コード例 #1
0
ファイル: mt.cpp プロジェクト: caomw/moderntracker
Warp MT::Lucas_Kanade(Warp warp)
{
	for (int iter = 0; iter < max_iteration; ++iter) {
		Matx61f G;
		Matx<float, 6, 6> H;
		G = 0.0f;
		H = 0.0f;
		float E = 0.0f;
		for (int i = 0; i < fine_samples.size(); ++i) {
			Matx<float, L4, 1> T(fine_model.ptr<float>(i)), F;
			Matx<float, 2, L4> dF;
			Matx<float, 2, 6> dW = warp.gradient(fine_samples[i]);
			Point2f p = warp.transform2(fine_samples[i]);
			feature.gradient4(p.x, p.y, F.val, dF.val, dF.val + L4);
			T -= F;
			float e = sigmoid(T.dot(T));
			E += e;
			float w = sigmoid_factor * e * (1.0f - e);
			G += w * (dW.t() * (dF * T));
			H += w * (dW.t() * (dF * dF.t()) * dW);
		}
		E = E / fine_samples.size();		
		Matx61f D;
		solve(H, G, D, DECOMP_SVD);
		warp.steepest(D);
		if (iter > 1 && D(3) * D(3) + D(4) * D(4) + D(5) * D(5) < translate_eps) {
			if (log != NULL)
				(*log) << "\terror in iteration " << iter << " = " << E << endl;
			break;
		}
	}
	return warp;
}
コード例 #2
0
ファイル: sver.cpp プロジェクト: Erotemic/vtool
template<typename T> inline Matx<T, 3, 3> get_Aff_mat(const Matx<T, 3, 3>& invVR1_m,
        const Matx<T, 3, 3>& invVR2_m)
{
    //const Matx<double, 3, 3> V1_m = invVR1_m.inv();
    //const Matx<double, 3, 3> Aff_mat = invVR2_m * V1_m;
    const Matx<double, 3, 3> Aff_mat = invVR2_m * invVR1_m.inv();
    return Aff_mat;
}
コード例 #3
0
ファイル: eigen.hpp プロジェクト: EmergentVR/opencv_win312
// Matx case
template<typename _Tp, int _rows> static inline
void cv2eigen( const Matx<_Tp, _rows, 1>& src,
               Eigen::Matrix<_Tp, Eigen::Dynamic, 1>& dst )
{
    dst.resize(_rows);

    if( !(dst.Flags & Eigen::RowMajorBit) )
    {
        const Mat _dst(1, _rows, DataType<_Tp>::type,
                 dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
        transpose(src, _dst);
    }
    else
    {
        const Mat _dst(_rows, 1, DataType<_Tp>::type,
                 dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
        src.copyTo(_dst);
    }
}
コード例 #4
0
void MapperGradShift::calculate(
    const cv::Mat& img1, const cv::Mat& image2, cv::Ptr<Map>& res) const
{
    Mat gradx, grady, imgDiff;
    Mat img2;

    CV_DbgAssert(img1.size() == image2.size());

    if(!res.empty()) {
        // We have initial values for the registration: we move img2 to that initial reference
        res->inverseWarp(image2, img2);
    } else {
        img2 = image2;
    }

    // Get gradient in all channels
    gradient(img1, img2, gradx, grady, imgDiff);

    // Calculate parameters using least squares
    Matx<double, 2, 2> A;
    Vec<double, 2> b;
    // For each value in A, all the matrix elements are added and then the channels are also added,
    // so we have two calls to "sum". The result can be found in the first element of the final
    // Scalar object.

    A(0, 0) = sum(sum(gradx.mul(gradx)))[0];
    A(0, 1) = sum(sum(gradx.mul(grady)))[0];
    A(1, 1) = sum(sum(grady.mul(grady)))[0];
    A(1, 0) = A(0, 1);

    b(0) = -sum(sum(imgDiff.mul(gradx)))[0];
    b(1) = -sum(sum(imgDiff.mul(grady)))[0];

    // Calculate shift. We use Cholesky decomposition, as A is symmetric.
    Vec<double, 2> shift = A.inv(DECOMP_CHOLESKY)*b;

    if(res.empty()) {
        res = new MapShift(shift);
    } else {
        MapShift newTr(shift);
        res->compose(newTr);
   }
}
コード例 #5
0
ファイル: eigen.hpp プロジェクト: DavidPesta/SikuliX-2014
void cv2eigen( const Matx<_Tp, _rows, 1>& src,
               Eigen::Matrix<_Tp, Eigen::Dynamic, 1>& dst )
{
    dst.resize(_rows);

    if( !(dst.Flags & Eigen::RowMajorBit) )
    {
        Mat _dst(1, _rows, DataType<_Tp>::type,
                 dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
        transpose(src, _dst);
        CV_DbgAssert(_dst.data == (uchar*)dst.data());
    }
    else
    {
        Mat _dst(_rows, 1, DataType<_Tp>::type,
                 dst.data(), (size_t)(dst.stride()*sizeof(_Tp)));
        src.copyTo(_dst);
        CV_DbgAssert(_dst.data == (uchar*)dst.data());
    }
}
コード例 #6
0
void MapperGradAffine::calculate(
    const cv::Mat& img1, const cv::Mat& image2, cv::Ptr<Map>& res) const
{
    Mat gradx, grady, imgDiff;
    Mat img2;

    CV_DbgAssert(img1.size() == image2.size());
    CV_DbgAssert(img1.channels() == image2.channels());
    CV_DbgAssert(img1.channels() == 1 || img1.channels() == 3);

    if(!res.empty()) {
        // We have initial values for the registration: we move img2 to that initial reference
        res->inverseWarp(image2, img2);
    } else {
        img2 = image2;
    }

    // Get gradient in all channels
    gradient(img1, img2, gradx, grady, imgDiff);

    // Matrices with reference frame coordinates
    Mat grid_r, grid_c;
    grid(img1, grid_r, grid_c);

    // Calculate parameters using least squares
    Matx<double, 6, 6> A;
    Vec<double, 6> b;
    // For each value in A, all the matrix elements are added and then the channels are also added,
    // so we have two calls to "sum". The result can be found in the first element of the final
    // Scalar object.
    Mat xIx = grid_c.mul(gradx);
    Mat xIy = grid_c.mul(grady);
    Mat yIx = grid_r.mul(gradx);
    Mat yIy = grid_r.mul(grady);
    Mat Ix2 = gradx.mul(gradx);
    Mat Iy2 = grady.mul(grady);
    Mat xy = grid_c.mul(grid_r);
    Mat IxIy = gradx.mul(grady);
    A(0, 0) = sum(sum(sqr(xIx)))[0];
    A(0, 1) = sum(sum(xy.mul(Ix2)))[0];
    A(0, 2) = sum(sum(grid_c.mul(Ix2)))[0];
    A(0, 3) = sum(sum(sqr(grid_c).mul(IxIy)))[0];
    A(0, 4) = sum(sum(xy.mul(IxIy)))[0];
    A(0, 5) = sum(sum(grid_c.mul(IxIy)))[0];
    A(1, 1) = sum(sum(sqr(yIx)))[0];
    A(1, 2) = sum(sum(grid_r.mul(Ix2)))[0];
    A(1, 3) = A(0, 4);
    A(1, 4) = sum(sum(sqr(grid_r).mul(IxIy)))[0];
    A(1, 5) = sum(sum(grid_r.mul(IxIy)))[0];
    A(2, 2) = sum(sum(Ix2))[0];
    A(2, 3) = A(0, 5);
    A(2, 4) = A(1, 5);
    A(2, 5) = sum(sum(IxIy))[0];
    A(3, 3) = sum(sum(sqr(xIy)))[0];
    A(3, 4) = sum(sum(xy.mul(Iy2)))[0];
    A(3, 5) = sum(sum(grid_c.mul(Iy2)))[0];
    A(4, 4) = sum(sum(sqr(yIy)))[0];
    A(4, 5) = sum(sum(grid_r.mul(Iy2)))[0];
    A(5, 5) = sum(sum(Iy2))[0];
    // Lower half values (A is symmetric)
    A(1, 0) = A(0, 1);
    A(2, 0) = A(0, 2);
    A(2, 1) = A(1, 2);
    A(3, 0) = A(0, 3);
    A(3, 1) = A(1, 3);
    A(3, 2) = A(2, 3);
    A(4, 0) = A(0, 4);
    A(4, 1) = A(1, 4);
    A(4, 2) = A(2, 4);
    A(4, 3) = A(3, 4);
    A(5, 0) = A(0, 5);
    A(5, 1) = A(1, 5);
    A(5, 2) = A(2, 5);
    A(5, 3) = A(3, 5);
    A(5, 4) = A(4, 5);

    // Calculation of b
    b(0) = -sum(sum(imgDiff.mul(xIx)))[0];
    b(1) = -sum(sum(imgDiff.mul(yIx)))[0];
    b(2) = -sum(sum(imgDiff.mul(gradx)))[0];
    b(3) = -sum(sum(imgDiff.mul(xIy)))[0];
    b(4) = -sum(sum(imgDiff.mul(yIy)))[0];
    b(5) = -sum(sum(imgDiff.mul(grady)))[0];

    // Calculate affine transformation. We use Cholesky decomposition, as A is symmetric.
    Vec<double, 6> k = A.inv(DECOMP_CHOLESKY)*b;

    Matx<double, 2, 2> linTr(k(0) + 1., k(1), k(3), k(4) + 1.);
    Vec<double, 2> shift(k(2), k(5));
    if(res.empty()) {
        res = Ptr<Map>(new MapAffine(linTr, shift));
    } else {
        MapAffine newTr(linTr, shift);
        res->compose(newTr);
   }
}
コード例 #7
0
void MapperGradEuclid::calculate(
    const cv::Mat& img1, const cv::Mat& image2, cv::Ptr<Map>& res) const
{
    Mat gradx, grady, imgDiff;
    Mat img2;

    CV_DbgAssert(img1.size() == image2.size());
    CV_DbgAssert(img1.channels() == image2.channels());
    CV_DbgAssert(img1.channels() == 1 || img1.channels() == 3);

    if(!res.empty()) {
        // We have initial values for the registration: we move img2 to that initial reference
        res->inverseWarp(image2, img2);
    } else {
        img2 = image2;
    }

    // Matrices with reference frame coordinates
    Mat grid_r, grid_c;
    grid(img1, grid_r, grid_c);

    // Get gradient in all channels
    gradient(img1, img2, gradx, grady, imgDiff);

    // Calculate parameters using least squares
    Matx<double, 3, 3> A;
    Vec<double, 3> b;
    // For each value in A, all the matrix elements are added and then the channels are also added,
    // so we have two calls to "sum". The result can be found in the first element of the final
    // Scalar object.
    Mat xIy_yIx = grid_c.mul(grady);
    xIy_yIx -= grid_r.mul(gradx);

    A(0, 0) = sum(sum(gradx.mul(gradx)))[0];
    A(0, 1) = sum(sum(gradx.mul(grady)))[0];
    A(0, 2) = sum(sum(gradx.mul(xIy_yIx)))[0];
    A(1, 1) = sum(sum(grady.mul(grady)))[0];
    A(1, 2) = sum(sum(grady.mul(xIy_yIx)))[0];
    A(2, 2) = sum(sum(xIy_yIx.mul(xIy_yIx)))[0];
    A(1, 0) = A(0, 1);
    A(2, 0) = A(0, 2);
    A(2, 1) = A(1, 2);

    b(0) = -sum(sum(imgDiff.mul(gradx)))[0];
    b(1) = -sum(sum(imgDiff.mul(grady)))[0];
    b(2) = -sum(sum(imgDiff.mul(xIy_yIx)))[0];

    // Calculate parameters. We use Cholesky decomposition, as A is symmetric.
    Vec<double, 3> k = A.inv(DECOMP_CHOLESKY)*b;

    double cosT = cos(k(2));
    double sinT = sin(k(2));
    Matx<double, 2, 2> linTr(cosT, -sinT, sinT, cosT);
    Vec<double, 2> shift(k(0), k(1));

    if(res.empty()) {
        res = Ptr<Map>(new MapAffine(linTr, shift));
    } else {
        MapAffine newTr(linTr, shift);
        res->compose(newTr);
   }
}