void EpochModel::depthFilter(FloatImage &depthImgf, FloatImage &countImgf, float depthJumpThr, bool dilation, int dilationNumPasses, int dilationWinsize, bool erosion, int erosionNumPasses, int erosionWinsize) { FloatImage depth; FloatImage depth2; int w = depthImgf.w; int h = depthImgf.h; depth=depthImgf; if (dilation) { for (int k = 0; k < dilationNumPasses; k++) { depth.Dilate(depth2, dilationWinsize / 2); depth=depth2; } } if (erosion) { for (int k = 0; k < erosionNumPasses; k++) { depth.Erode(depth2, erosionWinsize / 2); depth=depth2; } } Histogramf HH; HH.Clear(); HH.SetRange(0,depthImgf.MaxVal()-depthImgf.MinVal(),10000); for(int i=1; i < static_cast<int>(depthImgf.v.size()); ++i) HH.Add(fabs(depthImgf.v[i]-depth.v[i-1])); if(logFP) fprintf(logFP,"**** Depth histogram 2 Min %f Max %f Avg %f Percentiles ((10)%f (25)%f (50)%f (75)%f (90)%f)\n",HH.MinV(),HH.MaxV(),HH.Avg(), HH.Percentile(.1),HH.Percentile(.25),HH.Percentile(.5),HH.Percentile(.75),HH.Percentile(.9)); int deletedCnt=0; depthJumpThr = static_cast<float>(HH.Percentile(0.8)); for (int y = 0; y < h; y++) for (int x = 0; x < w; x++) { if ((depthImgf.Val(x, y) - depth.Val(x, y)) / depthImgf.Val(x, y) > 0.6) { countImgf.Val(x, y) = 0.0f; ++deletedCnt; } } countImgf.convertToQImage().save("tmp_filteredcount.jpg","jpg"); if(logFP) fprintf(logFP,"**** depthFilter: deleted %i on %i\n",deletedCnt,w*h); }
float Arc3DModel::ComputeDepthJumpThr(FloatImage &depthImgf, float percentile) { Histogramf HH; HH.Clear(); HH.SetRange(0,depthImgf.MaxVal()-depthImgf.MinVal(),10000); for(unsigned int i=1; i < static_cast<unsigned int>(depthImgf.v.size()); ++i) HH.Add(fabs(depthImgf.v[i]-depthImgf.v[i-1])); return HH.Percentile(percentile); }
float EpochModel::ComputeDepthJumpThr(FloatImage &depthImgf, float percentile) { Histogramf HH; HH.Clear(); HH.SetRange(0,depthImgf.MaxVal()-depthImgf.MinVal(),10000); for(unsigned int i=1; i < static_cast<unsigned int>(depthImgf.v.size()); ++i) HH.Add(fabs(depthImgf.v[i]-depthImgf.v[i-1])); if(logFP) fprintf(logFP,"**** Depth histogram Min %f Max %f Avg %f Percentiles ((10)%f (25)%f (50)%f (75)%f (90)%f)\n",HH.MinV(),HH.MaxV(),HH.Avg(), HH.Percentile(.1),HH.Percentile(.25),HH.Percentile(.5),HH.Percentile(.75),HH.Percentile(.9)); return HH.Percentile(percentile); }
void Arc3DModel::depthFilter(FloatImage &depthImgf, FloatImage &countImgf, float depthJumpThr, bool dilation, int dilationNumPasses, int dilationWinsize, bool erosion, int erosionNumPasses, int erosionWinsize) { FloatImage depth; FloatImage depth2; int w = depthImgf.w; int h = depthImgf.h; depth=depthImgf; if (dilation) { for (int k = 0; k < dilationNumPasses; k++) { depth.Dilate(depth2, dilationWinsize / 2); depth=depth2; } } if (erosion) { for (int k = 0; k < erosionNumPasses; k++) { depth.Erode(depth2, erosionWinsize / 2); depth=depth2; } } Histogramf HH; HH.Clear(); HH.SetRange(0,depthImgf.MaxVal()-depthImgf.MinVal(),10000); for(int i=1; i < static_cast<int>(depthImgf.v.size()); ++i) HH.Add(fabs(depthImgf.v[i]-depth.v[i-1])); int deletedCnt=0; depthJumpThr = HH.Percentile(0.8f); for (int y = 0; y < h; y++) for (int x = 0; x < w; x++) { if ((depthImgf.Val(x, y) - depth.Val(x, y)) / depthImgf.Val(x, y) > 0.6) { countImgf.Val(x, y) = 0.0f; ++deletedCnt; } } countImgf.convertToQImage().save("tmp_filteredcount.jpg","jpg"); }
// Core Function doing the actual mesh processing. bool FilterMeasurePlugin::applyFilter( const QString& filterName,MeshDocument& md,EnvWrap& env, vcg::CallBackPos * /*cb*/ ) { if (filterName == "Compute Topological Measures") { CMeshO &m=md.mm()->cm; tri::Allocator<CMeshO>::CompactFaceVector(m); tri::Allocator<CMeshO>::CompactVertexVector(m); md.mm()->updateDataMask(MeshModel::MM_FACEFACETOPO); md.mm()->updateDataMask(MeshModel::MM_VERTFACETOPO); int edgeManifNum = tri::Clean<CMeshO>::CountNonManifoldEdgeFF(m,true); int faceEdgeManif = tri::UpdateSelection<CMeshO>::FaceCount(m); tri::UpdateSelection<CMeshO>::VertexClear(m); tri::UpdateSelection<CMeshO>::FaceClear(m); int vertManifNum = tri::Clean<CMeshO>::CountNonManifoldVertexFF(m,true); tri::UpdateSelection<CMeshO>::FaceFromVertexLoose(m); int faceVertManif = tri::UpdateSelection<CMeshO>::FaceCount(m); int edgeNum=0,borderNum=0; tri::Clean<CMeshO>::CountEdges(m, edgeNum, borderNum); int holeNum; Log("V: %6i E: %6i F:%6i",m.vn,edgeNum,m.fn); int unrefVertNum = tri::Clean<CMeshO>::CountUnreferencedVertex(m); Log("Unreferenced Vertices %i",unrefVertNum); Log("Boundary Edges %i",borderNum); int connectedComponentsNum = tri::Clean<CMeshO>::CountConnectedComponents(m); Log("Mesh is composed by %i connected component(s)\n",connectedComponentsNum); if(edgeManifNum==0 && vertManifNum==0) { Log("Mesh is two-manifold "); } if(edgeManifNum!=0) Log("Mesh has %i non two manifold edges and %i faces are incident on these edges\n",edgeManifNum,faceEdgeManif); if(vertManifNum!=0) Log("Mesh has %i non two manifold vertexes and %i faces are incident on these vertices\n",vertManifNum,faceVertManif); // For Manifold meshes compute some other stuff if(vertManifNum==0 && edgeManifNum==0) { holeNum = tri::Clean<CMeshO>::CountHoles(m); Log("Mesh has %i holes",holeNum); int genus = tri::Clean<CMeshO>::MeshGenus(m.vn-unrefVertNum, edgeNum, m.fn, holeNum, connectedComponentsNum); Log("Genus is %i",genus); } else { Log("Mesh has a undefined number of holes (non 2-manifold mesh)"); Log("Genus is undefined (non 2-manifold mesh)"); } return true; } /************************************************************/ if (filterName == "Compute Topological Measures for Quad Meshes") { CMeshO &m=md.mm()->cm; md.mm()->updateDataMask(MeshModel::MM_FACEFACETOPO); md.mm()->updateDataMask(MeshModel::MM_FACEQUALITY); if (! tri::Clean<CMeshO>::IsFFAdjacencyConsistent(m)) { this->errorMessage = "Error: mesh has a not consistent FF adjacency"; return false; } if (! tri::Clean<CMeshO>::HasConsistentPerFaceFauxFlag(m)) { this->errorMessage = "QuadMesh problem: mesh has a not consistent FauxEdge tagging"; return false; } int nQuads = tri::Clean<CMeshO>::CountBitQuads(m); int nTris = tri::Clean<CMeshO>::CountBitTris(m); int nPolys = tri::Clean<CMeshO>::CountBitPolygons(m); int nLargePolys = tri::Clean<CMeshO>::CountBitLargePolygons(m); if(nLargePolys>0) nQuads=0; Log("Mesh has %8i triangles \n",nTris); Log(" %8i quads \n",nQuads); Log(" %8i polygons \n",nPolys); Log(" %8i large polygons (with internal faux vertexes)",nLargePolys); if (! tri::Clean<CMeshO>::IsBitTriQuadOnly(m)) { this->errorMessage = "QuadMesh problem: the mesh is not TriQuadOnly"; return false; } // // i // // // i+1 i+2 tri::UpdateFlags<CMeshO>::FaceClearV(m); Distribution<float> AngleD; // angle distribution Distribution<float> RatioD; // ratio distribution tri::UpdateFlags<CMeshO>::FaceClearV(m); for(CMeshO::FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi) if(!fi->IsV()) { fi->SetV(); // Collect the vertices Point3f qv[4]; bool quadFound=false; for(int i=0; i<3; ++i) { if((*fi).IsF(i) && !(*fi).IsF((i+1)%3) && !(*fi).IsF((i+2)%3) ) { qv[0] = fi->V0(i)->P(), qv[1] = fi->FFp(i)->V2( fi->FFi(i) )->P(), qv[2] = fi->V1(i)->P(), qv[3] = fi->V2(i)->P(); quadFound=true; } } assert(quadFound); for(int i=0; i<4; ++i) AngleD.Add(fabs(90-math::ToDeg(Angle(qv[(i+0)%4] - qv[(i+1)%4], qv[(i+2)%4] - qv[(i+1)%4])))); float edgeLen[4]; for(int i=0; i<4; ++i) edgeLen[i]=Distance(qv[(i+0)%4],qv[(i+1)%4]); std::sort(edgeLen,edgeLen+4); RatioD.Add(edgeLen[0]/edgeLen[3]); } Log("Right Angle Discrepancy Avg %4.3f Min %4.3f Max %4.3f StdDev %4.3f Percentile 0.05 %4.3f percentile 95 %4.3f", AngleD.Avg(), AngleD.Min(), AngleD.Max(),AngleD.StandardDeviation(),AngleD.Percentile(0.05),AngleD.Percentile(0.95)); Log("Quad Ratio Avg %4.3f Min %4.3f Max %4.3f", RatioD.Avg(), RatioD.Min(), RatioD.Max()); return true; } /************************************************************/ if(filterName == "Compute Geometric Measures") { CMeshO &m=md.mm()->cm; tri::Inertia<CMeshO> I(m); float Area = tri::Stat<CMeshO>::ComputeMeshArea(m); float Volume = I.Mass(); Log("Mesh Bounding Box Size %f %f %f", m.bbox.DimX(), m.bbox.DimY(), m.bbox.DimZ()); Log("Mesh Bounding Box Diag %f ", m.bbox.Diag()); Log("Mesh Volume is %f", Volume); Log("Mesh Surface is %f", Area); Point3f bc=tri::Stat<CMeshO>::ComputeShellBarycenter(m); Log("Thin shell barycenter %9.6f %9.6f %9.6f",bc[0],bc[1],bc[2]); if(Volume<=0) Log("Mesh is not 'solid', no information on barycenter and inertia tensor."); else { Log("Center of Mass is %f %f %f", I.CenterOfMass()[0], I.CenterOfMass()[1], I.CenterOfMass()[2]); Matrix33f IT; I.InertiaTensor(IT); Log("Inertia Tensor is :"); Log(" | %9.6f %9.6f %9.6f |",IT[0][0],IT[0][1],IT[0][2]); Log(" | %9.6f %9.6f %9.6f |",IT[1][0],IT[1][1],IT[1][2]); Log(" | %9.6f %9.6f %9.6f |",IT[2][0],IT[2][1],IT[2][2]); Matrix33f PCA; Point3f pcav; I.InertiaTensorEigen(PCA,pcav); Log("Principal axes are :"); Log(" | %9.6f %9.6f %9.6f |",PCA[0][0],PCA[0][1],PCA[0][2]); Log(" | %9.6f %9.6f %9.6f |",PCA[1][0],PCA[1][1],PCA[1][2]); Log(" | %9.6f %9.6f %9.6f |",PCA[2][0],PCA[2][1],PCA[2][2]); Log("axis momenta are :"); Log(" | %9.6f %9.6f %9.6f |",pcav[0],pcav[1],pcav[2]); } return true; } /************************************************************/ if((filterName == "Per Vertex Quality Stat") || (filterName == "Per Face Quality Stat") ) { CMeshO &m=md.mm()->cm; Distribution<float> DD; if(filterName == "Per Vertex Quality Stat") tri::Stat<CMeshO>::ComputePerVertexQualityDistribution(m, DD, false); else tri::Stat<CMeshO>::ComputePerFaceQualityDistribution(m, DD, false); Log(" Min %f Max %f",DD.Min(),DD.Max()); Log(" Avg %f Med %f",DD.Avg(),DD.Percentile(0.5f)); Log(" StdDev %f",DD.StandardDeviation()); Log(" Variance %f",DD.Variance()); return true; } if((filterName == "Per Vertex Quality Histogram") || (filterName == "Per Face Quality Histogram") ) { CMeshO &m=md.mm()->cm; float RangeMin = env.evalFloat("HistMin"); float RangeMax = env.evalFloat("HistMax"); int binNum = env.evalInt("binNum"); Histogramf H; H.SetRange(RangeMin,RangeMax,binNum); if(filterName == "Per Vertex Quality Histogram") { for(CMeshO::VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) { assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)"); H.Add((*vi).Q()); } } else { for(CMeshO::FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) { assert(!math::IsNAN((*fi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)"); H.Add((*fi).Q()); } } Log("( -inf..%15.7f) : %4.0f",RangeMin,H.BinCountInd(0)); for(int i=1; i<=binNum; ++i) Log("[%15.7f..%15.7f) : %4.0f",H.BinLowerBound(i),H.BinUpperBound(i),H.BinCountInd(i)); Log("[%15.7f.. +inf) : %4.0f",RangeMax,H.BinCountInd(binNum+1)); return true; } return false; }
bool AlignPair::Align( A2Grid &u, A2GridVert &uv, const Matrix44d &in, // trasformazione Iniziale (che porta i punti di mov su fix) Matrix44d &out, // trasformazione calcolata vector<Point3d> &Pfix, // vertici corrispondenti su src (rossi) vector<Point3d> &Nfix, // normali corrispondenti su src (rossi) vector<Point3d> &OPmov, // vertici scelti su trg (verdi) prima della trasformazione in ingresso (Original Point Target) vector<Point3d> &ONmov, // normali scelti su trg (verdi) Histogramf &H, AlignPair::Stat &as) { vector<char> beyondCntVec; // vettore per marcare i movvert che sicuramente non si devono usare // ogni volta che un vertice si trova a distanza oltre max dist viene incrementato il suo contatore; // i movvert che sono stati scartati piu' di MaxCntDist volte non si guardano piu'; const int maxBeyondCnt=3; vector< Point3d > movvert; vector< Point3d > movnorm; vector<Point3d> Pmov; // vertici scelti dopo la trasf iniziale status=SUCCESS; int tt0=clock(); out=in; int i; double CosAngleThr=cos(ap.MaxAngleRad); double StartMinDist=ap.MinDistAbs; int tt1=clock(); int ttsearch=0; int ttleast=0; int nc=0; as.clear(); as.StartTime=clock(); beyondCntVec.resize(mov->size(),0); /**************** BEGIN ICP LOOP ****************/ do { Stat::IterInfo ii; Box3d movbox; InitMov(movvert,movnorm,movbox,out); H.SetRange(0,StartMinDist,512,2.5); Pfix.clear(); Nfix.clear(); Pmov.clear(); OPmov.clear(); ONmov.clear(); int tts0=clock(); ii.MinDistAbs=StartMinDist; int LocSampleNum=min(ap.SampleNum,int(movvert.size())); Box3d fixbox; if(u.Empty()) fixbox = uv.bbox; else fixbox = u.bbox; for(i=0;i<LocSampleNum;++i) { if( beyondCntVec[i] < maxBeyondCnt ) if(! fixbox.IsIn(movvert[i]) ) beyondCntVec[i]=maxBeyondCnt+1; else { double error=StartMinDist; Point3d closestPoint, closestNormal; double maxd= StartMinDist; ii.SampleTested++; if(u.Empty()) // using the point cloud grid { A2Mesh::VertexPointer vp = tri::GetClosestVertex(*fix,uv,movvert[i], maxd, error); if(error>=StartMinDist) { ii.DistanceDiscarded++; ++beyondCntVec[i]; continue; } if(movnorm[i].dot(vp->N()) < CosAngleThr) { ii.AngleDiscarded++; continue; } closestPoint=vp->P(); closestNormal=vp->N(); } else // using the standard faces and grid { A2Mesh::FacePointer f=vcg::tri::GetClosestFaceBase<vcg::AlignPair::A2Mesh, vcg::AlignPair::A2Grid >(*fix, u, movvert[i], maxd, error, closestPoint); if(error>=StartMinDist) { ii.DistanceDiscarded++; ++beyondCntVec[i]; continue; } if(movnorm[i].dot(f->N()) < CosAngleThr) { ii.AngleDiscarded++; continue; } Point3d ip; InterpolationParameters<A2Face,double>(*f,f->N(),closestPoint, ip); const double IP_EPS = 0.00001; // If ip[i] == 0 it means that we are on the edge opposite to i if( (fabs(ip[0])<=IP_EPS && f->IsB(1)) || (fabs(ip[1])<=IP_EPS && f->IsB(2)) || (fabs(ip[2])<=IP_EPS && f->IsB(0)) ){ ii.BorderDiscarded++; continue; } closestNormal = f->N(); } // The sample was accepted. Store it. Pmov.push_back(movvert[i]); OPmov.push_back((*mov)[i].P()); ONmov.push_back((*mov)[i].N()); Nfix.push_back( closestNormal ); Pfix.push_back( closestPoint ); H.Add(float(error)); ii.SampleUsed++; } } // End for each pmov int tts1=clock(); //printf("Found %d pairs\n",(int)Pfix.size()); if(!ChoosePoints(Pfix,Nfix,Pmov,OPmov,ap.PassHiFilter,H)) if(int(Pfix.size())<ap.MinPointNum) { status = TOO_FEW_POINTS; ii.Time=clock(); as.I.push_back(ii); return false; } Matrix44d newout; switch(ap.MatchMode) { case AlignPair::Param::MMSimilarity : ComputeRotoTranslationScalingMatchMatrix(newout,Pfix,OPmov); break; case AlignPair::Param::MMRigid : ComputeRigidMatchMatrix(Pfix,OPmov,newout); break; default : status = UNKNOWN_MODE; ii.Time=clock(); as.I.push_back(ii); return false; } // double sum_before=0; // double sum_after=0; // for(unsigned int iii=0;iii<Pfix.size();++iii) // { // sum_before+=Distance(Pfix[iii], out*OPmov[iii]); // sum_after+=Distance(Pfix[iii], newout*OPmov[iii]); // } // //printf("Distance %f -> %f\n",sum_before/double(Pfix.size()),sum_after/double(Pfix.size()) ) ; // le passate successive utilizzano quindi come trasformazione iniziale questa appena trovata. // Nei prossimi cicli si parte da questa matrice come iniziale. out=newout; assert(Pfix.size()==Pmov.size()); int tts2=clock(); ttsearch+=tts1-tts0; ttleast +=tts2-tts1; ii.pcl50=H.Percentile(.5); ii.pclhi=H.Percentile(ap.PassHiFilter); ii.AVG=H.Avg(); ii.RMS=H.RMS(); ii.StdDev=H.StandardDeviation(); ii.Time=clock(); as.I.push_back(ii); nc++; // The distance of the next points to be considered is lowered according to the <ReduceFactor> parameter. // We use 5 times the <ReduceFactor> percentile of the found points. if(ap.ReduceFactorPerc<1) StartMinDist=max(ap.MinDistAbs*ap.MinMinDistPerc, min(StartMinDist,5.0*H.Percentile(ap.ReduceFactorPerc))); } while ( nc<=ap.MaxIterNum && H.Percentile(.5) > ap.TrgDistAbs && (nc<ap.EndStepNum+1 || ! as.Stable(ap.EndStepNum) ) ); /**************** END ICP LOOP ****************/ int tt2=clock(); Matrix44d ResCopy=out; Point3d scv,shv,rtv,trv; Decompose(ResCopy,scv,shv,rtv,trv); if(math::Abs(1-scv[0])>ap.MaxScale || math::Abs(1-scv[1])>ap.MaxScale || math::Abs(1-scv[2])>ap.MaxScale ) { status = TOO_MUCH_SCALE; return false; } if(shv[0]>ap.MaxShear || shv[1]>ap.MaxShear || shv[2]>ap.MaxShear ) { status = TOO_MUCH_SHEAR; return false; } printf("Grid %i %i %i - fn %i\n",u.siz[0],u.siz[1],u.siz[2],fix->fn); printf("Init %8.3f Loop %8.3f Search %8.3f least sqrt %8.3f\n", float(tt1-tt0)/CLOCKS_PER_SEC, float(tt2-tt1)/CLOCKS_PER_SEC, float(ttsearch)/CLOCKS_PER_SEC,float(ttleast)/CLOCKS_PER_SEC ); return true; }
// Core Function doing the actual mesh processing. bool FilterMeasurePlugin::applyFilter(QAction *filter, MeshDocument &md, RichParameterSet & par, vcg::CallBackPos */*cb*/) { CMeshO::FaceIterator fi; switch(ID(filter)) { case FP_MEASURE_TOPO : { CMeshO &m=md.mm()->cm; md.mm()->updateDataMask(MeshModel::MM_FACEFACETOPO); md.mm()->updateDataMask(MeshModel::MM_VERTFACETOPO); tri::Allocator<CMeshO>::CompactFaceVector(m); tri::Allocator<CMeshO>::CompactVertexVector(m); tri::UpdateTopology<CMeshO>::FaceFace(m); tri::UpdateTopology<CMeshO>::VertexFace(m); int edgeManif = tri::Clean<CMeshO>::CountNonManifoldEdgeFF(m,true); int faceEdgeManif = tri::UpdateSelection<CMeshO>::CountFace(m); tri::UpdateSelection<CMeshO>::ClearVertex(m); tri::UpdateSelection<CMeshO>::ClearFace(m); int vertManif = tri::Clean<CMeshO>::CountNonManifoldVertexFF(m,true); tri::UpdateSelection<CMeshO>::FaceFromVertexLoose(m); int faceVertManif = tri::UpdateSelection<CMeshO>::CountFace(m); int edgeNum=0,borderNum=0; tri::Clean<CMeshO>::CountEdges(m, edgeNum, borderNum); int holeNum; Log("V: %6i E: %6i F:%6i",m.vn,edgeNum,m.fn); Log("Boundary Edges %i",borderNum); int connectedComponentsNum = tri::Clean<CMeshO>::CountConnectedComponents(m); Log("Mesh is composed by %i connected component(s)",connectedComponentsNum); if(edgeManif==0 && vertManif==0) Log("Mesh has is two-manifold "); if(edgeManif!=0) Log("Mesh has %i non two manifold edges and %i faces are incident on these edges\n",edgeManif,faceEdgeManif); if(vertManif!=0) Log("Mesh has %i non two manifold vertexes and %i faces are incident on these vertices\n",vertManif,faceVertManif); // For Manifold meshes compute some other stuff if(vertManif && edgeManif) { holeNum = tri::Clean<CMeshO>::CountHoles(m); Log("Mesh has %i holes",holeNum); int genus = tri::Clean<CMeshO>::MeshGenus(m, holeNum, connectedComponentsNum, edgeNum); Log("Genus is %i",genus); } } break; /************************************************************/ case FP_MEASURE_TOPO_QUAD : { CMeshO &m=md.mm()->cm; md.mm()->updateDataMask(MeshModel::MM_FACEFACETOPO); md.mm()->updateDataMask(MeshModel::MM_FACEQUALITY); if (! tri::Clean<CMeshO>::IsFFAdjacencyConsistent(m)){ Log("Error: mesh has a not consistent FF adjacency"); return false; } if (! tri::Clean<CMeshO>::HasConsistentPerFaceFauxFlag(m)) { Log("Warning: mesh has a not consistent FauxEdge tagging"); return false; } if (! tri::Clean<CMeshO>::IsBitTriQuadOnly(m)) { Log("Warning: IsBitTriQuadOnly"); //return false; } // if (! tri::Clean<CMeshO>::HasConsistentEdges(m)) lastErrorDetected |= NOT_EDGES_CONST; int nsinglets= tri::BitQuadOptimization< tri::BitQuad<CMeshO> >::MarkSinglets(m); if ( nsinglets ) { Log("Warning: MarkSinglets"); //return false; } if (! tri::BitQuad<CMeshO>::HasConsistentValencyFlag(m)) { Log("Warning: HasConsistentValencyFlag"); //return false; } int nQuads = tri::Clean<CMeshO>::CountBitQuads(m); int nTris = tri::Clean<CMeshO>::CountBitTris(m); int nPolys = tri::Clean<CMeshO>::CountBitPolygons(m); Log("Mesh has %i tri %i quad and %i polig",nTris,nQuads,nPolys); } break; /************************************************************/ case FP_MEASURE_GEOM : { CMeshO &m=md.mm()->cm; tri::Inertia<CMeshO> I; I.Compute(m); tri::UpdateBounding<CMeshO>::Box(m); float Area = tri::Stat<CMeshO>::ComputeMeshArea(m); float Volume = I.Mass(); Log("Mesh Bounding Box Size %f %f %f", m.bbox.DimX(), m.bbox.DimY(), m.bbox.DimZ()); Log("Mesh Bounding Box Diag %f ", m.bbox.Diag()); Log("Mesh Volume is %f", Volume); Log("Center of Mass is %f %f %f", I.CenterOfMass()[0], I.CenterOfMass()[1], I.CenterOfMass()[2]); Matrix33f IT; I.InertiaTensor(IT); Log("Inertia Tensor is :"); Log(" | %9.6f %9.6f %9.6f |",IT[0][0],IT[0][1],IT[0][2]); Log(" | %9.6f %9.6f %9.6f |",IT[1][0],IT[1][1],IT[1][2]); Log(" | %9.6f %9.6f %9.6f |",IT[2][0],IT[2][1],IT[2][2]); Log("Mesh Surface is %f", Area); Matrix44f PCA; Point4f pcav; I.InertiaTensorEigen(PCA,pcav); Log("Principal axes are :"); Log(" | %9.6f %9.6f %9.6f |",PCA[0][0],PCA[0][1],PCA[0][2]); Log(" | %9.6f %9.6f %9.6f |",PCA[1][0],PCA[1][1],PCA[1][2]); Log(" | %9.6f %9.6f %9.6f |",PCA[2][0],PCA[2][1],PCA[2][2]); // Point3f ax0(PCA[0][0],PCA[0][1],PCA[0][2]); // Point3f ax1(PCA[1][0],PCA[1][1],PCA[1][2]); // Point3f ax2(PCA[2][0],PCA[2][1],PCA[2][2]); // Log("ax0*ax1 %f (len ax0 %f) ",ax0*ax1, Norm(ax0)); // Log("ax1*ax2 %f (len ax1 %f) ",ax1*ax2, Norm(ax1)); // Log("ax0*ax2 %f (len ax2 %f) ",ax0*ax2, Norm(ax2)); Log("axis momenta are :"); Log(" | %9.6f %9.6f %9.6f |",pcav[0],pcav[1],pcav[2]); } break; /************************************************************/ case FP_MEASURE_VERTEX_QUALITY_DISTRIBUTION : case FP_MEASURE_FACE_QUALITY_DISTRIBUTION : { CMeshO &m=md.mm()->cm; Distribution<float> DD; if(ID(filter)==FP_MEASURE_VERTEX_QUALITY_DISTRIBUTION) tri::Stat<CMeshO>::ComputePerVertexQualityDistribution(m, DD, false); else tri::Stat<CMeshO>::ComputePerFaceQualityDistribution(m, DD, false); Log(" Min %f Max %f",DD.Min(),DD.Max()); Log(" Avg %f Med %f",DD.Avg(),DD.Percentile(0.5f)); Log(" StdDev %f",DD.StandardDeviation()); Log(" Variance %f",DD.Variance()); } break; case FP_MEASURE_GAUSSCURV : { CMeshO &m=md.mm()->cm; SimpleTempData<CMeshO::VertContainer, float> TDArea(m.vert,0.0f); SimpleTempData<CMeshO::VertContainer, float> TDAngleSum(m.vert,0); tri::UpdateQuality<CMeshO>::VertexConstant(m,0); float angle[3]; CMeshO::FaceIterator fi; for(fi=m.face.begin(); fi!= m.face.end(); ++fi) { angle[0] = math::Abs(Angle( (*fi).P(1)-(*fi).P(0),(*fi).P(2)-(*fi).P(0) )); angle[1] = math::Abs(Angle( (*fi).P(0)-(*fi).P(1),(*fi).P(2)-(*fi).P(1) )); angle[2] = M_PI-(angle[0]+angle[1]); float area= DoubleArea(*fi)/6.0f; for(int i=0;i<3;++i) { TDArea[(*fi).V(i)]+=area; TDAngleSum[(*fi).V(i)]+=angle[i]; } } CMeshO::VertexIterator vi; float totalSum=0; for(vi=m.vert.begin(); vi!= m.vert.end(); ++vi) { (*vi).Q() = (2.0*M_PI-TDAngleSum[vi]);//*TDArea[vi]; //if((*vi).IsS()) totalSum += (*vi).Q(); } Log("integrated is %f (%f*pi)", totalSum,totalSum/M_PI); } break; case FP_MEASURE_VERTEX_QUALITY_HISTOGRAM: case FP_MEASURE_FACE_QUALITY_HISTOGRAM: { CMeshO &m=md.mm()->cm; float RangeMin = par.getFloat("minVal"); float RangeMax = par.getFloat("maxVal"); int binNum = par.getInt("binNum"); Histogramf H; H.SetRange(RangeMin,RangeMax,binNum); if(ID(filter)==FP_MEASURE_VERTEX_QUALITY_DISTRIBUTION) { for(CMeshO::VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) { assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)"); H.Add((*vi).Q()); } }else{ for(CMeshO::FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) { assert(!math::IsNAN((*fi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)"); H.Add((*fi).Q()); } } Log("( -inf..%15.7f) : %i",RangeMin,H.BinCountInd(0)); for(int i=1;i<=binNum;++i) Log("[%15.7f..%15.7f) : %i",H.BinLowerBound(i),H.BinUpperBound(i),H.BinCountInd(i)); Log("[%15.7f.. +inf) : %i",RangeMax,H.BinCountInd(binNum+1)); } break; default: assert(0); } return true; }