template<typename T> inline Matx<T, 3, 3> get_Aff_mat(const Matx<T, 3, 3>& invVR1_m, const Matx<T, 3, 3>& invVR2_m) { //const Matx<double, 3, 3> V1_m = invVR1_m.inv(); //const Matx<double, 3, 3> Aff_mat = invVR2_m * V1_m; const Matx<double, 3, 3> Aff_mat = invVR2_m * invVR1_m.inv(); return Aff_mat; }
void MapperGradShift::calculate( const cv::Mat& img1, const cv::Mat& image2, cv::Ptr<Map>& res) const { Mat gradx, grady, imgDiff; Mat img2; CV_DbgAssert(img1.size() == image2.size()); if(!res.empty()) { // We have initial values for the registration: we move img2 to that initial reference res->inverseWarp(image2, img2); } else { img2 = image2; } // Get gradient in all channels gradient(img1, img2, gradx, grady, imgDiff); // Calculate parameters using least squares Matx<double, 2, 2> A; Vec<double, 2> b; // For each value in A, all the matrix elements are added and then the channels are also added, // so we have two calls to "sum". The result can be found in the first element of the final // Scalar object. A(0, 0) = sum(sum(gradx.mul(gradx)))[0]; A(0, 1) = sum(sum(gradx.mul(grady)))[0]; A(1, 1) = sum(sum(grady.mul(grady)))[0]; A(1, 0) = A(0, 1); b(0) = -sum(sum(imgDiff.mul(gradx)))[0]; b(1) = -sum(sum(imgDiff.mul(grady)))[0]; // Calculate shift. We use Cholesky decomposition, as A is symmetric. Vec<double, 2> shift = A.inv(DECOMP_CHOLESKY)*b; if(res.empty()) { res = new MapShift(shift); } else { MapShift newTr(shift); res->compose(newTr); } }
void MapperGradAffine::calculate( const cv::Mat& img1, const cv::Mat& image2, cv::Ptr<Map>& res) const { Mat gradx, grady, imgDiff; Mat img2; CV_DbgAssert(img1.size() == image2.size()); CV_DbgAssert(img1.channels() == image2.channels()); CV_DbgAssert(img1.channels() == 1 || img1.channels() == 3); if(!res.empty()) { // We have initial values for the registration: we move img2 to that initial reference res->inverseWarp(image2, img2); } else { img2 = image2; } // Get gradient in all channels gradient(img1, img2, gradx, grady, imgDiff); // Matrices with reference frame coordinates Mat grid_r, grid_c; grid(img1, grid_r, grid_c); // Calculate parameters using least squares Matx<double, 6, 6> A; Vec<double, 6> b; // For each value in A, all the matrix elements are added and then the channels are also added, // so we have two calls to "sum". The result can be found in the first element of the final // Scalar object. Mat xIx = grid_c.mul(gradx); Mat xIy = grid_c.mul(grady); Mat yIx = grid_r.mul(gradx); Mat yIy = grid_r.mul(grady); Mat Ix2 = gradx.mul(gradx); Mat Iy2 = grady.mul(grady); Mat xy = grid_c.mul(grid_r); Mat IxIy = gradx.mul(grady); A(0, 0) = sum(sum(sqr(xIx)))[0]; A(0, 1) = sum(sum(xy.mul(Ix2)))[0]; A(0, 2) = sum(sum(grid_c.mul(Ix2)))[0]; A(0, 3) = sum(sum(sqr(grid_c).mul(IxIy)))[0]; A(0, 4) = sum(sum(xy.mul(IxIy)))[0]; A(0, 5) = sum(sum(grid_c.mul(IxIy)))[0]; A(1, 1) = sum(sum(sqr(yIx)))[0]; A(1, 2) = sum(sum(grid_r.mul(Ix2)))[0]; A(1, 3) = A(0, 4); A(1, 4) = sum(sum(sqr(grid_r).mul(IxIy)))[0]; A(1, 5) = sum(sum(grid_r.mul(IxIy)))[0]; A(2, 2) = sum(sum(Ix2))[0]; A(2, 3) = A(0, 5); A(2, 4) = A(1, 5); A(2, 5) = sum(sum(IxIy))[0]; A(3, 3) = sum(sum(sqr(xIy)))[0]; A(3, 4) = sum(sum(xy.mul(Iy2)))[0]; A(3, 5) = sum(sum(grid_c.mul(Iy2)))[0]; A(4, 4) = sum(sum(sqr(yIy)))[0]; A(4, 5) = sum(sum(grid_r.mul(Iy2)))[0]; A(5, 5) = sum(sum(Iy2))[0]; // Lower half values (A is symmetric) A(1, 0) = A(0, 1); A(2, 0) = A(0, 2); A(2, 1) = A(1, 2); A(3, 0) = A(0, 3); A(3, 1) = A(1, 3); A(3, 2) = A(2, 3); A(4, 0) = A(0, 4); A(4, 1) = A(1, 4); A(4, 2) = A(2, 4); A(4, 3) = A(3, 4); A(5, 0) = A(0, 5); A(5, 1) = A(1, 5); A(5, 2) = A(2, 5); A(5, 3) = A(3, 5); A(5, 4) = A(4, 5); // Calculation of b b(0) = -sum(sum(imgDiff.mul(xIx)))[0]; b(1) = -sum(sum(imgDiff.mul(yIx)))[0]; b(2) = -sum(sum(imgDiff.mul(gradx)))[0]; b(3) = -sum(sum(imgDiff.mul(xIy)))[0]; b(4) = -sum(sum(imgDiff.mul(yIy)))[0]; b(5) = -sum(sum(imgDiff.mul(grady)))[0]; // Calculate affine transformation. We use Cholesky decomposition, as A is symmetric. Vec<double, 6> k = A.inv(DECOMP_CHOLESKY)*b; Matx<double, 2, 2> linTr(k(0) + 1., k(1), k(3), k(4) + 1.); Vec<double, 2> shift(k(2), k(5)); if(res.empty()) { res = Ptr<Map>(new MapAffine(linTr, shift)); } else { MapAffine newTr(linTr, shift); res->compose(newTr); } }
void MapperGradEuclid::calculate( const cv::Mat& img1, const cv::Mat& image2, cv::Ptr<Map>& res) const { Mat gradx, grady, imgDiff; Mat img2; CV_DbgAssert(img1.size() == image2.size()); CV_DbgAssert(img1.channels() == image2.channels()); CV_DbgAssert(img1.channels() == 1 || img1.channels() == 3); if(!res.empty()) { // We have initial values for the registration: we move img2 to that initial reference res->inverseWarp(image2, img2); } else { img2 = image2; } // Matrices with reference frame coordinates Mat grid_r, grid_c; grid(img1, grid_r, grid_c); // Get gradient in all channels gradient(img1, img2, gradx, grady, imgDiff); // Calculate parameters using least squares Matx<double, 3, 3> A; Vec<double, 3> b; // For each value in A, all the matrix elements are added and then the channels are also added, // so we have two calls to "sum". The result can be found in the first element of the final // Scalar object. Mat xIy_yIx = grid_c.mul(grady); xIy_yIx -= grid_r.mul(gradx); A(0, 0) = sum(sum(gradx.mul(gradx)))[0]; A(0, 1) = sum(sum(gradx.mul(grady)))[0]; A(0, 2) = sum(sum(gradx.mul(xIy_yIx)))[0]; A(1, 1) = sum(sum(grady.mul(grady)))[0]; A(1, 2) = sum(sum(grady.mul(xIy_yIx)))[0]; A(2, 2) = sum(sum(xIy_yIx.mul(xIy_yIx)))[0]; A(1, 0) = A(0, 1); A(2, 0) = A(0, 2); A(2, 1) = A(1, 2); b(0) = -sum(sum(imgDiff.mul(gradx)))[0]; b(1) = -sum(sum(imgDiff.mul(grady)))[0]; b(2) = -sum(sum(imgDiff.mul(xIy_yIx)))[0]; // Calculate parameters. We use Cholesky decomposition, as A is symmetric. Vec<double, 3> k = A.inv(DECOMP_CHOLESKY)*b; double cosT = cos(k(2)); double sinT = sin(k(2)); Matx<double, 2, 2> linTr(cosT, -sinT, sinT, cosT); Vec<double, 2> shift(k(0), k(1)); if(res.empty()) { res = Ptr<Map>(new MapAffine(linTr, shift)); } else { MapAffine newTr(linTr, shift); res->compose(newTr); } }