コード例 #1
0
ファイル: LICM.cpp プロジェクト: Nebelhom/mozilla-central
Loop::LoopReturn
Loop::init()
{
    IonSpew(IonSpew_LICM, "Loop identified, headed by block %d", header_->id());
    IonSpew(IonSpew_LICM, "footer is block %d", header_->backedge()->id());

    // The first predecessor of the loop header must dominate the header.
    JS_ASSERT(header_->id() > header_->getPredecessor(0)->id());

    // Loops from backedge to header and marks all visited blocks
    // as part of the loop. At the same time add all hoistable instructions
    // (in RPO order) to the instruction worklist.
    Vector<MBasicBlock *, 1, IonAllocPolicy> inlooplist;
    if (!inlooplist.append(header_->backedge()))
        return LoopReturn_Error;
    header_->backedge()->mark();

    while (!inlooplist.empty()) {
        MBasicBlock *block = inlooplist.back();

        // Hoisting requires more finesse if the loop contains a block that
        // self-dominates: there exists control flow that may enter the loop
        // without passing through the loop preheader.
        //
        // Rather than perform a complicated analysis of the dominance graph,
        // just return a soft error to ignore this loop.
        if (block->immediateDominator() == block) {
            while (!worklist_.empty())
                popFromWorklist();
            return LoopReturn_Skip;
        }

        // Add not yet visited predecessors to the inlooplist.
        if (block != header_) {
            for (size_t i = 0; i < block->numPredecessors(); i++) {
                MBasicBlock *pred = block->getPredecessor(i);
                if (pred->isMarked())
                    continue;

                if (!inlooplist.append(pred))
                    return LoopReturn_Error;
                pred->mark();
            }
        }

        // If any block was added, process them first.
        if (block != inlooplist.back())
            continue;

        // Add all instructions in this block (but the control instruction) to the worklist
        for (MInstructionIterator i = block->begin(); i != block->end(); i++) {
            MInstruction *ins = *i;

            if (isHoistable(ins)) {
                if (!insertInWorklist(ins))
                    return LoopReturn_Error;
            }
        }

        // All successors of this block are visited.
        inlooplist.popBack();
    }

    return LoopReturn_Success;
}
コード例 #2
0
bool
LiveRangeAllocator<VREG>::buildLivenessInfo()
{
    if (!init())
        return false;

    Vector<MBasicBlock *, 1, SystemAllocPolicy> loopWorkList;
    BitSet *loopDone = BitSet::New(alloc(), graph.numBlockIds());
    if (!loopDone)
        return false;

    for (size_t i = graph.numBlocks(); i > 0; i--) {
        if (mir->shouldCancel("Build Liveness Info (main loop)"))
            return false;

        LBlock *block = graph.getBlock(i - 1);
        MBasicBlock *mblock = block->mir();

        BitSet *live = BitSet::New(alloc(), graph.numVirtualRegisters());
        if (!live)
            return false;
        liveIn[mblock->id()] = live;

        // Propagate liveIn from our successors to us
        for (size_t i = 0; i < mblock->lastIns()->numSuccessors(); i++) {
            MBasicBlock *successor = mblock->lastIns()->getSuccessor(i);
            // Skip backedges, as we fix them up at the loop header.
            if (mblock->id() < successor->id())
                live->insertAll(liveIn[successor->id()]);
        }

        // Add successor phis
        if (mblock->successorWithPhis()) {
            LBlock *phiSuccessor = mblock->successorWithPhis()->lir();
            for (unsigned int j = 0; j < phiSuccessor->numPhis(); j++) {
                LPhi *phi = phiSuccessor->getPhi(j);
                LAllocation *use = phi->getOperand(mblock->positionInPhiSuccessor());
                uint32_t reg = use->toUse()->virtualRegister();
                live->insert(reg);
            }
        }

        // Variables are assumed alive for the entire block, a define shortens
        // the interval to the point of definition.
        for (BitSet::Iterator liveRegId(*live); liveRegId; liveRegId++) {
            if (!vregs[*liveRegId].getInterval(0)->addRangeAtHead(inputOf(block->firstId()),
                                                                  outputOf(block->lastId()).next()))
            {
                return false;
            }
        }

        // Shorten the front end of live intervals for live variables to their
        // point of definition, if found.
        for (LInstructionReverseIterator ins = block->rbegin(); ins != block->rend(); ins++) {
            // Calls may clobber registers, so force a spill and reload around the callsite.
            if (ins->isCall()) {
                for (AnyRegisterIterator iter(allRegisters_); iter.more(); iter++) {
                    if (forLSRA) {
                        if (!addFixedRangeAtHead(*iter, inputOf(*ins), outputOf(*ins)))
                            return false;
                    } else {
                        bool found = false;
                        for (size_t i = 0; i < ins->numDefs(); i++) {
                            if (ins->getDef(i)->isPreset() &&
                                *ins->getDef(i)->output() == LAllocation(*iter)) {
                                found = true;
                                break;
                            }
                        }
                        if (!found && !addFixedRangeAtHead(*iter, outputOf(*ins), outputOf(*ins).next()))
                            return false;
                    }
                }
            }

            for (size_t i = 0; i < ins->numDefs(); i++) {
                if (ins->getDef(i)->policy() != LDefinition::PASSTHROUGH) {
                    LDefinition *def = ins->getDef(i);

                    CodePosition from;
                    if (def->policy() == LDefinition::PRESET && def->output()->isRegister() && forLSRA) {
                        // The fixed range covers the current instruction so the
                        // interval for the virtual register starts at the next
                        // instruction. If the next instruction has a fixed use,
                        // this can lead to unnecessary register moves. To avoid
                        // special handling for this, assert the next instruction
                        // has no fixed uses. defineFixed guarantees this by inserting
                        // an LNop.
                        JS_ASSERT(!NextInstructionHasFixedUses(block, *ins));
                        AnyRegister reg = def->output()->toRegister();
                        if (!addFixedRangeAtHead(reg, inputOf(*ins), outputOf(*ins).next()))
                            return false;
                        from = outputOf(*ins).next();
                    } else {
                        from = forLSRA ? inputOf(*ins) : outputOf(*ins);
                    }

                    if (def->policy() == LDefinition::MUST_REUSE_INPUT) {
                        // MUST_REUSE_INPUT is implemented by allocating an output
                        // register and moving the input to it. Register hints are
                        // used to avoid unnecessary moves. We give the input an
                        // LUse::ANY policy to avoid allocating a register for the
                        // input.
                        LUse *inputUse = ins->getOperand(def->getReusedInput())->toUse();
                        JS_ASSERT(inputUse->policy() == LUse::REGISTER);
                        JS_ASSERT(inputUse->usedAtStart());
                        *inputUse = LUse(inputUse->virtualRegister(), LUse::ANY, /* usedAtStart = */ true);
                    }

                    LiveInterval *interval = vregs[def].getInterval(0);
                    interval->setFrom(from);

                    // Ensure that if there aren't any uses, there's at least
                    // some interval for the output to go into.
                    if (interval->numRanges() == 0) {
                        if (!interval->addRangeAtHead(from, from.next()))
                            return false;
                    }
                    live->remove(def->virtualRegister());
                }
            }

            for (size_t i = 0; i < ins->numTemps(); i++) {
                LDefinition *temp = ins->getTemp(i);
                if (temp->isBogusTemp())
                    continue;

                if (forLSRA) {
                    if (temp->policy() == LDefinition::PRESET) {
                        if (ins->isCall())
                            continue;
                        AnyRegister reg = temp->output()->toRegister();
                        if (!addFixedRangeAtHead(reg, inputOf(*ins), outputOf(*ins)))
                            return false;

                        // Fixed intervals are not added to safepoints, so do it
                        // here.
                        if (LSafepoint *safepoint = ins->safepoint())
                            AddRegisterToSafepoint(safepoint, reg, *temp);
                    } else {
                        JS_ASSERT(!ins->isCall());
                        if (!vregs[temp].getInterval(0)->addRangeAtHead(inputOf(*ins), outputOf(*ins)))
                            return false;
                    }
                } else {
                    // Normally temps are considered to cover both the input
                    // and output of the associated instruction. In some cases
                    // though we want to use a fixed register as both an input
                    // and clobbered register in the instruction, so watch for
                    // this and shorten the temp to cover only the output.
                    CodePosition from = inputOf(*ins);
                    if (temp->policy() == LDefinition::PRESET) {
                        AnyRegister reg = temp->output()->toRegister();
                        for (LInstruction::InputIterator alloc(**ins); alloc.more(); alloc.next()) {
                            if (alloc->isUse()) {
                                LUse *use = alloc->toUse();
                                if (use->isFixedRegister()) {
                                    if (GetFixedRegister(vregs[use].def(), use) == reg)
                                        from = outputOf(*ins);
                                }
                            }
                        }
                    }

                    CodePosition to =
                        ins->isCall() ? outputOf(*ins) : outputOf(*ins).next();
                    if (!vregs[temp].getInterval(0)->addRangeAtHead(from, to))
                        return false;
                }
            }

            DebugOnly<bool> hasUseRegister = false;
            DebugOnly<bool> hasUseRegisterAtStart = false;

            for (LInstruction::InputIterator inputAlloc(**ins); inputAlloc.more(); inputAlloc.next()) {
                if (inputAlloc->isUse()) {
                    LUse *use = inputAlloc->toUse();

                    // The first instruction, LLabel, has no uses.
                    JS_ASSERT(inputOf(*ins) > outputOf(block->firstId()));

                    // Call uses should always be at-start or fixed, since the fixed intervals
                    // use all registers.
                    JS_ASSERT_IF(ins->isCall() && !inputAlloc.isSnapshotInput(),
                                 use->isFixedRegister() || use->usedAtStart());

#ifdef DEBUG
                    // Don't allow at-start call uses if there are temps of the same kind,
                    // so that we don't assign the same register.
                    if (ins->isCall() && use->usedAtStart()) {
                        for (size_t i = 0; i < ins->numTemps(); i++)
                            JS_ASSERT(vregs[ins->getTemp(i)].isDouble() != vregs[use].isDouble());
                    }

                    // If there are both useRegisterAtStart(x) and useRegister(y)
                    // uses, we may assign the same register to both operands due to
                    // interval splitting (bug 772830). Don't allow this for now.
                    if (use->policy() == LUse::REGISTER) {
                        if (use->usedAtStart()) {
                            if (!IsInputReused(*ins, use))
                                hasUseRegisterAtStart = true;
                        } else {
                            hasUseRegister = true;
                        }
                    }

                    JS_ASSERT(!(hasUseRegister && hasUseRegisterAtStart));
#endif

                    // Don't treat RECOVERED_INPUT uses as keeping the vreg alive.
                    if (use->policy() == LUse::RECOVERED_INPUT)
                        continue;

                    CodePosition to;
                    if (forLSRA) {
                        if (use->isFixedRegister()) {
                            AnyRegister reg = GetFixedRegister(vregs[use].def(), use);
                            if (!addFixedRangeAtHead(reg, inputOf(*ins), outputOf(*ins)))
                                return false;
                            to = inputOf(*ins);

                            // Fixed intervals are not added to safepoints, so do it
                            // here.
                            LSafepoint *safepoint = ins->safepoint();
                            if (!ins->isCall() && safepoint)
                                AddRegisterToSafepoint(safepoint, reg, *vregs[use].def());
                        } else {
                            to = use->usedAtStart() ? inputOf(*ins) : outputOf(*ins);
                        }
                    } else {
                        to = (use->usedAtStart() || ins->isCall())
                           ? inputOf(*ins) : outputOf(*ins);
                        if (use->isFixedRegister()) {
                            LAllocation reg(AnyRegister::FromCode(use->registerCode()));
                            for (size_t i = 0; i < ins->numDefs(); i++) {
                                LDefinition *def = ins->getDef(i);
                                if (def->policy() == LDefinition::PRESET && *def->output() == reg)
                                    to = inputOf(*ins);
                            }
                        }
                    }

                    LiveInterval *interval = vregs[use].getInterval(0);
                    if (!interval->addRangeAtHead(inputOf(block->firstId()), forLSRA ? to : to.next()))
                        return false;
                    interval->addUse(new(alloc()) UsePosition(use, to));

                    live->insert(use->virtualRegister());
                }
            }
        }

        // Phis have simultaneous assignment semantics at block begin, so at
        // the beginning of the block we can be sure that liveIn does not
        // contain any phi outputs.
        for (unsigned int i = 0; i < block->numPhis(); i++) {
            LDefinition *def = block->getPhi(i)->getDef(0);
            if (live->contains(def->virtualRegister())) {
                live->remove(def->virtualRegister());
            } else {
                // This is a dead phi, so add a dummy range over all phis. This
                // can go away if we have an earlier dead code elimination pass.
                if (!vregs[def].getInterval(0)->addRangeAtHead(inputOf(block->firstId()),
                                                               outputOf(block->firstId())))
                {
                    return false;
                }
            }
        }

        if (mblock->isLoopHeader()) {
            // A divergence from the published algorithm is required here, as
            // our block order does not guarantee that blocks of a loop are
            // contiguous. As a result, a single live interval spanning the
            // loop is not possible. Additionally, we require liveIn in a later
            // pass for resolution, so that must also be fixed up here.
            MBasicBlock *loopBlock = mblock->backedge();
            while (true) {
                // Blocks must already have been visited to have a liveIn set.
                JS_ASSERT(loopBlock->id() >= mblock->id());

                // Add an interval for this entire loop block
                CodePosition from = inputOf(loopBlock->lir()->firstId());
                CodePosition to = outputOf(loopBlock->lir()->lastId()).next();

                for (BitSet::Iterator liveRegId(*live); liveRegId; liveRegId++) {
                    if (!vregs[*liveRegId].getInterval(0)->addRange(from, to))
                        return false;
                }

                // Fix up the liveIn set to account for the new interval
                liveIn[loopBlock->id()]->insertAll(live);

                // Make sure we don't visit this node again
                loopDone->insert(loopBlock->id());

                // If this is the loop header, any predecessors are either the
                // backedge or out of the loop, so skip any predecessors of
                // this block
                if (loopBlock != mblock) {
                    for (size_t i = 0; i < loopBlock->numPredecessors(); i++) {
                        MBasicBlock *pred = loopBlock->getPredecessor(i);
                        if (loopDone->contains(pred->id()))
                            continue;
                        if (!loopWorkList.append(pred))
                            return false;
                    }
                }

                // Terminate loop if out of work.
                if (loopWorkList.empty())
                    break;

                // Grab the next block off the work list, skipping any OSR block.
                while (!loopWorkList.empty()) {
                    loopBlock = loopWorkList.popCopy();
                    if (loopBlock->lir() != graph.osrBlock())
                        break;
                }

                // If end is reached without finding a non-OSR block, then no more work items were found.
                if (loopBlock->lir() == graph.osrBlock()) {
                    JS_ASSERT(loopWorkList.empty());
                    break;
                }
            }

            // Clear the done set for other loops
            loopDone->clear();
        }

        JS_ASSERT_IF(!mblock->numPredecessors(), live->empty());
    }

    validateVirtualRegisters();

    // If the script has an infinite loop, there may be no MReturn and therefore
    // no fixed intervals. Add a small range to fixedIntervalsUnion so that the
    // rest of the allocator can assume it has at least one range.
    if (fixedIntervalsUnion->numRanges() == 0) {
        if (!fixedIntervalsUnion->addRangeAtHead(CodePosition(0, CodePosition::INPUT),
                                                 CodePosition(0, CodePosition::OUTPUT)))
        {
            return false;
        }
    }

    return true;
}
コード例 #3
0
ファイル: Sink.cpp プロジェクト: AlexOreshkevich/mongo
bool
Sink(MIRGenerator* mir, MIRGraph& graph)
{
    TempAllocator& alloc = graph.alloc();
    bool sinkEnabled = mir->optimizationInfo().sinkEnabled();

    for (PostorderIterator block = graph.poBegin(); block != graph.poEnd(); block++) {
        if (mir->shouldCancel("Sink"))
            return false;

        for (MInstructionReverseIterator iter = block->rbegin(); iter != block->rend(); ) {
            MInstruction* ins = *iter++;

            // Only instructions which can be recovered on bailout can be moved
            // into the bailout paths.
            if (ins->isGuard() || ins->isGuardRangeBailouts() ||
                ins->isRecoveredOnBailout() || !ins->canRecoverOnBailout())
            {
                continue;
            }

            // Compute a common dominator for all uses of the current
            // instruction.
            bool hasLiveUses = false;
            bool hasUses = false;
            MBasicBlock* usesDominator = nullptr;
            for (MUseIterator i(ins->usesBegin()), e(ins->usesEnd()); i != e; i++) {
                hasUses = true;
                MNode* consumerNode = (*i)->consumer();
                if (consumerNode->isResumePoint())
                    continue;

                MDefinition* consumer = consumerNode->toDefinition();
                if (consumer->isRecoveredOnBailout())
                    continue;

                hasLiveUses = true;

                // If the instruction is a Phi, then we should dominate the
                // predecessor from which the value is coming from.
                MBasicBlock* consumerBlock = consumer->block();
                if (consumer->isPhi())
                    consumerBlock = consumerBlock->getPredecessor(consumer->indexOf(*i));

                usesDominator = CommonDominator(usesDominator, consumerBlock);
                if (usesDominator == *block)
                    break;
            }

            // Leave this instruction for DCE.
            if (!hasUses)
                continue;

            // We have no uses, so sink this instruction in all the bailout
            // paths.
            if (!hasLiveUses) {
                MOZ_ASSERT(!usesDominator);
                ins->setRecoveredOnBailout();
                JitSpewDef(JitSpew_Sink, "  No live uses, recover the instruction on bailout\n", ins);
                continue;
            }

            // This guard is temporarly moved here as the above code deals with
            // Dead Code elimination, which got moved into this Sink phase, as
            // the Dead Code elimination used to move instructions with no-live
            // uses to the bailout path.
            if (!sinkEnabled)
                continue;

            // To move an effectful instruction, we would have to verify that the
            // side-effect is not observed. In the mean time, we just inhibit
            // this optimization on effectful instructions.
            if (ins->isEffectful())
                continue;

            // If all the uses are under a loop, we might not want to work
            // against LICM by moving everything back into the loop, but if the
            // loop is it-self inside an if, then we still want to move the
            // computation under this if statement.
            while (block->loopDepth() < usesDominator->loopDepth()) {
                MOZ_ASSERT(usesDominator != usesDominator->immediateDominator());
                usesDominator = usesDominator->immediateDominator();
            }

            // Only move instructions if there is a branch between the dominator
            // of the uses and the original instruction. This prevent moving the
            // computation of the arguments into an inline function if there is
            // no major win.
            MBasicBlock* lastJoin = usesDominator;
            while (*block != lastJoin && lastJoin->numPredecessors() == 1) {
                MOZ_ASSERT(lastJoin != lastJoin->immediateDominator());
                MBasicBlock* next = lastJoin->immediateDominator();
                if (next->numSuccessors() > 1)
                    break;
                lastJoin = next;
            }
            if (*block == lastJoin)
                continue;

            // Skip to the next instruction if we cannot find a common dominator
            // for all the uses of this instruction, or if the common dominator
            // correspond to the block of the current instruction.
            if (!usesDominator || usesDominator == *block)
                continue;

            // Only instruction which can be recovered on bailout and which are
            // sinkable can be moved into blocks which are below while filling
            // the resume points with a clone which is recovered on bailout.

            // If the instruction has live uses and if it is clonable, then we
            // can clone the instruction for all non-dominated uses and move the
            // instruction into the block which is dominating all live uses.
            if (!ins->canClone())
                continue;

            // If the block is a split-edge block, which is created for folding
            // test conditions, then the block has no resume point and has
            // multiple predecessors.  In such case, we cannot safely move
            // bailing instruction to these blocks as we have no way to bailout.
            if (!usesDominator->entryResumePoint() && usesDominator->numPredecessors() != 1)
                continue;

            JitSpewDef(JitSpew_Sink, "  Can Clone & Recover, sink instruction\n", ins);
            JitSpew(JitSpew_Sink, "  into Block %u", usesDominator->id());

            // Copy the arguments and clone the instruction.
            MDefinitionVector operands(alloc);
            for (size_t i = 0, end = ins->numOperands(); i < end; i++) {
                if (!operands.append(ins->getOperand(i)))
                    return false;
            }

            MInstruction* clone = ins->clone(alloc, operands);
            ins->block()->insertBefore(ins, clone);
            clone->setRecoveredOnBailout();

            // We should not update the producer of the entry resume point, as
            // it cannot refer to any instruction within the basic block excepts
            // for Phi nodes.
            MResumePoint* entry = usesDominator->entryResumePoint();

            // Replace the instruction by its clone in all the resume points /
            // recovered-on-bailout instructions which are not in blocks which
            // are dominated by the usesDominator block.
            for (MUseIterator i(ins->usesBegin()), e(ins->usesEnd()); i != e; ) {
                MUse* use = *i++;
                MNode* consumer = use->consumer();

                // If the consumer is a Phi, then we look for the index of the
                // use to find the corresponding predecessor block, which is
                // then used as the consumer block.
                MBasicBlock* consumerBlock = consumer->block();
                if (consumer->isDefinition() && consumer->toDefinition()->isPhi()) {
                    consumerBlock = consumerBlock->getPredecessor(
                        consumer->toDefinition()->toPhi()->indexOf(use));
                }

                // Keep the current instruction for all dominated uses, except
                // for the entry resume point of the block in which the
                // instruction would be moved into.
                if (usesDominator->dominates(consumerBlock) &&
                    (!consumer->isResumePoint() || consumer->toResumePoint() != entry))
                {
                    continue;
                }

                use->replaceProducer(clone);
            }

            // As we move this instruction in a different block, we should
            // verify that we do not carry over a resume point which would refer
            // to an outdated state of the control flow.
            if (ins->resumePoint())
                ins->clearResumePoint();

            // Now, that all uses which are not dominated by usesDominator are
            // using the cloned instruction, we can safely move the instruction
            // into the usesDominator block.
            MInstruction* at = usesDominator->safeInsertTop(nullptr, MBasicBlock::IgnoreRecover);
            block->moveBefore(at, ins);
        }
    }

    return true;
}
コード例 #4
0
// OSR fixups serve the purpose of representing the non-OSR entry into a loop
// when the only real entry is an OSR entry into the middle. However, if the
// entry into the middle is subsequently folded away, the loop may actually
// have become unreachable. Mark-and-sweep all blocks to remove all such code.
bool ValueNumberer::cleanupOSRFixups()
{
    // Mark.
    Vector<MBasicBlock*, 0, JitAllocPolicy> worklist(graph_.alloc());
    unsigned numMarked = 2;
    graph_.entryBlock()->mark();
    graph_.osrBlock()->mark();
    if (!worklist.append(graph_.entryBlock()) || !worklist.append(graph_.osrBlock()))
        return false;
    while (!worklist.empty()) {
        MBasicBlock* block = worklist.popCopy();
        for (size_t i = 0, e = block->numSuccessors(); i != e; ++i) {
            MBasicBlock* succ = block->getSuccessor(i);
            if (!succ->isMarked()) {
                ++numMarked;
                succ->mark();
                if (!worklist.append(succ))
                    return false;
            } else if (succ->isLoopHeader() &&
                       succ->loopPredecessor() == block &&
                       succ->numPredecessors() == 3)
            {
                // Unmark fixup blocks if the loop predecessor is marked after
                // the loop header.
                succ->getPredecessor(1)->unmarkUnchecked();
            }
        }

        // OSR fixup blocks are needed if and only if the loop header is
        // reachable from its backedge (via the OSR block) and not from its
        // original loop predecessor.
        //
        // Thus OSR fixup blocks are removed if the loop header is not
        // reachable, or if the loop header is reachable from both its backedge
        // and its original loop predecessor.
        if (block->isLoopHeader()) {
            MBasicBlock* maybeFixupBlock = nullptr;
            if (block->numPredecessors() == 2) {
                maybeFixupBlock = block->getPredecessor(0);
            } else {
                MOZ_ASSERT(block->numPredecessors() == 3);
                if (!block->loopPredecessor()->isMarked())
                    maybeFixupBlock = block->getPredecessor(1);
            }

            if (maybeFixupBlock &&
                !maybeFixupBlock->isMarked() &&
                maybeFixupBlock->numPredecessors() == 0)
            {
                MOZ_ASSERT(maybeFixupBlock->numSuccessors() == 1,
                           "OSR fixup block should have exactly one successor");
                MOZ_ASSERT(maybeFixupBlock != graph_.entryBlock(),
                           "OSR fixup block shouldn't be the entry block");
                MOZ_ASSERT(maybeFixupBlock != graph_.osrBlock(),
                           "OSR fixup block shouldn't be the OSR entry block");
                maybeFixupBlock->mark();
            }
        }
    }

    // And sweep.
    return RemoveUnmarkedBlocks(mir_, graph_, numMarked);
}
コード例 #5
0
bool
MIRGraph::removeSuccessorBlocks(MBasicBlock* start)
{
    if (!start->hasLastIns())
        return true;

    start->mark();

    // Mark all successors.
    Vector<MBasicBlock*, 4, SystemAllocPolicy> blocks;
    for (size_t i = 0; i < start->numSuccessors(); i++) {
        if (start->getSuccessor(i)->isMarked())
            continue;
        if (!blocks.append(start->getSuccessor(i)))
            return false;
        start->getSuccessor(i)->mark();
    }
    for (size_t i = 0; i < blocks.length(); i++) {
        MBasicBlock* block = blocks[i];
        if (!block->hasLastIns())
            continue;

        for (size_t j = 0; j < block->numSuccessors(); j++) {
            if (block->getSuccessor(j)->isMarked())
                continue;
            if (!blocks.append(block->getSuccessor(j)))
                return false;
            block->getSuccessor(j)->mark();
        }
    }

    if (osrBlock()) {
        if (osrBlock()->getSuccessor(0)->isMarked())
            osrBlock()->mark();
    }

    // Remove blocks.
    // If they don't have any predecessor
    for (size_t i = 0; i < blocks.length(); i++) {
        MBasicBlock* block = blocks[i];
        bool allMarked = true;
        for (size_t i = 0; i < block->numPredecessors(); i++) {
            if (block->getPredecessor(i)->isMarked())
                continue;
            allMarked = false;
            break;
        }
        if (allMarked) {
            removeBlock(block);
        } else {
            MOZ_ASSERT(block != osrBlock());
            for (size_t j = 0; j < block->numPredecessors(); ) {
                if (!block->getPredecessor(j)->isMarked()) {
                    j++;
                    continue;
                }
                block->removePredecessor(block->getPredecessor(j));
            }
            // This shouldn't have any instructions yet.
            MOZ_ASSERT(block->begin() == block->end());
        }
    }

    if (osrBlock()) {
        if (osrBlock()->getSuccessor(0)->isDead())
            removeBlock(osrBlock());
    }

    for (size_t i = 0; i < blocks.length(); i++)
        blocks[i]->unmark();
    start->unmark();

    return true;
}
コード例 #6
0
bool
UnreachableCodeElimination::removeUnmarkedBlocksAndClearDominators()
{
    // Removes blocks that are not marked from the graph.  For blocks
    // that *are* marked, clears the mark and adjusts the id to its
    // new value.  Also adds blocks that are immediately reachable
    // from an unmarked block to the frontier.

    size_t id = marked_;
    for (PostorderIterator iter(graph_.poBegin()); iter != graph_.poEnd();) {
        if (mir_->shouldCancel("Eliminate Unreachable Code"))
            return false;

        MBasicBlock *block = *iter;
        iter++;

        // Unconditionally clear the dominators.  It's somewhat complex to
        // adjust the values and relatively fast to just recompute.
        block->clearDominatorInfo();

        if (block->isMarked()) {
            block->setId(--id);
            for (MPhiIterator iter(block->phisBegin()); iter != block->phisEnd(); iter++)
                checkDependencyAndRemoveUsesFromUnmarkedBlocks(*iter);
            for (MInstructionIterator iter(block->begin()); iter != block->end(); iter++)
                checkDependencyAndRemoveUsesFromUnmarkedBlocks(*iter);
        } else {
            if (block->numPredecessors() > 1) {
                // If this block had phis, then any reachable
                // predecessors need to have the successorWithPhis
                // flag cleared.
                for (size_t i = 0; i < block->numPredecessors(); i++)
                    block->getPredecessor(i)->setSuccessorWithPhis(nullptr, 0);
            }

            if (block->isLoopBackedge()) {
                // NB. We have to update the loop header if we
                // eliminate the backedge. At first I thought this
                // check would be insufficient, because it would be
                // possible to have code like this:
                //
                //    while (true) {
                //       ...;
                //       if (1 == 1) break;
                //    }
                //
                // in which the backedge is removed as part of
                // rewriting the condition, but no actual blocks are
                // removed.  However, in all such cases, the backedge
                // would be a critical edge and hence the critical
                // edge block is being removed.
                block->loopHeaderOfBackedge()->clearLoopHeader();
            }

            for (size_t i = 0, c = block->numSuccessors(); i < c; i++) {
                MBasicBlock *succ = block->getSuccessor(i);
                if (succ->isMarked()) {
                    // succ is on the frontier of blocks to be removed:
                    succ->removePredecessor(block);

                    if (!redundantPhis_) {
                        for (MPhiIterator iter(succ->phisBegin()); iter != succ->phisEnd(); iter++) {
                            if (iter->operandIfRedundant()) {
                                redundantPhis_ = true;
                                break;
                            }
                        }
                    }
                }
            }

            // When we remove a call, we can't leave the corresponding MPassArg
            // in the graph. Since lowering will fail. Replace it with the
            // argument for the exceptional case when it is kept alive in a
            // ResumePoint. DCE will remove the unused MPassArg instruction.
            for (MInstructionIterator iter(block->begin()); iter != block->end(); iter++) {
                if (iter->isCall()) {
                    MCall *call = iter->toCall();
                    for (size_t i = 0; i < call->numStackArgs(); i++) {
                        JS_ASSERT(call->getArg(i)->isPassArg());
                        JS_ASSERT(call->getArg(i)->hasOneDefUse());
                        MPassArg *arg = call->getArg(i)->toPassArg();
                        arg->replaceAllUsesWith(arg->getArgument());
                    }
                }
            }

            graph_.removeBlock(block);
        }
    }

    JS_ASSERT(id == 0);

    return true;
}