size());

	// maybe there is a better weight?
	// The weight is used to define what a balanced graph is
        if(!_weights)
          vwgt[elem_global_index] = elem->n_nodes();
        else
          vwgt[elem_global_index] = static_cast<int>((*_weights)[elem->id()]);

	// Loop over the element's neighbors.  An element
	// adjacency corresponds to a face neighbor
	for (unsigned int ms=0; ms<elem->n_neighbors(); ms++)
	  {
	    const Elem* neighbor = elem->neighbor(ms);

	    if (neighbor != NULL)
	      {
		// If the neighbor is active treat it
		// as a connection
		if (neighbor->active())
		  {
		    libmesh_assert (global_index_map.count(neighbor));

		    const dof_id_type neighbor_global_index =
		      global_index_map[neighbor];

		    graph[elem_global_index].push_back(neighbor_global_index);
		    graph_size++;
		  }

#ifdef LIBMESH_ENABLE_AMR

		// Otherwise we need to find all of the
		// neighbor's children that are connected to
		// us and add them
		else
		  {
		    // The side of the neighbor to which
		    // we are connected
		    const unsigned int ns =
		      neighbor->which_neighbor_am_i (elem);
                    libmesh_assert_less (ns, neighbor->n_neighbors());

		    // Get all the active children (& grandchildren, etc...)
		    // of the neighbor.
		    neighbor->active_family_tree (neighbors_offspring);

		    // Get all the neighbor's children that
		    // live on that side and are thus connected
		    // to us
		    for (unsigned int nc=0; nc<neighbors_offspring.size(); nc++)
		      {
			const Elem* child =
			  neighbors_offspring[nc];

			// This does not assume a level-1 mesh.
			// Note that since children have sides numbered
			// coincident with the parent then this is a sufficient test.
			if (child->neighbor(ns) == elem)
			  {
			    libmesh_assert (child->active());
			    libmesh_assert (global_index_map.count(child));

			    const dof_id_type child_global_index =
			      global_index_map[child];

			    graph[elem_global_index].push_back(child_global_index);
			    graph_size++;
			  }
		      }
		  }

#endif /* ifdef LIBMESH_ENABLE_AMR */

	      }
	  }
      }

    // Convert the graph into the format Metis wants
    xadj.reserve(n_active_elem+1);
    adjncy.reserve(graph_size);

    for (std::size_t r=0; r<graph.size(); r++)
      {
	xadj.push_back(adjncy.size());
	std::vector<dof_id_type> graph_row; // build this emtpy
	graph_row.swap(graph[r]); // this will deallocate at the end of scope
	adjncy.insert(adjncy.end(),
		      graph_row.begin(),
		      graph_row.end());
      }

    // The end of the adjacency array for the last elem
    xadj.push_back(adjncy.size());

    libmesh_assert_equal_to (adjncy.size(), graph_size);
    libmesh_assert_equal_to (xadj.size(), n_active_elem+1);
  } // done building the graph


  if (adjncy.empty())
    adjncy.push_back(0);

  int ncon = 1;

  // Select which type of partitioning to create

  // Use recursive if the number of partitions is less than or equal to 8
  if (n_pieces <= 8)
    Metis::METIS_PartGraphRecursive(&n, &ncon, &xadj[0], &adjncy[0], &vwgt[0], NULL,
				    NULL, &nparts, NULL, NULL, NULL,
				    &edgecut, &part[0]);

  // Otherwise  use kway
  else
    Metis::METIS_PartGraphKway(&n, &ncon, &xadj[0], &adjncy[0], &vwgt[0], NULL,
			       NULL, &nparts, NULL, NULL, NULL,
			       &edgecut, &part[0]);


  // Assign the returned processor ids.  The part array contains
  // the processor id for each active element, but in terms of
  // the contiguous indexing we defined above
  {
    MeshBase::element_iterator       it  = mesh.active_elements_begin();
    const MeshBase::element_iterator end = mesh.active_elements_end();

    for (; it!=end; ++it)
      {
	Elem* elem = *it;

	libmesh_assert (global_index_map.count(elem));

	const dof_id_type elem_global_index =
	  global_index_map[elem];

	libmesh_assert_less (elem_global_index, part.size());
	const processor_id_type elem_procid =
	  static_cast<processor_id_type>(part[elem_global_index]);

        elem->processor_id() = elem_procid;
      }
  }

  STOP_LOG("partition()", "MetisPartitioner");
#endif
}
コード例 #13
0
ファイル: parallel_elem.C プロジェクト: balborian/libmesh
Elem *
Packing<Elem *>::unpack (std::vector<largest_id_type>::const_iterator in,
                         MeshBase * mesh)
{
#ifndef NDEBUG
  const std::vector<largest_id_type>::const_iterator original_in = in;

  const largest_id_type incoming_header = *in++;
  libmesh_assert_equal_to (incoming_header, elem_magic_header);
#endif

  // int 0: level
  const unsigned int level =
    cast_int<unsigned int>(*in++);

#ifdef LIBMESH_ENABLE_AMR
  // int 1: p level
  const unsigned int p_level =
    cast_int<unsigned int>(*in++);

  // int 2: refinement flag and encoded has_children
  const int rflag = cast_int<int>(*in++);
  const int invalid_rflag =
    cast_int<int>(Elem::INVALID_REFINEMENTSTATE);
  libmesh_assert_greater_equal (rflag, 0);

  libmesh_assert_less (rflag, invalid_rflag*2+1);

  const bool has_children = (rflag > invalid_rflag);

  const Elem::RefinementState refinement_flag = has_children ?
    cast_int<Elem::RefinementState>(rflag - invalid_rflag - 1) :
    cast_int<Elem::RefinementState>(rflag);

  // int 3: p refinement flag
  const int pflag = cast_int<int>(*in++);
  libmesh_assert_greater_equal (pflag, 0);
  libmesh_assert_less (pflag, Elem::INVALID_REFINEMENTSTATE);
  const Elem::RefinementState p_refinement_flag =
    cast_int<Elem::RefinementState>(pflag);
#else
  in += 3;
#endif // LIBMESH_ENABLE_AMR

  // int 4: element type
  const int typeint = cast_int<int>(*in++);
  libmesh_assert_greater_equal (typeint, 0);
  libmesh_assert_less (typeint, INVALID_ELEM);
  const ElemType type =
    cast_int<ElemType>(typeint);

  const unsigned int n_nodes =
    Elem::type_to_n_nodes_map[type];

  // int 5: processor id
  const processor_id_type processor_id =
    cast_int<processor_id_type>(*in++);
  libmesh_assert (processor_id < mesh->n_processors() ||
                  processor_id == DofObject::invalid_processor_id);

  // int 6: subdomain id
  const subdomain_id_type subdomain_id =
    cast_int<subdomain_id_type>(*in++);

  // int 7: dof object id
  const dof_id_type id =
    cast_int<dof_id_type>(*in++);
  libmesh_assert_not_equal_to (id, DofObject::invalid_id);

#ifdef LIBMESH_ENABLE_UNIQUE_ID
  // int 8: dof object unique id
  const unique_id_type unique_id =
    cast_int<unique_id_type>(*in++);
#endif

#ifdef LIBMESH_ENABLE_AMR
  // int 9: parent dof object id.
  // Note: If level==0, then (*in) == invalid_id.  In
  // this case, the equality check in cast_int<unsigned>(*in) will
  // never succeed.  Therefore, we should only attempt the more
  // rigorous cast verification in cases where level != 0.
  const dof_id_type parent_id =
    (level == 0)
    ? static_cast<dof_id_type>(*in++)
    : cast_int<dof_id_type>(*in++);
  libmesh_assert (level == 0 || parent_id != DofObject::invalid_id);
  libmesh_assert (level != 0 || parent_id == DofObject::invalid_id);

  // int 10: local child id
  // Note: If level==0, then which_child_am_i is not valid, so don't
  // do the more rigorous cast verification.
  const unsigned int which_child_am_i =
    (level == 0)
    ? static_cast<unsigned int>(*in++)
    : cast_int<unsigned int>(*in++);
#else
  in += 2;
#endif // LIBMESH_ENABLE_AMR

  const dof_id_type interior_parent_id =
    static_cast<dof_id_type>(*in++);

  // Make sure we don't miscount above when adding the "magic" header
  // plus the real data header
  libmesh_assert_equal_to (in - original_in, header_size + 1);

  Elem * elem = mesh->query_elem_ptr(id);

  // if we already have this element, make sure its
  // properties match, and update any missing neighbor
  // links, but then go on
  if (elem)
    {
      libmesh_assert_equal_to (elem->level(), level);
      libmesh_assert_equal_to (elem->id(), id);
      //#ifdef LIBMESH_ENABLE_UNIQUE_ID
      // No check for unique id sanity
      //#endif
      libmesh_assert_equal_to (elem->processor_id(), processor_id);
      libmesh_assert_equal_to (elem->subdomain_id(), subdomain_id);
      libmesh_assert_equal_to (elem->type(), type);
      libmesh_assert_equal_to (elem->n_nodes(), n_nodes);

#ifndef NDEBUG
      // All our nodes should be correct
      for (unsigned int i=0; i != n_nodes; ++i)
        libmesh_assert(elem->node_id(i) ==
                       cast_int<dof_id_type>(*in++));
#else
      in += n_nodes;
#endif

#ifdef LIBMESH_ENABLE_AMR
      libmesh_assert_equal_to (elem->refinement_flag(), refinement_flag);
      libmesh_assert_equal_to (elem->has_children(), has_children);

#ifdef DEBUG
      if (elem->active())
        {
          libmesh_assert_equal_to (elem->p_level(), p_level);
          libmesh_assert_equal_to (elem->p_refinement_flag(), p_refinement_flag);
        }
#endif

      libmesh_assert (!level || elem->parent() != libmesh_nullptr);
      libmesh_assert (!level || elem->parent()->id() == parent_id);
      libmesh_assert (!level || elem->parent()->child_ptr(which_child_am_i) == elem);
#endif
      // Our interior_parent link should be "close to" correct - we
      // may have to update it, but we can check for some
      // inconsistencies.
      {
        // If the sending processor sees no interior_parent here, we'd
        // better agree.
        if (interior_parent_id == DofObject::invalid_id)
          {
            if (elem->dim() < LIBMESH_DIM)
              libmesh_assert (!(elem->interior_parent()));
          }

        // If the sending processor has a remote_elem interior_parent,
        // then all we know is that we'd better have *some*
        // interior_parent
        else if (interior_parent_id == remote_elem->id())
          {
            libmesh_assert(elem->interior_parent());
          }
        else
          {
            Elem * ip = mesh->query_elem_ptr(interior_parent_id);

            // The sending processor sees an interior parent here, so
            // if we don't have that interior element, then we'd
            // better have a remote_elem signifying that fact.
            if (!ip)
              libmesh_assert_equal_to (elem->interior_parent(), remote_elem);
            else
              {
                // The sending processor has an interior_parent here,
                // and we have that element, but that does *NOT* mean
                // we're already linking to it.  Perhaps we initially
                // received elem from a processor on which the
                // interior_parent link was remote?
                libmesh_assert(elem->interior_parent() == ip ||
                               elem->interior_parent() == remote_elem);

                // If the link was originally remote, update it
                if (elem->interior_parent() == remote_elem)
                  {
                    elem->set_interior_parent(ip);
                  }
              }
          }
      }

      // Our neighbor links should be "close to" correct - we may have
      // to update a remote_elem link, and we can check for possible
      // inconsistencies along the way.
      //
      // For subactive elements, we don't bother keeping neighbor
      // links in good shape, so there's nothing we need to set or can
      // safely assert here.
      if (!elem->subactive())
        for (auto n : elem->side_index_range())
          {
            const dof_id_type neighbor_id =
              cast_int<dof_id_type>(*in++);

            // If the sending processor sees a domain boundary here,
            // we'd better agree.
            if (neighbor_id == DofObject::invalid_id)
              {
                libmesh_assert (!(elem->neighbor_ptr(n)));
                continue;
              }

            // If the sending processor has a remote_elem neighbor here,
            // then all we know is that we'd better *not* have a domain
            // boundary.
            if (neighbor_id == remote_elem->id())
              {
                libmesh_assert(elem->neighbor_ptr(n));
                continue;
              }

            Elem * neigh = mesh->query_elem_ptr(neighbor_id);

            // The sending processor sees a neighbor here, so if we
            // don't have that neighboring element, then we'd better
            // have a remote_elem signifying that fact.
            if (!neigh)
              {
                libmesh_assert_equal_to (elem->neighbor_ptr(n), remote_elem);
                continue;
              }

            // The sending processor has a neighbor here, and we have
            // that element, but that does *NOT* mean we're already
            // linking to it.  Perhaps we initially received both elem
            // and neigh from processors on which their mutual link was
            // remote?
            libmesh_assert(elem->neighbor_ptr(n) == neigh ||
                           elem->neighbor_ptr(n) == remote_elem);

            // If the link was originally remote, we should update it,
            // and make sure the appropriate parts of its family link
            // back to us.
            if (elem->neighbor_ptr(n) == remote_elem)
              {
                elem->set_neighbor(n, neigh);

                elem->make_links_to_me_local(n);
              }
          }

      // Our p level and refinement flags should be "close to" correct
      // if we're not an active element - we might have a p level
      // increased or decreased by changes in remote_elem children.
      //
      // But if we have remote_elem children, then we shouldn't be
      // doing a projection on this inactive element on this
      // processor, so we won't need correct p settings.  Couldn't
      // hurt to update, though.
#ifdef LIBMESH_ENABLE_AMR
      if (elem->processor_id() != mesh->processor_id())
        {
          elem->hack_p_level(p_level);
          elem->set_p_refinement_flag(p_refinement_flag);
        }
#endif // LIBMESH_ENABLE_AMR

      // FIXME: We should add some debug mode tests to ensure that the
      // encoded indexing and boundary conditions are consistent.
    }
  else
    {
      // We don't already have the element, so we need to create it.

      // Find the parent if necessary
      Elem * parent = libmesh_nullptr;
#ifdef LIBMESH_ENABLE_AMR
      // Find a child element's parent
      if (level > 0)
        {
          // Note that we must be very careful to construct the send
          // connectivity so that parents are encountered before
          // children.  If we get here and can't find the parent that
          // is a fatal error.
          parent = mesh->elem_ptr(parent_id);
        }
      // Or assert that the sending processor sees no parent
      else
        libmesh_assert_equal_to (parent_id, DofObject::invalid_id);
#else
      // No non-level-0 elements without AMR
      libmesh_assert_equal_to (level, 0);
#endif

      elem = Elem::build(type,parent).release();
      libmesh_assert (elem);

#ifdef LIBMESH_ENABLE_AMR
      if (level != 0)
        {
          // Since this is a newly created element, the parent must
          // have previously thought of this child as a remote element.
          libmesh_assert_equal_to (parent->child_ptr(which_child_am_i), remote_elem);

          parent->add_child(elem, which_child_am_i);
        }

      // Assign the refinement flags and levels
      elem->set_p_level(p_level);
      elem->set_refinement_flag(refinement_flag);
      elem->set_p_refinement_flag(p_refinement_flag);
      libmesh_assert_equal_to (elem->level(), level);

      // If this element should have children, assign remote_elem to
      // all of them for now, for consistency.  Later unpacked
      // elements may overwrite that.
      if (has_children)
        {
          const unsigned int nc = elem->n_children();
          for (unsigned int c=0; c != nc; ++c)
            elem->add_child(const_cast<RemoteElem *>(remote_elem), c);
        }

#endif // LIBMESH_ENABLE_AMR

      // Assign the IDs
      elem->subdomain_id()  = subdomain_id;
      elem->processor_id()  = processor_id;
      elem->set_id()        = id;
#ifdef LIBMESH_ENABLE_UNIQUE_ID
      elem->set_unique_id() = unique_id;
#endif

      // Assign the connectivity
      libmesh_assert_equal_to (elem->n_nodes(), n_nodes);

      for (unsigned int n=0; n != n_nodes; n++)
        elem->set_node(n) =
          mesh->node_ptr
          (cast_int<dof_id_type>(*in++));

      // Set interior_parent if found
      {
        // We may be unpacking an element that was a ghost element on the
        // sender, in which case the element's interior_parent may not be
        // known by the packed element.  We'll have to set such
        // interior_parents to remote_elem ourselves and wait for a
        // later packed element to give us better information.
        if (interior_parent_id == remote_elem->id())
          {
            elem->set_interior_parent
              (const_cast<RemoteElem *>(remote_elem));
          }
        else if (interior_parent_id != DofObject::invalid_id)
          {
            // If we don't have the interior parent element, then it's
            // a remote_elem until we get it.
            Elem * ip = mesh->query_elem_ptr(interior_parent_id);
            if (!ip )
              elem->set_interior_parent
                (const_cast<RemoteElem *>(remote_elem));
            else
              elem->set_interior_parent(ip);
          }
      }

      for (auto n : elem->side_index_range())
        {
          const dof_id_type neighbor_id =
            cast_int<dof_id_type>(*in++);

          if (neighbor_id == DofObject::invalid_id)
            continue;

          // We may be unpacking an element that was a ghost element on the
          // sender, in which case the element's neighbors may not all be
          // known by the packed element.  We'll have to set such
          // neighbors to remote_elem ourselves and wait for a later
          // packed element to give us better information.
          if (neighbor_id == remote_elem->id())
            {
              elem->set_neighbor(n, const_cast<RemoteElem *>(remote_elem));
              continue;
            }

          // If we don't have the neighbor element, then it's a
          // remote_elem until we get it.
          Elem * neigh = mesh->query_elem_ptr(neighbor_id);
          if (!neigh)
            {
              elem->set_neighbor(n, const_cast<RemoteElem *>(remote_elem));
              continue;
            }

          // If we have the neighbor element, then link to it, and
          // make sure the appropriate parts of its family link back
          // to us.
          elem->set_neighbor(n, neigh);

          elem->make_links_to_me_local(n);
        }

      elem->unpack_indexing(in);
    }

  in += elem->packed_indexing_size();

  // If this is a coarse element,
  // add any element side or edge boundary condition ids
  if (level == 0)
    {
      for (auto s : elem->side_index_range())
        {
          const boundary_id_type num_bcs =
            cast_int<boundary_id_type>(*in++);

          for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++)
            mesh->get_boundary_info().add_side
              (elem, s, cast_int<boundary_id_type>(*in++));
        }

      for (auto e : elem->edge_index_range())
        {
          const boundary_id_type num_bcs =
            cast_int<boundary_id_type>(*in++);

          for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++)
            mesh->get_boundary_info().add_edge
              (elem, e, cast_int<boundary_id_type>(*in++));
        }

      for (unsigned short sf=0; sf != 2; ++sf)
        {
          const boundary_id_type num_bcs =
            cast_int<boundary_id_type>(*in++);

          for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++)
            mesh->get_boundary_info().add_shellface
              (elem, sf, cast_int<boundary_id_type>(*in++));
        }
    }

  // Return the new element
  return elem;
}
コード例 #14
0
ファイル: partitioner.C プロジェクト: borisboutkov/libmesh
void Partitioner::set_parent_processor_ids(MeshBase & mesh)
{
  // Ignore the parameter when !LIBMESH_ENABLE_AMR
  libmesh_ignore(mesh);

  LOG_SCOPE("set_parent_processor_ids()", "Partitioner");

#ifdef LIBMESH_ENABLE_AMR

  // If the mesh is serial we have access to all the elements,
  // in particular all the active ones.  We can therefore set
  // the parent processor ids indirecly through their children, and
  // set the subactive processor ids while examining their active
  // ancestors.
  // By convention a parent is assigned to the minimum processor
  // of all its children, and a subactive is assigned to the processor
  // of its active ancestor.
  if (mesh.is_serial())
    {
      // Loop over all the active elements in the mesh
      MeshBase::element_iterator       it  = mesh.active_elements_begin();
      const MeshBase::element_iterator end = mesh.active_elements_end();

      for ( ; it!=end; ++it)
        {
          Elem * child  = *it;

          // First set descendents

          std::vector<const Elem *> subactive_family;
          child->total_family_tree(subactive_family);
          for (unsigned int i = 0; i != subactive_family.size(); ++i)
            const_cast<Elem *>(subactive_family[i])->processor_id() = child->processor_id();

          // Then set ancestors

          Elem * parent = child->parent();

          while (parent)
            {
              // invalidate the parent id, otherwise the min below
              // will not work if the current parent id is less
              // than all the children!
              parent->invalidate_processor_id();

              for (unsigned int c=0; c<parent->n_children(); c++)
                {
                  child = parent->child_ptr(c);
                  libmesh_assert(child);
                  libmesh_assert(!child->is_remote());
                  libmesh_assert_not_equal_to (child->processor_id(), DofObject::invalid_processor_id);
                  parent->processor_id() = std::min(parent->processor_id(),
                                                    child->processor_id());
                }
              parent = parent->parent();
            }
        }
    }

  // When the mesh is parallel we cannot guarantee that parents have access to
  // all their children.
  else
    {
      // Setting subactive processor ids is easy: we can guarantee
      // that children have access to all their parents.

      // Loop over all the active elements in the mesh
      MeshBase::element_iterator       it  = mesh.active_elements_begin();
      const MeshBase::element_iterator end = mesh.active_elements_end();

      for ( ; it!=end; ++it)
        {
          Elem * child  = *it;

          std::vector<const Elem *> subactive_family;
          child->total_family_tree(subactive_family);
          for (unsigned int i = 0; i != subactive_family.size(); ++i)
            const_cast<Elem *>(subactive_family[i])->processor_id() = child->processor_id();
        }

      // When the mesh is parallel we cannot guarantee that parents have access to
      // all their children.

      // We will use a brute-force approach here.  Each processor finds its parent
      // elements and sets the parent pid to the minimum of its
      // semilocal descendants.
      // A global reduction is then performed to make sure the true minimum is found.
      // As noted, this is required because we cannot guarantee that a parent has
      // access to all its children on any single processor.
      libmesh_parallel_only(mesh.comm());
      libmesh_assert(MeshTools::n_elem(mesh.unpartitioned_elements_begin(),
                                       mesh.unpartitioned_elements_end()) == 0);

      const dof_id_type max_elem_id = mesh.max_elem_id();

      std::vector<processor_id_type>
        parent_processor_ids (std::min(communication_blocksize,
                                       max_elem_id));

      for (dof_id_type blk=0, last_elem_id=0; last_elem_id<max_elem_id; blk++)
        {
          last_elem_id =
            std::min(static_cast<dof_id_type>((blk+1)*communication_blocksize),
                     max_elem_id);
          const dof_id_type first_elem_id = blk*communication_blocksize;

          std::fill (parent_processor_ids.begin(),
                     parent_processor_ids.end(),
                     DofObject::invalid_processor_id);

          // first build up local contributions to parent_processor_ids
          MeshBase::element_iterator       not_it  = mesh.ancestor_elements_begin();
          const MeshBase::element_iterator not_end = mesh.ancestor_elements_end();

          bool have_parent_in_block = false;

          for ( ; not_it != not_end; ++not_it)
            {
              Elem * parent = *not_it;

              const dof_id_type parent_idx = parent->id();
              libmesh_assert_less (parent_idx, max_elem_id);

              if ((parent_idx >= first_elem_id) &&
                  (parent_idx <  last_elem_id))
                {
                  have_parent_in_block = true;
                  processor_id_type parent_pid = DofObject::invalid_processor_id;

                  std::vector<const Elem *> active_family;
                  parent->active_family_tree(active_family);
                  for (unsigned int i = 0; i != active_family.size(); ++i)
                    parent_pid = std::min (parent_pid, active_family[i]->processor_id());

                  const dof_id_type packed_idx = parent_idx - first_elem_id;
                  libmesh_assert_less (packed_idx, parent_processor_ids.size());

                  parent_processor_ids[packed_idx] = parent_pid;
                }
            }

          // then find the global minimum
          mesh.comm().min (parent_processor_ids);

          // and assign the ids, if we have a parent in this block.
          if (have_parent_in_block)
            for (not_it = mesh.ancestor_elements_begin();
                 not_it != not_end; ++not_it)
              {
                Elem * parent = *not_it;

                const dof_id_type parent_idx = parent->id();

                if ((parent_idx >= first_elem_id) &&
                    (parent_idx <  last_elem_id))
                  {
                    const dof_id_type packed_idx = parent_idx - first_elem_id;
                    libmesh_assert_less (packed_idx, parent_processor_ids.size());

                    const processor_id_type parent_pid =
                      parent_processor_ids[packed_idx];

                    libmesh_assert_not_equal_to (parent_pid, DofObject::invalid_processor_id);

                    parent->processor_id() = parent_pid;
                  }
              }
        }
    }

#endif // LIBMESH_ENABLE_AMR
}
コード例 #15
0
void CentroidPartitioner::partition_range(MeshBase & mesh,
                                          MeshBase::element_iterator it,
                                          MeshBase::element_iterator end,
                                          unsigned int n)
{
  // Check for an easy return
  if (n == 1)
    {
      this->single_partition_range (it, end);
      return;
    }

  // We don't yet support distributed meshes with this Partitioner
  if (!mesh.is_serial())
    libmesh_not_implemented();

  // Compute the element centroids.  Note: we used to skip this step
  // if the number of elements was unchanged from the last call, but
  // that doesn't account for elements that have moved a lot since the
  // last time the Partitioner was called...
  this->compute_centroids (it, end);

  switch (this->sort_method())
    {
    case X:
      {
        std::sort(_elem_centroids.begin(),
                  _elem_centroids.end(),
                  CentroidPartitioner::sort_x);

        break;
      }


    case Y:
      {
        std::sort(_elem_centroids.begin(),
                  _elem_centroids.end(),
                  CentroidPartitioner::sort_y);

        break;

      }


    case Z:
      {
        std::sort(_elem_centroids.begin(),
                  _elem_centroids.end(),
                  CentroidPartitioner::sort_z);

        break;
      }


    case RADIAL:
      {
        std::sort(_elem_centroids.begin(),
                  _elem_centroids.end(),
                  CentroidPartitioner::sort_radial);

        break;
      }
    default:
      libmesh_error_msg("Unknown sort method: " << this->sort_method());
    }

  // Make sure the user has not handed us an
  // invalid number of partitions.
  libmesh_assert_greater (n, 0);

  // Compute target_size, the approximate number of elements on each processor.
  const dof_id_type target_size = _elem_centroids.size() / n;

  for (dof_id_type i=0; i<_elem_centroids.size(); i++)
    {
      Elem * elem = _elem_centroids[i].second;

      // FIXME: All "extra" elements go on the last processor... this
      // could probably be improved.
      elem->processor_id() =
        std::min (cast_int<processor_id_type>(i / target_size),
                  cast_int<processor_id_type>(n-1));
    }
}
コード例 #16
0
ファイル: partitioner.C プロジェクト: borisboutkov/libmesh
void Partitioner::set_node_processor_ids(MeshBase & mesh)
{
  LOG_SCOPE("set_node_processor_ids()","Partitioner");

  // This function must be run on all processors at once
  libmesh_parallel_only(mesh.comm());

  // If we have any unpartitioned elements at this
  // stage there is a problem
  libmesh_assert (MeshTools::n_elem(mesh.unpartitioned_elements_begin(),
                                    mesh.unpartitioned_elements_end()) == 0);


  //   const dof_id_type orig_n_local_nodes = mesh.n_local_nodes();

  //   libMesh::err << "[" << mesh.processor_id() << "]: orig_n_local_nodes="
  //     << orig_n_local_nodes << std::endl;

  // Build up request sets.  Each node is currently owned by a processor because
  // it is connected to an element owned by that processor.  However, during the
  // repartitioning phase that element may have been assigned a new processor id, but
  // it is still resident on the original processor.  We need to know where to look
  // for new ids before assigning new ids, otherwise we may be asking the wrong processors
  // for the wrong information.
  //
  // The only remaining issue is what to do with unpartitioned nodes.  Since they are required
  // to live on all processors we can simply rely on ourselves to number them properly.
  std::vector<std::vector<dof_id_type> >
    requested_node_ids(mesh.n_processors());

  // Loop over all the nodes, count the ones on each processor.  We can skip ourself
  std::vector<dof_id_type> ghost_nodes_from_proc(mesh.n_processors(), 0);

  MeshBase::node_iterator       node_it  = mesh.nodes_begin();
  const MeshBase::node_iterator node_end = mesh.nodes_end();

  for (; node_it != node_end; ++node_it)
    {
      Node * node = *node_it;
      libmesh_assert(node);
      const processor_id_type current_pid = node->processor_id();
      if (current_pid != mesh.processor_id() &&
          current_pid != DofObject::invalid_processor_id)
        {
          libmesh_assert_less (current_pid, ghost_nodes_from_proc.size());
          ghost_nodes_from_proc[current_pid]++;
        }
    }

  // We know how many objects live on each processor, so reserve()
  // space for each.
  for (processor_id_type pid=0; pid != mesh.n_processors(); ++pid)
    requested_node_ids[pid].reserve(ghost_nodes_from_proc[pid]);

  // We need to get the new pid for each node from the processor
  // which *currently* owns the node.  We can safely skip ourself
  for (node_it = mesh.nodes_begin(); node_it != node_end; ++node_it)
    {
      Node * node = *node_it;
      libmesh_assert(node);
      const processor_id_type current_pid = node->processor_id();
      if (current_pid != mesh.processor_id() &&
          current_pid != DofObject::invalid_processor_id)
        {
          libmesh_assert_less (current_pid, requested_node_ids.size());
          libmesh_assert_less (requested_node_ids[current_pid].size(),
                               ghost_nodes_from_proc[current_pid]);
          requested_node_ids[current_pid].push_back(node->id());
        }

      // Unset any previously-set node processor ids
      node->invalidate_processor_id();
    }

  // Loop over all the active elements
  MeshBase::element_iterator       elem_it  = mesh.active_elements_begin();
  const MeshBase::element_iterator elem_end = mesh.active_elements_end();

  for ( ; elem_it != elem_end; ++elem_it)
    {
      Elem * elem = *elem_it;
      libmesh_assert(elem);

      libmesh_assert_not_equal_to (elem->processor_id(), DofObject::invalid_processor_id);

      // For each node, set the processor ID to the min of
      // its current value and this Element's processor id.
      //
      // TODO: we would probably get better parallel partitioning if
      // we did something like "min for even numbered nodes, max for
      // odd numbered".  We'd need to be careful about how that would
      // affect solution ordering for I/O, though.
      for (unsigned int n=0; n<elem->n_nodes(); ++n)
        elem->node_ptr(n)->processor_id() = std::min(elem->node_ptr(n)->processor_id(),
                                                     elem->processor_id());
    }

  // And loop over the subactive elements, but don't reassign
  // nodes that are already active on another processor.
  MeshBase::element_iterator       sub_it  = mesh.subactive_elements_begin();
  const MeshBase::element_iterator sub_end = mesh.subactive_elements_end();

  for ( ; sub_it != sub_end; ++sub_it)
    {
      Elem * elem = *sub_it;
      libmesh_assert(elem);

      libmesh_assert_not_equal_to (elem->processor_id(), DofObject::invalid_processor_id);

      for (unsigned int n=0; n<elem->n_nodes(); ++n)
        if (elem->node_ptr(n)->processor_id() == DofObject::invalid_processor_id)
          elem->node_ptr(n)->processor_id() = elem->processor_id();
    }

  // Same for the inactive elements -- we will have already gotten most of these
  // nodes, *except* for the case of a parent with a subset of children which are
  // ghost elements.  In that case some of the parent nodes will not have been
  // properly handled yet
  MeshBase::element_iterator       not_it  = mesh.not_active_elements_begin();
  const MeshBase::element_iterator not_end = mesh.not_active_elements_end();

  for ( ; not_it != not_end; ++not_it)
    {
      Elem * elem = *not_it;
      libmesh_assert(elem);

      libmesh_assert_not_equal_to (elem->processor_id(), DofObject::invalid_processor_id);

      for (unsigned int n=0; n<elem->n_nodes(); ++n)
        if (elem->node_ptr(n)->processor_id() == DofObject::invalid_processor_id)
          elem->node_ptr(n)->processor_id() = elem->processor_id();
    }

  // We can't assert that all nodes are connected to elements, because
  // a DistributedMesh with NodeConstraints might have pulled in some
  // remote nodes solely for evaluating those constraints.
  // MeshTools::libmesh_assert_connected_nodes(mesh);

  // For such nodes, we'll do a sanity check later when making sure
  // that we successfully reset their processor ids to something
  // valid.

  // Next set node ids from other processors, excluding self
  for (processor_id_type p=1; p != mesh.n_processors(); ++p)
    {
      // Trade my requests with processor procup and procdown
      processor_id_type procup = cast_int<processor_id_type>
        ((mesh.processor_id() + p) % mesh.n_processors());
      processor_id_type procdown = cast_int<processor_id_type>
        ((mesh.n_processors() + mesh.processor_id() - p) %
         mesh.n_processors());
      std::vector<dof_id_type> request_to_fill;
      mesh.comm().send_receive(procup, requested_node_ids[procup],
                               procdown, request_to_fill);

      // Fill those requests in-place
      for (std::size_t i=0; i != request_to_fill.size(); ++i)
        {
          Node & node = mesh.node_ref(request_to_fill[i]);
          const processor_id_type new_pid = node.processor_id();

          // We may have an invalid processor_id() on nodes that have been
          // "detatched" from coarsened-away elements but that have not yet
          // themselves been removed.
          // libmesh_assert_not_equal_to (new_pid, DofObject::invalid_processor_id);
          // libmesh_assert_less (new_pid, mesh.n_partitions()); // this is the correct test --
          request_to_fill[i] = new_pid;           //  the number of partitions may
        }                                         //  not equal the number of processors

      // Trade back the results
      std::vector<dof_id_type> filled_request;
      mesh.comm().send_receive(procdown, request_to_fill,
                               procup,   filled_request);
      libmesh_assert_equal_to (filled_request.size(), requested_node_ids[procup].size());

      // And copy the id changes we've now been informed of
      for (std::size_t i=0; i != filled_request.size(); ++i)
        {
          Node & node = mesh.node_ref(requested_node_ids[procup][i]);

          // this is the correct test -- the number of partitions may
          // not equal the number of processors

          // But: we may have an invalid processor_id() on nodes that
          // have been "detatched" from coarsened-away elements but
          // that have not yet themselves been removed.
          // libmesh_assert_less (filled_request[i], mesh.n_partitions());

          node.processor_id(cast_int<processor_id_type>(filled_request[i]));
        }
    }

#ifdef DEBUG
  MeshTools::libmesh_assert_valid_procids<Node>(mesh);
#endif
}
コード例 #17
0
// The actual implementation of building elements.
void InfElemBuilder::build_inf_elem(const Point& origin,
                                    const bool x_sym,
                                    const bool y_sym,
                                    const bool z_sym,
                                    const bool be_verbose,
                                    std::set< std::pair<dof_id_type,
                                    unsigned int> >* inner_faces)
{
    if (be_verbose)
    {
#ifdef DEBUG
        libMesh::out << " Building Infinite Elements:" << std::endl;
        libMesh::out << "  updating element neighbor tables..." << std::endl;
#else
        libMesh::out << " Verbose mode disabled in non-debug mode." << std::endl;
#endif
    }


    // update element neighbors
    this->_mesh.find_neighbors();

    START_LOG("build_inf_elem()", "InfElemBuilder");

    // A set for storing element number, side number pairs.
    // pair.first == element number, pair.second == side number
    std::set< std::pair<dof_id_type,unsigned int> > faces;
    std::set< std::pair<dof_id_type,unsigned int> > ofaces;

    // A set for storing node numbers on the outer faces.
    std::set<dof_id_type> onodes;

    // The distance to the farthest point in the mesh from the origin
    Real max_r=0.;

    // The index of the farthest point in the mesh from the origin
    int max_r_node = -1;

#ifdef DEBUG
    if (be_verbose)
    {
        libMesh::out << "  collecting boundary sides";
        if (x_sym || y_sym || z_sym)
            libMesh::out << ", skipping sides in symmetry planes..." << std::endl;
        else
            libMesh::out << "..." << std::endl;
    }
#endif

    // Iterate through all elements and sides, collect indices of all active
    // boundary sides in the faces set. Skip sides which lie in symmetry planes.
    // Later, sides of the inner boundary will be sorted out.
    {
        MeshBase::element_iterator       it  = this->_mesh.active_elements_begin();
        const MeshBase::element_iterator end = this->_mesh.active_elements_end();

        for(; it != end; ++it)
        {
            Elem* elem = *it;

            for (unsigned int s=0; s<elem->n_neighbors(); s++)
            {
                // check if elem(e) is on the boundary
                if (elem->neighbor(s) == NULL)
                {
                    // note that it is safe to use the Elem::side() method,
                    // which gives a non-full-ordered element
                    AutoPtr<Elem> side(elem->build_side(s));

                    // bool flags for symmetry detection
                    bool sym_side=false;
                    bool on_x_sym=true;
                    bool on_y_sym=true;
                    bool on_z_sym=true;


                    // Loop over the nodes to check whether they are on the symmetry planes,
                    // and therefore sufficient to use a non-full-ordered side element
                    for(unsigned int n=0; n<side->n_nodes(); n++)
                    {
                        const Point dist_from_origin = this->_mesh.point(side->node(n)) - origin;

                        if(x_sym)
                            if( std::abs(dist_from_origin(0)) > 1.e-3 )
                                on_x_sym=false;

                        if(y_sym)
                            if( std::abs(dist_from_origin(1)) > 1.e-3 )
                                on_y_sym=false;

                        if(z_sym)
                            if( std::abs(dist_from_origin(2)) > 1.e-3 )
                                on_z_sym=false;

                        // 	      if(x_sym)
                        // 		if( std::abs(dist_from_origin(0)) > 1.e-6 )
                        // 		  on_x_sym=false;

                        // 	      if(y_sym)
                        // 		if( std::abs(dist_from_origin(1)) > 1.e-6 )
                        // 		  on_y_sym=false;

                        // 	      if(z_sym)
                        // 		if( std::abs(dist_from_origin(2)) > 1.e-6 )
                        // 		  on_z_sym=false;

                        //find the node most distant from origin

                        Real r = dist_from_origin.size();
                        if (r > max_r)
                        {
                            max_r = r;
                            max_r_node=side->node(n);
                        }

                    }

                    sym_side = (x_sym && on_x_sym) || (y_sym && on_y_sym) || (z_sym && on_z_sym);

                    if (!sym_side)
                        faces.insert( std::make_pair(elem->id(), s) );

                } // neighbor(s) == NULL
            } // sides
        } // elems
    }






    //  If a boundary side has one node on the outer boundary,
    //  all points of this side are on the outer boundary.
    //  Start with the node most distant from origin, which has
    //  to be on the outer boundary, then recursively find all
    //  sides and nodes connected to it. Found sides are moved
    //  from faces to ofaces, nodes are collected in onodes.
    //  Here, the search is done iteratively, because, depending on
    //  the mesh, a very high level of recursion might be necessary.
    if (max_r_node > 0)
        onodes.insert(max_r_node);


    {
        std::set< std::pair<dof_id_type,unsigned int> >::iterator face_it = faces.begin();
        unsigned int facesfound=0;
        while (face_it != faces.end()) {

            std::pair<dof_id_type, unsigned int> p;
            p = *face_it;

            // This has to be a full-ordered side element,
            // since we need the correct n_nodes,
            AutoPtr<Elem> side(this->_mesh.elem(p.first)->build_side(p.second));

            bool found=false;
            for(unsigned int sn=0; sn<side->n_nodes(); sn++)
                if(onodes.count(side->node(sn)))
                {
                    found=true;
                    break;
                }


            // If a new oface is found, include its nodes in onodes
            if(found)
            {
                for(unsigned int sn=0; sn<side->n_nodes(); sn++)
                    onodes.insert(side->node(sn));

                ofaces.insert(p);
                face_it++;			// iteration is done here
                faces.erase(p);

                facesfound++;
            }

            else
                face_it++;			// iteration is done here


            // If at least one new oface was found in this cycle,
            // do another search cycle.
            if(facesfound>0 && face_it == faces.end())
            {
                facesfound = 0;
                face_it    = faces.begin();
            }

        }
    }


#ifdef DEBUG
    if (be_verbose)
        libMesh::out << "  found "
                     << faces.size()
                     << " inner and "
                     << ofaces.size()
                     << " outer boundary faces"
                     << std::endl;
#endif

    // When the user provided a non-null pointer to
    // inner_faces, that implies he wants to have
    // this std::set.  For now, simply copy the data.
    if (inner_faces != NULL)
        *inner_faces = faces;

    // free memory, clear our local variable, no need
    // for it any more.
    faces.clear();


    // outer_nodes maps onodes to their duplicates
    std::map<dof_id_type, Node *> outer_nodes;

    // We may need to pick our own object ids in parallel
    dof_id_type old_max_node_id = _mesh.max_node_id();
    dof_id_type old_max_elem_id = _mesh.max_elem_id();

    // for each boundary node, add an outer_node with
    // double distance from origin.
    std::set<dof_id_type>::iterator on_it = onodes.begin();
    for( ; on_it != onodes.end(); ++on_it)
    {
        Point p = (Point(this->_mesh.point(*on_it)) * 2) - origin;
        if (_mesh.is_serial())
        {
            // Add with a default id in serial
            outer_nodes[*on_it]=this->_mesh.add_point(p);
        }
        else
        {
            // Pick a unique id in parallel
            Node &bnode = _mesh.node(*on_it);
            dof_id_type new_id = bnode.id() + old_max_node_id;
            outer_nodes[*on_it] =
                this->_mesh.add_point(p, new_id,
                                      bnode.processor_id());
        }
    }


#ifdef DEBUG
    // for verbose, remember n_elem
    dof_id_type n_conventional_elem = this->_mesh.n_elem();
#endif


    // build Elems based on boundary side type
    std::set< std::pair<dof_id_type,unsigned int> >::iterator face_it = ofaces.begin();
    for( ; face_it != ofaces.end(); ++face_it)
    {
        // Shortcut to the pair being iterated over
        std::pair<dof_id_type,unsigned int> p = *face_it;

        // build a full-ordered side element to get the base nodes
        AutoPtr<Elem> side(this->_mesh.elem(p.first)->build_side(p.second));

        // create cell depending on side type, assign nodes,
        // use braces to force scope.
        bool is_higher_order_elem = false;
        {
            Elem* el;
            switch(side->type())
            {
            // 3D infinite elements
            // TRIs
            case TRI3:
                el=new InfPrism6;
                break;

            case TRI6:
                el=new InfPrism12;
                is_higher_order_elem = true;
                break;

            // QUADs
            case QUAD4:
                el=new InfHex8;
                break;

            case QUAD8:
                el=new InfHex16;
                is_higher_order_elem = true;
                break;

            case QUAD9:
                el=new InfHex18;

                // the method of assigning nodes (which follows below)
                // omits in the case of QUAD9 the bubble node; therefore
                // we assign these first by hand here.
                el->set_node(16) = side->get_node(8);
                el->set_node(17) = outer_nodes[side->node(8)];
                is_higher_order_elem=true;
                break;

            // 2D infinite elements
            case EDGE2:
                el=new InfQuad4;
                break;

            case EDGE3:
                el=new InfQuad6;
                el->set_node(4) = side->get_node(2);
                break;

            // 1D infinite elements not supported
            default:
                libMesh::out << "InfElemBuilder::build_inf_elem(Point, bool, bool, bool, bool): "
                             << "invalid face element "
                             << std::endl;
                continue;
            }

            // In parallel, assign unique ids to the new element
            if (!_mesh.is_serial())
            {
                Elem *belem = _mesh.elem(p.first);
                el->processor_id() = belem->processor_id();
                // We'd better not have elements with more than 6 sides
                el->set_id (belem->id() * 6 + p.second + old_max_elem_id);
            }

            // assign vertices to the new infinite element
            const unsigned int n_base_vertices = side->n_vertices();
            for(unsigned int i=0; i<n_base_vertices; i++)
            {
                el->set_node(i                ) = side->get_node(i);
                el->set_node(i+n_base_vertices) = outer_nodes[side->node(i)];
            }


            // when this is a higher order element,
            // assign also the nodes in between
            if (is_higher_order_elem)
            {
                // n_safe_base_nodes is the number of nodes in \p side
                // that may be safely assigned using below for loop.
                // Actually, n_safe_base_nodes is _identical_ with el->n_vertices(),
                // since for QUAD9, the 9th node was already assigned above
                const unsigned int n_safe_base_nodes   = el->n_vertices();

                for(unsigned int i=n_base_vertices; i<n_safe_base_nodes; i++)
                {
                    el->set_node(i+n_base_vertices)   = side->get_node(i);
                    el->set_node(i+n_safe_base_nodes) = outer_nodes[side->node(i)];
                }
            }


            // add infinite element to mesh
            this->_mesh.add_elem(el);
        } // el goes out of scope
    } // for


#ifdef DEBUG
    _mesh.libmesh_assert_valid_parallel_ids();

    if (be_verbose)
        libMesh::out << "  added "
                     << this->_mesh.n_elem() - n_conventional_elem
                     << " infinite elements and "
                     << onodes.size()
                     << " nodes to the mesh"
                     << std::endl
                     << std::endl;
#endif

    STOP_LOG("build_inf_elem()", "InfElemBuilder");
}