コード例 #1
0
ファイル: epoch_io.cpp プロジェクト: Jerdak/meshlab
void EpochModel::depthFilter(FloatImage &depthImgf, FloatImage &countImgf, float depthJumpThr, 
														 bool dilation, int dilationNumPasses, int dilationWinsize,
														 bool erosion, int erosionNumPasses, int erosionWinsize)
{
	FloatImage depth;
	FloatImage depth2;
	int w = depthImgf.w;
	int h = depthImgf.h;
	
	depth=depthImgf;

	if (dilation)
	{
		for (int k = 0; k < dilationNumPasses; k++)
		{
			depth.Dilate(depth2, dilationWinsize / 2);
			depth=depth2;
		}
	}

	if (erosion)
	{
		for (int k = 0; k < erosionNumPasses; k++)
		{
			depth.Erode(depth2, erosionWinsize / 2);
			depth=depth2;
		}
	}

  Histogramf HH;
  HH.Clear();
  HH.SetRange(0,depthImgf.MaxVal()-depthImgf.MinVal(),10000);
  for(int i=1; i < static_cast<int>(depthImgf.v.size()); ++i)
    HH.Add(fabs(depthImgf.v[i]-depth.v[i-1]));

  if(logFP) fprintf(logFP,"**** Depth histogram 2 Min %f Max %f Avg %f Percentiles ((10)%f (25)%f (50)%f (75)%f (90)%f)\n",HH.MinV(),HH.MaxV(),HH.Avg(),
        HH.Percentile(.1),HH.Percentile(.25),HH.Percentile(.5),HH.Percentile(.75),HH.Percentile(.9));

  int deletedCnt=0;
  
  depthJumpThr = static_cast<float>(HH.Percentile(0.8));
	for (int y = 0; y < h; y++)
		for (int x = 0; x < w; x++)
		{
				if ((depthImgf.Val(x, y) - depth.Val(x, y)) / depthImgf.Val(x, y) > 0.6)
        {
					countImgf.Val(x, y) = 0.0f;
          ++deletedCnt;
        }
		}

	countImgf.convertToQImage().save("tmp_filteredcount.jpg","jpg");
  
  if(logFP) fprintf(logFP,"**** depthFilter: deleted %i on %i\n",deletedCnt,w*h);

}
コード例 #2
0
bool ExtraMeshColorizePlugin::applyFilter(QAction *filter, MeshDocument &md, RichParameterSet & par, vcg::CallBackPos *cb){
 MeshModel &m=*(md.mm());
 switch(ID(filter)) {
  case CP_SATURATE_QUALITY:{
     m.updateDataMask(MeshModel::MM_VERTFACETOPO);
     tri::UpdateQuality<CMeshO>::VertexSaturate(m.cm, par.getFloat("gradientThr"));
     if(par.getBool("updateColor"))
     {
       Histogramf H;
       tri::Stat<CMeshO>::ComputePerVertexQualityHistogram(m.cm,H);
       m.updateDataMask(MeshModel::MM_VERTCOLOR);
       tri::UpdateColor<CMeshO>::VertexQualityRamp(m.cm,H.Percentile(0.1f),H.Percentile(0.9f));
     }
     Log("Saturated ");
   }
break;
  case CP_MAP_VQUALITY_INTO_COLOR:
     m.updateDataMask(MeshModel::MM_VERTCOLOR);
  case CP_CLAMP_QUALITY:
      {
      float RangeMin = par.getFloat("minVal");	
      float RangeMax = par.getFloat("maxVal");		
			bool usePerc = par.getDynamicFloat("perc")>0;
			
			Histogramf H;
			tri::Stat<CMeshO>::ComputePerVertexQualityHistogram(m.cm,H);

			float PercLo = H.Percentile(par.getDynamicFloat("perc")/100.f);
			float PercHi = H.Percentile(1.0-par.getDynamicFloat("perc")/100.f);
			
			if(par.getBool("zeroSym"))
				{
					RangeMin = min(RangeMin, -math::Abs(RangeMax));
					RangeMax = max(math::Abs(RangeMin), RangeMax);
					PercLo = min(PercLo, -math::Abs(PercHi));
					PercHi = max(math::Abs(PercLo), PercHi);
				}

      if(usePerc)
      {
        if(ID(filter)==CP_CLAMP_QUALITY) tri::UpdateQuality<CMeshO>::VertexClamp(m.cm,PercLo,PercHi);
                                    else tri::UpdateColor<CMeshO>::VertexQualityRamp(m.cm,PercLo,PercHi);
        Log("Quality Range: %f %f; Used (%f %f) percentile (%f %f) ",H.MinV(),H.MaxV(),PercLo,PercHi,par.getDynamicFloat("perc"),100-par.getDynamicFloat("perc"));
      } else {
        if(ID(filter)==CP_CLAMP_QUALITY) tri::UpdateQuality<CMeshO>::VertexClamp(m.cm,RangeMin,RangeMax);
                                    else tri::UpdateColor<CMeshO>::VertexQualityRamp(m.cm,RangeMin,RangeMax);
        Log("Quality Range: %f %f; Used (%f %f)",H.MinV(),H.MaxV(),RangeMin,RangeMax);
      }
      break;
    }
   case CP_MAP_FQUALITY_INTO_COLOR: {
       m.updateDataMask(MeshModel::MM_FACECOLOR);
       float RangeMin = par.getFloat("minVal");
       float RangeMax = par.getFloat("maxVal");
       float perc = par.getDynamicFloat("perc");

       Histogramf H;
       tri::Stat<CMeshO>::ComputePerFaceQualityHistogram(m.cm,H);
       float PercLo = H.Percentile(perc/100.f);
       float PercHi = H.Percentile(1.0-perc/100.f);

       // Make the range and percentile symmetric w.r.t. zero, so that
       // the value zero is always colored in yellow
       if(par.getBool("zeroSym")){
         RangeMin = min(RangeMin, -math::Abs(RangeMax));
         RangeMax = max(math::Abs(RangeMin), RangeMax);
         PercLo = min(PercLo, -math::Abs(PercHi));
         PercHi = max(math::Abs(PercLo), PercHi);
       }

       tri::UpdateColor<CMeshO>::FaceQualityRamp(m.cm,PercLo,PercHi);
       Log("Quality Range: %f %f; Used (%f %f) percentile (%f %f) ",
           H.MinV(), H.MaxV(), PercLo, PercHi, perc, 100-perc);
       break;
   }

  case CP_DISCRETE_CURVATURE:
    {
      m.updateDataMask(MeshModel::MM_FACEFACETOPO | MeshModel::MM_VERTCURV);
      m.updateDataMask(MeshModel::MM_VERTCOLOR | MeshModel::MM_VERTQUALITY);
      tri::UpdateFlags<CMeshO>::FaceBorderFromFF(m.cm);

      if ( tri::Clean<CMeshO>::CountNonManifoldEdgeFF(m.cm) > 0) {
				errorMessage = "Mesh has some not 2-manifold faces, Curvature computation requires manifoldness"; // text
				return false; // can't continue, mesh can't be processed
			}
			
			int delvert=tri::Clean<CMeshO>::RemoveUnreferencedVertex(m.cm);
			if(delvert) Log("Pre-Curvature Cleaning: Removed %d unreferenced vertices",delvert);
			tri::Allocator<CMeshO>::CompactVertexVector(m.cm);
			tri::UpdateCurvature<CMeshO>::MeanAndGaussian(m.cm);
      int curvType = par.getEnum("CurvatureType");
			
			switch(curvType){ 
          case 0: tri::UpdateQuality<CMeshO>::VertexFromMeanCurvature(m.cm);        Log( "Computed Mean Curvature");      break;
			    case 1: tri::UpdateQuality<CMeshO>::VertexFromGaussianCurvature(m.cm);    Log( "Computed Gaussian Curvature"); break;
          case 2: tri::UpdateQuality<CMeshO>::VertexFromRMSCurvature(m.cm);         Log( "Computed RMS Curvature"); break;
          case 3: tri::UpdateQuality<CMeshO>::VertexFromAbsoluteCurvature(m.cm);    Log( "Computed ABS Curvature"); break;
					default : assert(0);
      }      
      
      Histogramf H;
      tri::Stat<CMeshO>::ComputePerVertexQualityHistogram(m.cm,H);
      tri::UpdateColor<CMeshO>::VertexQualityRamp(m.cm,H.Percentile(0.1f),H.Percentile(0.9f));
      Log( "Curvature Range: %f %f (Used 90 percentile %f %f) ",H.MinV(),H.MaxV(),H.Percentile(0.1f),H.Percentile(0.9f));
    break;
    }  
   case CP_TRIANGLE_QUALITY:
   {
     m.updateDataMask(MeshModel::MM_FACECOLOR | MeshModel::MM_FACEQUALITY);
     CMeshO::FaceIterator fi;
     Distribution<float> distrib;
     float minV = 0;
     float maxV = 1.0;
     int metric = par.getEnum("Metric");
     if(metric ==4 || metric ==5 )
     {
       if(!m.hasDataMask(MeshModel::MM_VERTTEXCOORD) && !m.hasDataMask(MeshModel::MM_WEDGTEXCOORD))
       {
         this->errorMessage = "This metric need Texture Coordinate";
         return false;
       }
     }
     switch(metric){

       case 0: { //area / max edge
         minV = 0;
         maxV = sqrt(3.0f)/2.0f;
         for(fi=m.cm.face.begin();fi!=m.cm.face.end();++fi) if(!(*fi).IsD())
             (*fi).Q() = vcg::Quality((*fi).P(0), (*fi).P(1),(*fi).P(2));
       } break;

       case 1: { //inradius / circumradius
         for(fi=m.cm.face.begin();fi!=m.cm.face.end();++fi) if(!(*fi).IsD())
             (*fi).Q() = vcg::QualityRadii((*fi).P(0), (*fi).P(1), (*fi).P(2));
       } break;

       case 2: { //mean ratio
         for(fi=m.cm.face.begin();fi!=m.cm.face.end();++fi) if(!(*fi).IsD())
             (*fi).Q() = vcg::QualityMeanRatio((*fi).P(0), (*fi).P(1), (*fi).P(2));
       } break;

       case 3: { // AREA
         for(fi=m.cm.face.begin();fi!=m.cm.face.end();++fi) if(!(*fi).IsD())
           (*fi).Q() = vcg::DoubleArea((*fi))*0.5f;
         tri::Stat<CMeshO>::ComputePerFaceQualityMinMax(m.cm,minV,maxV);
       } break;

       case 4: { //TEXTURE Angle Distortion
         if(m.hasDataMask(MeshModel::MM_WEDGTEXCOORD))
         {
           for(fi=m.cm.face.begin();fi!=m.cm.face.end();++fi) if(!(*fi).IsD())
             (*fi).Q() = Distortion<CMeshO,true>::AngleDistortion(&*fi);
         } else {
           for(fi=m.cm.face.begin();fi!=m.cm.face.end();++fi) if(!(*fi).IsD())
             (*fi).Q() = Distortion<CMeshO,false>::AngleDistortion(&*fi);
         }
         tri::Stat<CMeshO>::ComputePerFaceQualityDistribution(m.cm,distrib);
         minV = distrib.Percentile(0.05);
         maxV = distrib.Percentile(0.95);
       } break;

       case 5: { //TEXTURE Area Distortion
         float areaScaleVal, edgeScaleVal;
         if(m.hasDataMask(MeshModel::MM_WEDGTEXCOORD))
         {
           Distortion<CMeshO,true>::MeshScalingFactor(m.cm, areaScaleVal,edgeScaleVal);
           for(fi=m.cm.face.begin();fi!=m.cm.face.end();++fi) if(!(*fi).IsD())
             (*fi).Q() = Distortion<CMeshO,true>::AreaDistortion(&*fi,areaScaleVal);
         } else {
           Distortion<CMeshO,false>::MeshScalingFactor(m.cm, areaScaleVal,edgeScaleVal);
           for(fi=m.cm.face.begin();fi!=m.cm.face.end();++fi) if(!(*fi).IsD())
             (*fi).Q() = Distortion<CMeshO,false>::AreaDistortion(&*fi,areaScaleVal);

         }
         tri::Stat<CMeshO>::ComputePerFaceQualityDistribution(m.cm,distrib);
         minV = distrib.Percentile(0.05);
         maxV = distrib.Percentile(0.95);
       } break;

       default: assert(0);
     }
     tri::UpdateColor<CMeshO>::FaceQualityRamp(m.cm,minV,maxV,false);
     break;
   }


  case CP_RANDOM_CONNECTED_COMPONENT:
   m.updateDataMask(MeshModel::MM_FACEFACETOPO);
   m.updateDataMask(MeshModel::MM_FACEMARK | MeshModel::MM_FACECOLOR);
   vcg::tri::UpdateColor<CMeshO>::FaceRandomConnectedComponent(m.cm);
   break;

 case CP_RANDOM_FACE:
     m.updateDataMask(MeshModel::MM_FACEFACETOPO);
     m.updateDataMask(MeshModel::MM_FACEMARK | MeshModel::MM_FACECOLOR);
    vcg::tri::UpdateColor<CMeshO>::MultiFaceRandom(m.cm);
    break;

  case CP_VERTEX_SMOOTH:
		{
		int iteration = par.getInt("iteration");
		tri::Smooth<CMeshO>::VertexColorLaplacian(m.cm,iteration,false,cb);
		}
		break;
  case CP_FACE_SMOOTH:
		{
    m.updateDataMask(MeshModel::MM_FACEFACETOPO);
		int iteration = par.getInt("iteration");
		tri::Smooth<CMeshO>::FaceColorLaplacian(m.cm,iteration,false,cb);
		}
		break;
  case CP_FACE_TO_VERTEX:
     m.updateDataMask(MeshModel::MM_VERTCOLOR);
     tri::UpdateColor<CMeshO>::VertexFromFace(m.cm);
		break;
	 case CP_VERTEX_TO_FACE:
     m.updateDataMask(MeshModel::MM_FACECOLOR);
     tri::UpdateColor<CMeshO>::FaceFromVertex(m.cm);
		 break;
  case CP_TEXTURE_TO_VERTEX:
		{
      m.updateDataMask(MeshModel::MM_VERTCOLOR);
      if(!HasPerWedgeTexCoord(m.cm)) break;
			CMeshO::FaceIterator fi; 
			QImage tex(m.cm.textures[0].c_str());
			for(fi=m.cm.face.begin();fi!=m.cm.face.end();++fi) if(!(*fi).IsD()) 
			{
				for (int i=0; i<3; i++)
				{
          // note the trick for getting only the fractional part of the uv with the correct wrapping (e.g. 1.5 -> 0.5 and -0.3 -> 0.7)
          vcg::Point2f newcoord((*fi).WT(i).P().X()-floor((*fi).WT(i).P().X()),(*fi).WT(i).P().Y()-floor((*fi).WT(i).P().Y()));
          QRgb val = tex.pixel(newcoord[0]*tex.width(),(1-newcoord[1])*tex.height()-1);
					(*fi).V(i)->C().SetRGB(qRed(val),qGreen(val),qBlue(val));
				}
			}
	    }
		
		break;
 }
	return true;
}
コード例 #3
0
ファイル: epoch_io.cpp プロジェクト: Jerdak/meshlab
float EpochModel::ComputeDepthJumpThr(FloatImage &depthImgf, float percentile)
{
  Histogramf HH;
  HH.Clear();
  HH.SetRange(0,depthImgf.MaxVal()-depthImgf.MinVal(),10000);
  for(unsigned int i=1; i < static_cast<unsigned int>(depthImgf.v.size()); ++i)
    HH.Add(fabs(depthImgf.v[i]-depthImgf.v[i-1]));

  if(logFP) fprintf(logFP,"**** Depth histogram Min %f Max %f Avg %f Percentiles ((10)%f (25)%f (50)%f (75)%f (90)%f)\n",HH.MinV(),HH.MaxV(),HH.Avg(),
        HH.Percentile(.1),HH.Percentile(.25),HH.Percentile(.5),HH.Percentile(.75),HH.Percentile(.9));
  
  return HH.Percentile(percentile);
}