/// join - Join two live intervals (this, and other) together. This operation /// is the result of a copy instruction in the source program, that occurs at /// index 'CopyIdx' that copies from 'Other' to 'this'. void LiveInterval::join(LiveInterval &Other, unsigned CopyIdx) { const LiveRange *SourceLR = Other.getLiveRangeContaining(CopyIdx-1); const LiveRange *DestLR = getLiveRangeContaining(CopyIdx); assert(SourceLR && DestLR && "Not joining due to a copy?"); unsigned MergedSrcValIdx = SourceLR->ValId; unsigned MergedDstValIdx = DestLR->ValId; // Try to do the least amount of work possible. In particular, if there are // more liverange chunks in the other set than there are in the 'this' set, // swap sets to merge the fewest chunks in possible. if (Other.ranges.size() > ranges.size()) { std::swap(MergedSrcValIdx, MergedDstValIdx); std::swap(ranges, Other.ranges); std::swap(NumValues, Other.NumValues); } // Join the ranges of other into the ranges of this interval. Ranges::iterator InsertPos = ranges.begin(); std::map<unsigned, unsigned> Dst2SrcIdxMap; for (Ranges::iterator I = Other.ranges.begin(), E = Other.ranges.end(); I != E; ++I) { // Map the ValId in the other live range to the current live range. if (I->ValId == MergedSrcValIdx) I->ValId = MergedDstValIdx; else { unsigned &NV = Dst2SrcIdxMap[I->ValId]; if (NV == 0) NV = getNextValue(); I->ValId = NV; } InsertPos = addRangeFrom(*I, InsertPos); } weight += Other.weight; }
/// isPartialRedef - Return true if the specified def at the specific index is /// partially re-defining the specified live interval. A common case of this is /// a definition of the sub-register. bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO, LiveInterval &interval) { if (!MO.getSubReg() || MO.isEarlyClobber()) return false; SlotIndex RedefIndex = MIIdx.getRegSlot(); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def); if (DefMI != 0) { return DefMI->findRegisterDefOperandIdx(interval.reg) != -1; } return false; }
/// joinable - Two intervals are joinable if the either don't overlap at all /// or if the destination of the copy is a single assignment value, and it /// only overlaps with one value in the source interval. bool LiveInterval::joinable(const LiveInterval &other, unsigned CopyIdx) const { const LiveRange *SourceLR = other.getLiveRangeContaining(CopyIdx-1); const LiveRange *DestLR = getLiveRangeContaining(CopyIdx); assert(SourceLR && DestLR && "Not joining due to a copy?"); unsigned OtherValIdx = SourceLR->ValId; unsigned ThisValIdx = DestLR->ValId; Ranges::const_iterator i = ranges.begin(); Ranges::const_iterator ie = ranges.end(); Ranges::const_iterator j = other.ranges.begin(); Ranges::const_iterator je = other.ranges.end(); if (i->start < j->start) { i = std::upper_bound(i, ie, j->start); if (i != ranges.begin()) --i; } else if (j->start < i->start) { j = std::upper_bound(j, je, i->start); if (j != other.ranges.begin()) --j; } while (i != ie && j != je) { if (i->start == j->start) { // If this is not the allowed value merge, we cannot join. if (i->ValId != ThisValIdx || j->ValId != OtherValIdx) return false; } else if (i->start < j->start) { if (i->end > j->start) { if (i->ValId != ThisValIdx || j->ValId != OtherValIdx) return false; } } else { if (j->end > i->start) { if (i->ValId != ThisValIdx || j->ValId != OtherValIdx) return false; } } if (i->end < j->end) ++i; else ++j; } return true; }
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, MachineBasicBlock::iterator mi, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx, LiveInterval &interval) { DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_)); // Virtual registers may be defined multiple times (due to phi // elimination and 2-addr elimination). Much of what we do only has to be // done once for the vreg. We use an empty interval to detect the first // time we see a vreg. LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); if (interval.empty()) { // Get the Idx of the defining instructions. SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); // Make sure the first definition is not a partial redefinition. Add an // <imp-def> of the full register. // FIXME: LiveIntervals shouldn't modify the code like this. Whoever // created the machine instruction should annotate it with <undef> flags // as needed. Then we can simply assert here. The REG_SEQUENCE lowering // is the main suspect. if (MO.getSubReg()) { mi->addRegisterDefined(interval.reg); // Mark all defs of interval.reg on this instruction as reading <undef>. for (unsigned i = MOIdx, e = mi->getNumOperands(); i != e; ++i) { MachineOperand &MO2 = mi->getOperand(i); if (MO2.isReg() && MO2.getReg() == interval.reg && MO2.getSubReg()) MO2.setIsUndef(); } } MachineInstr *CopyMI = NULL; if (mi->isCopyLike()) { CopyMI = mi; } VNInfo *ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator); assert(ValNo->id == 0 && "First value in interval is not 0?"); // Loop over all of the blocks that the vreg is defined in. There are // two cases we have to handle here. The most common case is a vreg // whose lifetime is contained within a basic block. In this case there // will be a single kill, in MBB, which comes after the definition. if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { // FIXME: what about dead vars? SlotIndex killIdx; if (vi.Kills[0] != mi) killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot(); else killIdx = defIndex.getDeadSlot(); // If the kill happens after the definition, we have an intra-block // live range. if (killIdx > defIndex) { assert(vi.AliveBlocks.empty() && "Shouldn't be alive across any blocks!"); LiveRange LR(defIndex, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << "\n"); return; } } // The other case we handle is when a virtual register lives to the end // of the defining block, potentially live across some blocks, then is // live into some number of blocks, but gets killed. Start by adding a // range that goes from this definition to the end of the defining block. LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo); DEBUG(dbgs() << " +" << NewLR); interval.addRange(NewLR); bool PHIJoin = lv_->isPHIJoin(interval.reg); if (PHIJoin) { // A phi join register is killed at the end of the MBB and revived as a new // valno in the killing blocks. assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks"); DEBUG(dbgs() << " phi-join"); ValNo->setHasPHIKill(true); } else { // Iterate over all of the blocks that the variable is completely // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the // live interval. for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(), E = vi.AliveBlocks.end(); I != E; ++I) { MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I); LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } // Finally, this virtual register is live from the start of any killing // block to the 'use' slot of the killing instruction. for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { MachineInstr *Kill = vi.Kills[i]; SlotIndex Start = getMBBStartIdx(Kill->getParent()); SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot(); // Create interval with one of a NEW value number. Note that this value // number isn't actually defined by an instruction, weird huh? :) if (PHIJoin) { assert(getInstructionFromIndex(Start) == 0 && "PHI def index points at actual instruction."); ValNo = interval.getNextValue(Start, 0, VNInfoAllocator); ValNo->setIsPHIDef(true); } LiveRange LR(Start, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } else { if (MultipleDefsBySameMI(*mi, MOIdx)) // Multiple defs of the same virtual register by the same instruction. // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ... // This is likely due to elimination of REG_SEQUENCE instructions. Return // here since there is nothing to do. return; // If this is the second time we see a virtual register definition, it // must be due to phi elimination or two addr elimination. If this is // the result of two address elimination, then the vreg is one of the // def-and-use register operand. // It may also be partial redef like this: // 80 %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0 // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0 bool PartReDef = isPartialRedef(MIIdx, MO, interval); if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) { // If this is a two-address definition, then we have already processed // the live range. The only problem is that we didn't realize there // are actually two values in the live interval. Because of this we // need to take the LiveRegion that defines this register and split it // into two values. SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); VNInfo *OldValNo = OldLR->valno; SlotIndex DefIndex = OldValNo->def.getRegSlot(); // Delete the previous value, which should be short and continuous, // because the 2-addr copy must be in the same MBB as the redef. interval.removeRange(DefIndex, RedefIndex); // The new value number (#1) is defined by the instruction we claimed // defined value #0. VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator); // Value#0 is now defined by the 2-addr instruction. OldValNo->def = RedefIndex; OldValNo->setCopy(0); // A re-def may be a copy. e.g. %reg1030:6<def> = VMOVD %reg1026, ... if (PartReDef && mi->isCopyLike()) OldValNo->setCopy(&*mi); // Add the new live interval which replaces the range for the input copy. LiveRange LR(DefIndex, RedefIndex, ValNo); DEBUG(dbgs() << " replace range with " << LR); interval.addRange(LR); // If this redefinition is dead, we need to add a dummy unit live // range covering the def slot. if (MO.isDead()) interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(), OldValNo)); DEBUG({ dbgs() << " RESULT: "; interval.print(dbgs(), tri_); }); } else if (lv_->isPHIJoin(interval.reg)) {