void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldLCDTextGeoProc& dfTexEffect = args.fGP.cast<GrDistanceFieldLCDTextGeoProc>(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(dfTexEffect); GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; // setup pass through color if (!dfTexEffect.colorIgnored()) { varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor); } // Setup position this->setupPosition(vertBuilder, uniformHandler, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(), &fViewMatrixUniform); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName, args.fFPCoordTransformHandler); // set up varyings bool isUniformScale = (dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) == kUniformScale_DistanceFieldEffectMask; bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag); bool isGammaCorrect = SkToBool(dfTexEffect.getFlags() & kGammaCorrect_DistanceFieldEffectFlag); GrGLSLVertToFrag recipScale(kFloat_GrSLType); GrGLSLVertToFrag uv(kVec2f_GrSLType); varyingHandler->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision); vertBuilder->codeAppendf("%s = %s;", uv.vsOut(), dfTexEffect.inTextureCoords()->fName); // compute numbers to be hardcoded to convert texture coordinates from float to int SkASSERT(dfTexEffect.numTextures() == 1); GrTexture* atlas = dfTexEffect.textureAccess(0).getTexture(); SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height())); GrGLSLVertToFrag st(kVec2f_GrSLType); varyingHandler->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision); vertBuilder->codeAppendf("%s = vec2(%d, %d) * %s;", st.vsOut(), atlas->width(), atlas->height(), dfTexEffect.inTextureCoords()->fName); // add frag shader code SkAssertResult(fragBuilder->enableFeature( GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); // create LCD offset adjusted by inverse of transform // Use highp to work around aliasing issues fragBuilder->appendPrecisionModifier(kHigh_GrSLPrecision); fragBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn()); fragBuilder->appendPrecisionModifier(kHigh_GrSLPrecision); SkScalar lcdDelta = 1.0f / (3.0f * atlas->width()); if (dfTexEffect.getFlags() & kBGR_DistanceFieldEffectFlag) { fragBuilder->codeAppendf("float delta = -%.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta); } else { fragBuilder->codeAppendf("float delta = %.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta); } if (isUniformScale) { #ifdef SK_VULKAN fragBuilder->codeAppendf("float st_grad_len = abs(dFdx(%s.x));", st.fsIn()); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppendf("float st_grad_len = abs(dFdy(%s.y));", st.fsIn()); #endif fragBuilder->codeAppend("vec2 offset = vec2(st_grad_len*delta, 0.0);"); } else if (isSimilarity) { // For a similarity matrix with rotation, the gradient will not be aligned // with the texel coordinate axes, so we need to calculate it. #ifdef SK_VULKAN fragBuilder->codeAppendf("vec2 st_grad = dFdx(%s);", st.fsIn()); fragBuilder->codeAppend("vec2 offset = delta*st_grad;"); #else // We use dFdy because of a Mali 400 bug, and rotate -90 degrees to // get the gradient in the x direction. fragBuilder->codeAppendf("vec2 st_grad = dFdy(%s);", st.fsIn()); fragBuilder->codeAppend("vec2 offset = delta*vec2(st_grad.y, -st_grad.x);"); #endif fragBuilder->codeAppend("float st_grad_len = length(st_grad);"); } else { fragBuilder->codeAppendf("vec2 st = %s;\n", st.fsIn()); fragBuilder->codeAppend("vec2 Jdx = dFdx(st);"); fragBuilder->codeAppend("vec2 Jdy = dFdy(st);"); fragBuilder->codeAppend("vec2 offset = delta*Jdx;"); } // green is distance to uv center fragBuilder->codeAppend("\tvec4 texColor = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "uv", kVec2f_GrSLType); fragBuilder->codeAppend(";\n"); fragBuilder->codeAppend("\tvec3 distance;\n"); fragBuilder->codeAppend("\tdistance.y = texColor.r;\n"); // red is distance to left offset fragBuilder->codeAppend("\tvec2 uv_adjusted = uv - offset;\n"); fragBuilder->codeAppend("\ttexColor = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "uv_adjusted", kVec2f_GrSLType); fragBuilder->codeAppend(";\n"); fragBuilder->codeAppend("\tdistance.x = texColor.r;\n"); // blue is distance to right offset fragBuilder->codeAppend("\tuv_adjusted = uv + offset;\n"); fragBuilder->codeAppend("\ttexColor = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "uv_adjusted", kVec2f_GrSLType); fragBuilder->codeAppend(";\n"); fragBuilder->codeAppend("\tdistance.z = texColor.r;\n"); fragBuilder->codeAppend("\tdistance = " "vec3(" SK_DistanceFieldMultiplier ")*(distance - vec3(" SK_DistanceFieldThreshold"));"); // adjust width based on gamma const char* distanceAdjustUniName = nullptr; fDistanceAdjustUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec3f_GrSLType, kDefault_GrSLPrecision, "DistanceAdjust", &distanceAdjustUniName); fragBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName); // To be strictly correct, we should compute the anti-aliasing factor separately // for each color component. However, this is only important when using perspective // transformations, and even then using a single factor seems like a reasonable // trade-off between quality and speed. fragBuilder->codeAppend("float afwidth;"); if (isSimilarity) { // For similarity transform (uniform scale-only is a subset of this), we adjust for the // effect of the transformation on the distance by using the length of the gradient of // the texture coordinates. We use st coordinates to ensure we're mapping 1:1 from texel // space to pixel space. // this gives us a smooth step across approximately one fragment fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*st_grad_len;"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance.r), dFdy(distance.r));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);"); fragBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);"); fragBuilder->codeAppend("} else {"); fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fragBuilder->codeAppend("}"); fragBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } // The smoothstep falloff compensates for the non-linear sRGB response curve. If we are // doing gamma-correct rendering (to an sRGB or F16 buffer), then we actually want distance // mapped linearly to coverage, so use a linear step: if (isGammaCorrect) { fragBuilder->codeAppend("vec4 val = " "vec4(clamp(distance + vec3(afwidth) / vec3(2.0 * afwidth), 0.0, 1.0), 1.0);"); } else { fragBuilder->codeAppend( "vec4 val = vec4(smoothstep(vec3(-afwidth), vec3(afwidth), distance), 1.0);"); } // set alpha to be max of rgb coverage fragBuilder->codeAppend("val.a = max(max(val.r, val.g), val.b);"); fragBuilder->codeAppendf("%s = val;", args.fOutputCoverage); }
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldA8TextGeoProc& dfTexEffect = args.fGP.cast<GrDistanceFieldA8TextGeoProc>(); GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; SkAssertResult(fragBuilder->enableFeature( GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(dfTexEffect); #ifdef SK_GAMMA_APPLY_TO_A8 // adjust based on gamma const char* distanceAdjustUniName = nullptr; // width, height, 1/(3*width) fDistanceAdjustUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, "DistanceAdjust", &distanceAdjustUniName); #endif // Setup pass through color if (!dfTexEffect.colorIgnored()) { varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor); } // Setup position this->setupPosition(vertBuilder, uniformHandler, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(), &fViewMatrixUniform); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName, args.fFPCoordTransformHandler); // add varyings GrGLSLVertToFrag recipScale(kFloat_GrSLType); GrGLSLVertToFrag uv(kVec2f_GrSLType); bool isUniformScale = (dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) == kUniformScale_DistanceFieldEffectMask; bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag); bool isGammaCorrect = SkToBool(dfTexEffect.getFlags() & kGammaCorrect_DistanceFieldEffectFlag); varyingHandler->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision); vertBuilder->codeAppendf("%s = %s;", uv.vsOut(), dfTexEffect.inTextureCoords()->fName); // compute numbers to be hardcoded to convert texture coordinates from float to int SkASSERT(dfTexEffect.numTextures() == 1); GrTexture* atlas = dfTexEffect.textureAccess(0).getTexture(); SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height())); GrGLSLVertToFrag st(kVec2f_GrSLType); varyingHandler->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision); vertBuilder->codeAppendf("%s = vec2(%d, %d) * %s;", st.vsOut(), atlas->width(), atlas->height(), dfTexEffect.inTextureCoords()->fName); // Use highp to work around aliasing issues fragBuilder->appendPrecisionModifier(kHigh_GrSLPrecision); fragBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn()); fragBuilder->codeAppend("\tfloat texColor = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "uv", kVec2f_GrSLType); fragBuilder->codeAppend(".r;\n"); fragBuilder->codeAppend("\tfloat distance = " SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");"); #ifdef SK_GAMMA_APPLY_TO_A8 // adjust width based on gamma fragBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName); #endif fragBuilder->codeAppend("float afwidth;"); if (isUniformScale) { // For uniform scale, we adjust for the effect of the transformation on the distance // by using the length of the gradient of the t coordinate in the y direction. // We use st coordinates to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment #ifdef SK_VULKAN fragBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdx(%s.x));", st.fsIn()); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(%s.y));", st.fsIn()); #endif } else if (isSimilarity) { // For similarity transform, we adjust the effect of the transformation on the distance // by using the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. // We use the y gradient because there is a bug in the Mali 400 in the x direction. // this gives us a smooth step across approximately one fragment #ifdef SK_VULKAN fragBuilder->codeAppendf("float st_grad_len = length(dFdx(%s));", st.fsIn()); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppendf("float st_grad_len = length(dFdy(%s));", st.fsIn()); #endif fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*st_grad_len);"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);"); fragBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);"); fragBuilder->codeAppend("} else {"); fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fragBuilder->codeAppend("}"); fragBuilder->codeAppendf("vec2 Jdx = dFdx(%s);", st.fsIn()); fragBuilder->codeAppendf("vec2 Jdy = dFdy(%s);", st.fsIn()); fragBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } // The smoothstep falloff compensates for the non-linear sRGB response curve. If we are // doing gamma-correct rendering (to an sRGB or F16 buffer), then we actually want distance // mapped linearly to coverage, so use a linear step: if (isGammaCorrect) { fragBuilder->codeAppend( "float val = clamp(distance + afwidth / (2.0 * afwidth), 0.0, 1.0);"); } else { fragBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);"); } fragBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage); }