コード例 #1
0
ファイル: netcdf_mpas.cpp プロジェクト: denyslf/jburkardt-cpp
void netcdf_mpas_read_xyzcell ( string filename, int ncells, double xcell[],
  double ycell[], double zcell[] )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_XYZCELL reads xCell, yCell, zCell.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    29 December 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Input, int NCELLS, the number of nodes.
//
//    Output, double XCELL[NCELLS], YCELL[NCELLS], ZCELL[NCELLS], the
//    coordinates of the nodes.
//
{
  NcVar *var_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get the variable values.
//
  var_id = ncid.get_var ( "xCell" );
  (*var_id).get ( &xcell[0], ncells );
  var_id = ncid.get_var ( "yCell" );
  (*var_id).get ( &ycell[0], ncells );
  var_id = ncid.get_var ( "zCell" );
  (*var_id).get ( &zcell[0], ncells );
//
//  Close the file.
//
  ncid.close ( );

  return;
}
コード例 #2
0
ファイル: netcdf_mpas.cpp プロジェクト: denyslf/jburkardt-cpp
void netcdf_mpas_read_xyzvertex ( string filename, int nvertices, 
  double xvertex[], double yvertex[], double zvertex[] )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_CELLS gets the cell center coordinates.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    01 January 2011
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Input, int NVERTICES, the number of vertices.
//
//    Output, double XVERTEX[NVERTICES], YVERTEXL[NVERTICES], 
//    ZVERTEX[NVERTICES], the coordinates of the nodes.
//
{
  NcVar *var_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get the variable values.
//
  var_id = ncid.get_var ( "xVertex" );
  (*var_id).get ( &xvertex[0], nvertices );
  var_id = ncid.get_var ( "yVertex" );
  (*var_id).get ( &yvertex[0], nvertices );
  var_id = ncid.get_var ( "zVertex" );
  (*var_id).get ( &zvertex[0], nvertices );
//
//  Close the file.
//
  ncid.close ( );

  return;
}
コード例 #3
0
ファイル: netcdf_mpas.cpp プロジェクト: denyslf/jburkardt-cpp
int netcdf_mpas_read_nvertices ( string filename )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_NVERTICES gets the number of vertices.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    30 December 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Output, int NETCDF_MPAS_READ_NVERTICES, the value of NVERTICES.
//
{
  int nvertices;
  long int nvertices_size;
  NcDim *nvertices_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get NCELLS, which is a NETCDF dimension.
//
  nvertices_id = ncid.get_dim ( "nVertices" );

  nvertices_size = (*nvertices_id).size ( );
//
//  Close the file.
//
  ncid.close ( );

  nvertices = ( int ) nvertices_size;

  return nvertices;
}
コード例 #4
0
ファイル: netcdf_mpas.cpp プロジェクト: denyslf/jburkardt-cpp
void netcdf_mpas_read_verticesoncell ( string filename, int maxedges,
  int ncells, int verticesoncell[] )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_VERTICESONCELLS gets verticesOnCells.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    01 January 2011
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Input, int MAXEDGES, the maximum number of edges for a cell.
//
//    Input, int NCELLS, the number of cells.
//
//    Output, int VERTICESONCELLS[MAXEDGES*NCELLS];
//
{
  NcVar *var_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get the variable values.
//
  var_id = ncid.get_var ( "verticesOnCell" );
  (*var_id).get ( &verticesoncell[0], ncells, maxedges );
//
//  Close the file.
//
  ncid.close ( );

  return;
}
コード例 #5
0
ファイル: netcdf_mpas.cpp プロジェクト: denyslf/jburkardt-cpp
int netcdf_mpas_read_maxedges ( string filename )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_MAXEDGES gets MAXEDGES.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    01 January 2011
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Output, int NETCDF_MPAS_READ_MAXEDGES, the value of MAXEDGES.
//
{
  int maxedges;
  long int maxedges_size;
  NcDim *maxedges_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get MAXEDGES, which is a NETCDF dimension.
//
  maxedges_id = ncid.get_dim ( "maxEdges" );

  maxedges_size = (*maxedges_id).size ( );
//
//  Close the file.
//
  ncid.close ( );

  maxedges = ( int ) maxedges_size;

  return maxedges;
}
コード例 #6
0
ファイル: Arome.cpp プロジェクト: WFRT/gridpp
bool FileArome::isValid(std::string iFilename) {
   bool status = false;
   NcFile file = NcFile(iFilename.c_str(), NcFile::ReadOnly);
   if(file.is_valid()) {
      status = hasDim(file, "time") && hasDim(file, "x") && hasDim(file, "y") &&
               !hasDim(file, "ensemble_member") &&
               hasVar(file, "latitude") && hasVar(file, "longitude");
   }
   file.close();
   return status;
}
コード例 #7
0
ファイル: netcdf_mpas.cpp プロジェクト: denyslf/jburkardt-cpp
void netcdf_mpas_read_cellsonvertex ( string filename, int nvertices,
  int cellsonvertex[] )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_CELLSONVERTEX gets the cellsOnVertex information.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    30 December 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Input, int NEDGES, the number of edges.
//
//    Output, int CELLSONVERTEX[3*NVERTICES];
//
{
  NcVar *var_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get the variable values.
//
  var_id = ncid.get_var ( "cellsOnVertex" );
  (*var_id).get ( &cellsonvertex[0], nvertices, 3 );
//
//  Close the file.
//
  ncid.close ( );

  return;
}
コード例 #8
0
ファイル: zd11_c.cpp プロジェクト: seifer08ms/icebin
boost::function<void()> zd11_c::netcdf_define(NcFile &nc, std::string const &vname)
{
    auto oneDim = giss::get_or_add_dim(nc, "one", 1);
    auto infoVar = nc.add_var((vname + ".info").c_str(), ncDouble, oneDim);
    infoVar->add_att("m", this->m);
    infoVar->add_att("n", this->n);

    auto neDim = nc.add_dim((vname + ".ne").c_str(), this->ne);

    nc.add_var((vname + ".row").c_str(), ncInt, neDim);
    nc.add_var((vname + ".col").c_str(), ncInt, neDim);
    nc.add_var((vname + ".val").c_str(), ncDouble, neDim);

    return boost::bind(&netcdf_write, this, &nc, vname);
}
コード例 #9
0
ファイル: ncutil.hpp プロジェクト: seifer08ms/icebin
std::vector<T> read_vector(NcFile &nc, std::string const &var_name)
{
	// Read points vector
	NcVar *vpoints = nc.get_var(var_name.c_str());
	long npoints = vpoints->get_dim(0)->size();
	std::vector<T> points(npoints);
	vpoints->get(&points[0], npoints);
	return points;
}
コード例 #10
0
NCDataSet* NCDataSetBuilder::createDataSet() {
	returned = true;
	if (RepastProcess::instance()->rank() == 0) {

		NcFile* ncfile = new NcFile(dataSet->file_.c_str(), NcFile::Replace, NULL, 0, NcFile::Offset64Bits);
		NcDim* runDim = ncfile->add_dim("run", 1);
		NcDim* tickDim = ncfile->add_dim("tick");

		ncfile->add_var("tick", ncDouble, tickDim);

		for (size_t i = 0; i < dataSet->dataSources.size(); i++) {
			NCDataSource* ds = dataSet->dataSources[i];
			ncfile->add_var(ds->name().c_str(), ds->ncType(), tickDim, runDim);
		}
		dataSet->ncfile = ncfile;
	}

	return dataSet;
}
コード例 #11
0
ファイル: FlowManager.cpp プロジェクト: dongli/TTS-I
void FlowManager::output(const string &fileName) const
{
    NcFile *file;

    struct stat statInfo;
    int ret = stat(fileName.c_str(), &statInfo);

    NcError ncError(NcError::silent_nonfatal);

    if (ret != 0 || TimeManager::isFirstStep()) {
        file = new NcFile(fileName.c_str(), NcFile::Replace);
    } else {
        file = new NcFile(fileName.c_str(), NcFile::Write);
    }

    if (!file->is_valid()) {
        char message[100];
        sprintf(message, "Failed to open file %s.", fileName.c_str());
        REPORT_ERROR(message)
    }
コード例 #12
0
ファイル: ncutil.hpp プロジェクト: seifer08ms/icebin
boost::function<void ()> netcdf_define(
	NcFile &nc,
	std::string const &vname,
	blitz::Array<T,rank> const &val,
	std::vector<NcDim *> const &ddims = {})
{
	// Type-check for unit strides
	int stride = 1;
	for (int i=rank-1; i>=0; --i) {
		if (val.stride(i) != stride) {
			fprintf(stderr, "Unexpected stride of %d (should be %d) in dimension %d (extent=%d) of %s (rank=%d)\n", val.stride(i), stride, i, val.extent(i), vname.c_str(), rank);
			fprintf(stderr, "Are you trying to write a Fortran-style array?  Use f_to_c() in blitz.hpp first\n");
			throw std::exception();
		}
//printf("(stride=%d) *= (val.extent[%d]=%d)\n", stride, i, val.extent(i));
		stride *= val.extent(i);
	}

	// Create the required dimensions
	NcDim const *dims[rank];
	for (int i=0; i<rank; ++i) {
		if (i >= ddims.size()) {
			char dim_name[200];
			sprintf(dim_name, "%s.dim%d", vname.c_str(), i);
			dims[i] = nc.add_dim(dim_name, val.extent(i));
		} else {
			dims[i] = ddims[i];
		}
        assert(dims[i] != NULL);
	}

	// Create the variable
	NcVar *nc_var = nc.add_var(vname.c_str(), get_nc_type<T>(), rank, dims);
        assert(nc_var != NULL);

	// Write it out (later)
	return boost::bind(&netcdf_write_blitz<T,rank>, nc_var, val);
}
コード例 #13
0
ファイル: NetcdfDataset.hpp プロジェクト: tpajenka/RNNLIB
static int load_nc_dim(const NcFile& ncf, const string& name, bool required = true)
{
	NcDim* d = 0;
	try
	{
		d = ncf.get_dim(name.c_str());
	}
	catch(char* str)
	{
		check(!required, string(str) + "\ndimension " + name + " not found in netcdf file");
	}
	int size = d ? d->size() : 0;
	return size;
}
コード例 #14
0
ファイル: Grid_LonLat.cpp プロジェクト: ckhroulev/glint2
boost::function<void ()> Grid_LonLat::netcdf_define(NcFile &nc, std::string const &vname) const
{
	auto parent = Grid::netcdf_define(nc, vname);

	NcDim *lonbDim = nc.add_dim((vname + ".lon_boundaries.length").c_str(),
		this->lonb.size());
	NcVar *lonb_var = nc.add_var((vname + ".lon_boundaries").c_str(),
		ncDouble, lonbDim);

	NcDim *latbDim = nc.add_dim((vname + ".lat_boundaries.length").c_str(),
		this->latb.size());
	NcVar *latb_var = nc.add_var((vname + ".lat_boundaries").c_str(),
		ncDouble, latbDim);

	NcVar *info_var = nc.get_var((vname + ".info").c_str());
	info_var->add_att("north_pole_cap", north_pole ? 1 : 0);
	info_var->add_att("south_pole_cap", south_pole ? 1 : 0);
	info_var->add_att("points_in_side", points_in_side);
	info_var->add_att("nlon", nlon());
	info_var->add_att("nlat", nlat());

	return boost::bind(&Grid_LonLat_netcdf_write, parent, &nc, this, vname);
}
コード例 #15
0
ファイル: Grid_LonLat.cpp プロジェクト: ckhroulev/glint2
void Grid_LonLat::read_from_netcdf(NcFile &nc, std::string const &vname)
{
	Grid::read_from_netcdf(nc, vname);

	NcVar *info_var = nc.get_var((vname + ".info").c_str());
	north_pole = (giss::get_att(info_var, "north_pole_cap")->as_int(0) != 0);
	south_pole = (giss::get_att(info_var, "south_pole_cap")->as_int(0) != 0);
	points_in_side = giss::get_att(info_var, "points_in_side")->as_int(0);
//	_nlon = giss::get_att(info_var, "nlon")->as_int(0);
//	_nlat = giss::get_att(info_var, "nlat")->as_int(0);

	lonb = giss::read_double_vector(nc, vname + ".lon_boundaries");
	latb = giss::read_double_vector(nc, vname + ".lat_boundaries");
}
コード例 #16
0
ファイル: main.cpp プロジェクト: zkbreeze/OceanVis
    const bool read( const std::string filename )
    {
        if ( m_file ) delete m_file;

        m_filename = filename;
        m_file = new NcFile( filename.c_str(), NcFile::ReadOnly );
        if ( !m_file ) return( false );
        if ( !m_file->is_valid() ) return( false );

        const int ndims = m_file->num_dims();
        for ( int i = 0; i < ndims; i++ )
        {
            m_dims.push_back( new Dim( m_file->get_dim(i) ) );
        }

        const int nvars = m_file->num_vars();
        for ( int i = 0; i < nvars; i++ )
        {
            m_vars.push_back( new Var( m_file->get_var(i) ) );
        }

        return( true );
    }
コード例 #17
0
void CopyNcVarIfExists(
	NcFile & ncIn,
	NcFile & ncOut,
	const std::string & strVarName,
	bool fCopyAttributes,
	bool fCopyData
) {
	// Turn off fatal errors in NetCDF
	NcError error(NcError::silent_nonfatal);

	NcVar * var = ncIn.get_var(strVarName.c_str());
	if (var != NULL) {
		CopyNcVar(ncIn, ncOut, strVarName, fCopyAttributes, fCopyData);
	}
}
コード例 #18
0
ファイル: ConstantSet.cpp プロジェクト: seifer08ms/icebin
void ConstantSet::netcdf_define(NcFile &nc, std::string const &vname)
{
	// Create the variable to store our constants
	NcVar *ncvar = giss::get_var_safe(nc, vname.c_str(), false);
	if (!ncvar) {
		auto oneDim = giss::get_or_add_dim(nc, "one", 1);
		ncvar = nc.add_var(vname.c_str(), ncDouble, oneDim);
	}

	// Store the constants as attributes
	for (int i=0; i<fields.size_withunit(); ++i) {
		CoupledField const &field(fields.field(i));
		ncvar->add_att(field.name.c_str(), vals[i]);
		ncvar->add_att((field.name + "_units").c_str(), field.units.c_str());
		ncvar->add_att((field.name + "_description").c_str(), field.description.c_str());
	}
}
コード例 #19
0
ファイル: ncutil.hpp プロジェクト: seifer08ms/icebin
boost::function<void ()> netcdf_define(
	NcFile &nc,
	std::string const &vname_prefix,	// vname = vname_prefix + vmeta.name
	VarMetaData const &vmeta,
	blitz::Array<T,rank> const &val,
	std::vector<NcDim *> const &ddims = {})
{
	std::string vname = vname_prefix + vmeta.get_name();
	auto ret(netcdf_define(nc, vname, val, ddims));
	NcVar *nc_var = nc.get_var(vname.c_str());

	std::string const &description(vmeta.get_description());
	if (description != "") nc_var->add_att("long_name", description.c_str());

	std::string const &units(vmeta.get_units());
	if (units != "") nc_var->add_att("units", units.c_str());

	return ret;
}
コード例 #20
0
void TrajectoryForecaster::readTime(const NcFile &data )
{

  float *year = read1DimVar(data, "year");
  float *month = read1DimVar(data, "month");
  float *day = read1DimVar(data, "day");
  float *hour = read1DimVar(data, "hour");

  int n = data.get_var("year")->num_vals();

  for ( int i=0; i<n; i++ )
  {
    time.push_back( ptime( boost::gregorian::date(year[i],month[i],day[i]), boost::posix_time::hours(hour[i])) );
  }

  delete [] year;
  delete [] month;
  delete [] day;
  delete [] hour;
}
コード例 #21
0
ファイル: ncutil.hpp プロジェクト: seifer08ms/icebin
blitz::Array<T,rank> read_blitz(NcFile &nc, std::string const &var_name)
{
	// Read points vector
	NcVar *vpoints = nc.get_var(var_name.c_str());
	int ndims = vpoints->num_dims();
	if (ndims != rank) {
		fprintf(stderr, "NetCDF variable %s has rank %d, expected rank %d\n",
			var_name.c_str(), ndims, rank);
		throw std::exception();
	}

	blitz::TinyVector<int,rank> shape(0);
	long counts[rank];
	for (int i=0; i<rank; ++i) {
		shape[i] = vpoints->get_dim(i)->size();
printf("read_blitz: shape[%d] = %d\n", i, shape[i]);
		counts[i] = shape[i];
	}

	blitz::Array<T,rank> ret(shape);
for (int i=0; i<rank; ++i) printf("read_blitz: ret.extent(%d) = %d\n", i, ret.extent(i));
	vpoints->get(ret.data(), counts);
	return ret;
}
コード例 #22
0
void kernel::openKernelNetcdf () {
  
  // Open the kernel file output from the solver.
  
  using namespace netCDF;
  using namespace netCDF::exceptions;

  // Local mpi variables.
  int myRank = MPI::COMM_WORLD.Get_rank ();
  int worldSize = MPI::COMM_WORLD.Get_size ();
  
  if (myRank == 0)
    std::cout << "Opening kernel file: " << blu << fileName << rst << " with " << worldSize 
      << " processors." << std::flush << std::endl;
  
  try {

    // Open the file.
    NcFile dataFile (fileName, NcFile::read);
    
    // Get variable.
    NcVar NcKernel = dataFile.getVar ("rawKernel");
    
    // Get array sizes.
    NcDim procDim = NcKernel.getDim (0);
    NcDim kernDim = NcKernel.getDim (1);  
    numWroteProcs = procDim.getSize ();
    numGLLPoints  = kernDim.getSize ();
  
    if (myRank == 0)
      std::cout << mgn << "Number of solver processers:\t " << numWroteProcs
        << "\nNumber of GLL points:\t\t " << numGLLPoints << rst << "\n" << std::endl;
    
    // Set up the MPI read chunk array.
    std::vector<size_t> start;
    std::vector<size_t> count;
    start.resize(2);
    count.resize(2);
    
    // Row major MPI read. Start at [myRank, 0]
    start[0] = myRank;
    start[1] = 0;
    
    // Read until end of line [myrank, numGLLPoints]
    count[0] = 1;
    count[1] = numGLLPoints;
    
    // Of course only read in with the number of processors used to create the file.
    if (myRank < numWroteProcs) {
      rawKernel = new float [numGLLPoints];
      NcKernel.getVar (start, count, rawKernel);
    }
        
    // Destructor will close file.
    
  } catch (NcException &error) {
    
    std::cout << error.what() << std::endl;
    std::cout << red << "Failure reading: " << fileName << std::endl;
    std::exit (EXIT_FAILURE);
    
  }
    
}
コード例 #23
0
ファイル: XRIT2NetCDF.cpp プロジェクト: ARPA-SIMC/meteosatlib
//
// Creates NetCDF product
//
bool NetCDFProduct(MSG_header *PRO_head, MSG_data* PRO_data,
                   int totalsegs, int *segsindexes,
		   MSG_header *header, MSG_data *msgdat)
{
  struct tm *tmtime;
  char NcName[1024];
  char reftime[64];
  char projname[16];
  int wd, hg;
  int bpp;
  int ncal;
  float *cal;
  NcVar *ivar;
  NcVar *tvar;
  NcDim *tdim;
  NcDim *ldim;
  NcDim *cdim;
  NcDim *caldim;

  int npix = header[0].image_structure->number_of_columns;
  int nlin = header[0].image_structure->number_of_lines;
  size_t npixperseg = npix*nlin;

  size_t total_size = totalsegs*npixperseg;
  MSG_SAMPLE *pixels = new MSG_SAMPLE[total_size];
  memset(pixels, 0, total_size*sizeof(MSG_SAMPLE));
  size_t pos = 0;
  for (int i = 0; i < totalsegs; i ++)
  {
    if (segsindexes[i] >= 0)
      memcpy(pixels+pos, msgdat[segsindexes[i]].image->data,
             npixperseg*sizeof(MSG_SAMPLE));
    pos += npixperseg;
  }

  nlin = nlin*totalsegs;

  // Manage subarea
  if (is_subarea)
  {
    if (AreaLinStart < 0                             ||
        AreaLinStart > nlin - AreaNlin ||
        AreaNlin > nlin - AreaLinStart)
    {
      std::cerr << "Wrong Subarea in lines...." << std::endl;
      throw;
    }
    if (AreaPixStart < 0               ||
        AreaPixStart > npix - AreaNpix ||
        AreaNpix > npix - AreaPixStart)
    {
      std::cerr << "Wrong Subarea in Pixels...." << std::endl;
      throw;
    }
    size_t newsize = AreaNpix * AreaNlin;
    MSG_SAMPLE *newpix = new MSG_SAMPLE[newsize];
    memset(newpix, 0, newsize*sizeof(MSG_SAMPLE));
    for (int i = 0; i < AreaNlin; i ++)
      memcpy(newpix + i * AreaNpix,
             pixels + (AreaLinStart + i) * npix + AreaPixStart,
             AreaNpix * sizeof(MSG_SAMPLE));
    delete [ ] pixels;
    pixels = newpix;
    total_size = newsize;
  }
  else
  {
    AreaNpix = npix;
    AreaNlin = nlin;
  }

  tmtime = PRO_data->prologue->image_acquisition.PlannedAquisitionTime.TrueRepeatCycleStart.get_timestruct( );
  t_enum_MSG_spacecraft spc = header[0].segment_id->spacecraft_id;
  uint_1 chn = header[0].segment_id->spectral_channel_id;
  float sublon = header[0].image_navigation->subsatellite_longitude;
  int cfac = header[0].image_navigation->column_scaling_factor;
  int lfac = header[0].image_navigation->line_scaling_factor;
  int coff = header[0].image_navigation->column_offset;
  int loff = header[0].image_navigation->line_offset;
  float sh = header[0].image_navigation->satellite_h;

  char *channelstring = strdup(MSG_channel_name(spc, chn).c_str( ));
  char *channel = chname(channelstring, strlen(channelstring) + 1);

  // Build up output NetCDF file name and open it
  sprintf( NcName, "%s_%4d%02d%02d_%02d%02d.nc", channel,
           tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday,
	   tmtime->tm_hour, tmtime->tm_min );
  NcFile ncf ( NcName , NcFile::Replace );
  if (! ncf.is_valid()) return false;

  // Fill arrays on creation
  ncf.set_fill(NcFile::Fill);

  // Add Global Attributes
  if (! ncf.add_att("Satellite", MSG_spacecraft_name(spc).c_str()))
	            return false;
  sprintf(reftime, "%04d-%02d-%02d %02d:%02d:00 UTC",
      tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday,
      tmtime->tm_hour, tmtime->tm_min);
  if (! ncf.add_att("Antenna", "Fixed") ) return false;
  if (! ncf.add_att("Receiver", "HIMET") ) return false;
  if (! ncf.add_att("Time", reftime) ) return false;
  if (! ncf.add_att("Area_Name", "SpaceView" ) ) return false;
  sprintf(projname, "GEOS(%3.1f)", sublon);
  if (! ncf.add_att("Projection", projname) ) return false;
  if (! ncf.add_att("Columns", AreaNpix ) ) return false;
  if (! ncf.add_att("Lines", AreaNlin ) ) return false;
  if (! ncf.add_att("SampleX", 1.0 ) ) return false;
  if (! ncf.add_att("SampleY", 1.0 ) ) return false;
  if (! ncf.add_att("AreaStartPix", AreaPixStart ) ) return false;
  if (! ncf.add_att("AreaStartLin", AreaLinStart ) ) return false;
  if (! ncf.add_att("Column_Scale_Factor", cfac) ) return false;
  if (! ncf.add_att("Line_Scale_Factor", lfac) ) return false;
  if (! ncf.add_att("Column_Offset", coff) ) return false;
  if (! ncf.add_att("Line_Offset", loff) ) return false;
  if (! ncf.add_att("Orbit_Radius", sh) ) return false;
  if (! ncf.add_att("Longitude", sublon) ) return false;
  if (! ncf.add_att("NortPolar", 1) ) return false;
  if (! ncf.add_att("NorthSouth", 1) ) return false;
  if (! ncf.add_att("title", TITLE) ) return false;
  if (! ncf.add_att("Institution", INSTITUTION) ) return false;
  if (! ncf.add_att("Type", TYPE) ) return false;
  if (! ncf.add_att("Version", HIMET_VERSION) ) return false;
  if (! ncf.add_att("Conventions", "COARDS") ) return false;
  if (! ncf.add_att("history", "Created from raw data") ) return false;

  // Dimensions
  wd = AreaNpix;
  hg = AreaNlin;
  bpp = header[0].image_structure->number_of_bits_per_pixel;
  ncal = (int) pow(2.0, bpp);

  tdim = ncf.add_dim("time");
  if (!tdim->is_valid()) return false;
  ldim = ncf.add_dim("line", hg);
  if (!ldim->is_valid()) return false;
  cdim = ncf.add_dim("column", wd);
  if (!cdim->is_valid()) return false;
  caldim = ncf.add_dim("calibration", ncal);
  if (!caldim->is_valid()) return false;

  // Get calibration values
  cal = PRO_data->prologue->radiometric_proc.get_calibration((int) chn, bpp);

  // Add Calibration values
  NcVar *cvar = ncf.add_var("calibration", ncFloat, caldim);
  if (!cvar->is_valid()) return false;
  cvar->add_att("long_name", "Calibration coefficients");
  cvar->add_att("variable", channel);
  if (chn > 3 && chn < 12)
    cvar->add_att("units", "K");
  else
    cvar->add_att("units", "mW m^-2 sr^-1 (cm^-1)^-1");
  if (!cvar->put(cal, ncal)) return false;

  tvar = ncf.add_var("time", ncDouble, tdim);
  if (!tvar->is_valid()) return false;
  tvar->add_att("long_name", "Time");
  tvar->add_att("units", "seconds since 2000-01-01 00:00:00 UTC");
  double atime;
  time_t ttime;
  extern long timezone;
  ttime = mktime(tmtime);
  atime = ttime - 946684800 - timezone;
  if (!tvar->put(&atime, 1)) return false;

  ivar = ncf.add_var(channel, ncShort, tdim, ldim, cdim);
  if (!ivar->is_valid()) return false;
  if (!ivar->add_att("add_offset", 0.0)) return false;
  if (!ivar->add_att("scale_factor", 1.0)) return false;
  if (!ivar->add_att("chnum", chn)) return false;

  // Write output values
  if (!ivar->put((const short int *) pixels, 1, hg, wd)) return false;

  // Close NetCDF output
  (void) ncf.close( );

  delete [ ] pixels;
  delete [ ] cal;

  return( true );
}
コード例 #24
0
ファイル: ice_to_mesh.cpp プロジェクト: denyslf/jburkardt-cpp
void size_read ( string filename, int *dim, int *vertices, int *edges,
  int *triangles, int *quadrilaterals, int *tetrahedrons, int *hexahedrons )

//*****************************************************************************80
//
//  Purpose:
//
//    SIZE_READ reads ICE sizes from a NETCDF file.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    30 November 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Pascal Frey,
//    MEDIT: An interactive mesh visualization software,
//    Technical Report RT-0253,
//    Institut National de Recherche en Informatique et en Automatique,
//    03 December 2001.
//
//  Parameters:
//
//    Input, string FILENAME, the name of the file to be read.
//    Ordinarily, the name should include the extension ".nc".
//
//    Output, int *DIM, the spatial dimension, which should be 2 or 3.
//
//    Output, int *VERTICES, the number of vertices.
//
//    Output, int *EDGES, the number of edges (may be 0).
//
//    Output, int *TRIANGLES, the number of triangles (may be 0).
//
//    Output, int *QUADRILATERALS, the number of quadrilaterals (may be 0).
//
//    Output, int *TETRAHEDRONS, the number of tetrahedrons (may be 0).
//
//    Output, int *HEXAHEDRONS, the number of hexahedrons (may be 0).
//
{
  NcDim *dim_dimension;
  NcDim *dim_edges;
  NcDim *dim_eight;
  NcDim *dim_four;
  NcDim *dim_hexahedrons;
  NcToken dim_name;
  int dim_num;
  NcDim *dim_quadrilaterals;
  NcDim *dim_tetrahedrons;
  NcDim *dim_three;
  NcDim *dim_triangles;
  NcDim *dim_two;
  NcDim *dim_vertices;
  NcDim *dim_pointer;
  int i;
//
//  Initialize everything to nothing.
//
  *dim = 0;
  *vertices = 0;
  *edges = 0;
  *triangles = 0;
  *quadrilaterals = 0;
  *tetrahedrons = 0;
  *hexahedrons = 0;
//
//  Open the file in "read only" mode.
//
  NcFile dataFile ( filename.c_str ( ), NcFile::ReadOnly );

  if ( !dataFile.is_valid ( ) )
  {
    cout << "\n";
    cout << "SIZE_READ: Fatal error!\n";
    cout << "  Could not open file.\n";
    exit ( 1 );
  }
//
//  Get the dimension information.
//
//  I would much prefer to write "0" as the size of certain dimensions, but I am not
//  allowed to, so I simply omit them from the file.
//
//  Therefore, when I open the file and try to determine dimensions, some dimensions
//  are "missing", which I would have presumed I could discover painlessly by asking
//  for pointers to them, and getting NULLs back.  But that doesn't seem to work either.
//
//  So my bonehead backup is simply to read all the dimensions by index, retrieve
//  their names, and see what I find.
//
  dim_num = dataFile.num_dims ( );

  for ( i = 0; i < dim_num; i++ )
  {
    dim_pointer = dataFile.get_dim ( i );
    dim_name = dim_pointer->name ( );

    if ( !strcmp ( dim_name, "Dimension" ) )
    {
      *dim = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Vertices" ) )
    {
      *vertices = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Edges" ) )
    {
      *edges = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Triangles" ) )
    {
      *triangles = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Quadrilaterals" ) )
    {
      *quadrilaterals = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Tetrahedrons" ) )
    {
      *tetrahedrons = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Hexahedrons" ) )
    {
      *hexahedrons = dim_pointer->size ( );
    }
    else
    {
      cout << "  Ignoring information about dimension \"" << dim_name << "\".\n";
    }
  }
//
//  Close the file.
//
  dataFile.close ( );

  return;
}
コード例 #25
0
ファイル: CCohortdriver.cpp プロジェクト: fmyuan/ptlndDOSTEM
void CCohortdriver::createSoilClimate(BgcData *bd, EnvData *ed, Vegetation_Env *ve,
                                    string& datadir){
	
	string file = datadir+ "calirestart.nc";
	NcFile* resFile = new NcFile(file.c_str(), NcFile::Replace);

	NcDim * chtD = resFile->add_dim("CHTID", 1);
	NcDim * monD = resFile->add_dim("MON", 12);
	NcDim * layD = resFile->add_dim("LAYER", MAX_SOI_LAY);

	NcVar* drgV = resFile->add_var("DRG",ncInt, chtD);
	NcVar* vegV = resFile->add_var("VEG",ncInt, chtD);
	NcVar* numslV = resFile->add_var("NUMSL",ncInt, chtD);

	NcVar* rsoilcV = resFile->add_var("RSOILC", ncDouble, layD);
	NcVar* nsoilcV = resFile->add_var("NSOILC", ncDouble, layD);
	NcVar* dzV = resFile->add_var("DZ", ncDouble, layD);
	NcVar* typeV = resFile->add_var("TYPE", ncDouble, layD);
	NcVar* poroV = resFile->add_var("PORO", ncDouble, layD);
	NcVar* rootfracV = resFile->add_var("ROOTFRAC", ncDouble, layD);

	NcVar* taV = resFile->add_var("TA",ncDouble, monD);
	NcVar* growV = resFile->add_var("GROW",ncDouble, monD);
	NcVar* co2V = resFile->add_var("CO2",ncDouble, monD);
	NcVar* petV = resFile->add_var("PET",ncDouble, monD);
	NcVar* eetV = resFile->add_var("EET",ncDouble, monD);
	NcVar* parV = resFile->add_var("PAR",ncDouble, monD);
	NcVar* envlaiV = resFile->add_var("ENVLAI",ncFloat, monD);

	NcVar* tsV = resFile->add_var("TS", ncDouble, monD, layD);
	NcVar* ch4V = resFile->add_var("CH4",ncDouble, monD, layD);
	NcVar* liqV = resFile->add_var("LIQ",ncDouble, monD, layD);
	NcVar* vwcV = resFile->add_var("VSM",ncDouble, monD, layD);
	NcVar* swsV = resFile->add_var("SWS",ncDouble, monD, layD);
	NcVar* iceV = resFile->add_var("ICE",ncDouble, monD, layD);

	NcVar* yreetV = resFile->add_var("YREET",ncDouble, chtD);
	NcVar* yrpetV = resFile->add_var("YRPET",ncDouble, chtD);
	NcVar* yrco2V = resFile->add_var("YRCO2",ncDouble, chtD);
	NcVar* prveetmxV = resFile->add_var("PRVEETMX",ncDouble, chtD);
	NcVar* prvpetmxV = resFile->add_var("PRVPETMX",ncDouble, chtD);
	
	numslV->put(&ed->m_soid.actual_num_soil, 1);
	drgV->put(&ed->cd->drgtype, 1);
	vegV->put(&ed->cd->vegtype, 1);

	poroV->put(&ed->m_sois.por[0], MAX_SOI_LAY);
	typeV->put(&ed->m_sois.type[0], MAX_SOI_LAY);
	dzV->put(&ed->m_sois.dz[0], MAX_SOI_LAY);
	rsoilcV->put(&bd->m_sois.reac[0], MAX_SOI_LAY);
	nsoilcV->put(&bd->m_sois.nonc[0], MAX_SOI_LAY);
	rootfracV->put(&ed->m_sois.rootfrac[0], MAX_SOI_LAY);

	tsV->put(&ed->eq_ts[0][0], 12, MAX_SOI_LAY);
	ch4V->put(&ed->eq_ch4[0][0], 12, MAX_SOI_LAY);
	liqV->put(&ed->eq_liq[0][0], 12, MAX_SOI_LAY);
	iceV->put(&ed->eq_ice[0][0], 12, MAX_SOI_LAY);
	vwcV->put(&ed->eq_vwc[0][0], 12, MAX_SOI_LAY);
	swsV->put(&ed->eq_sws[0][0], 12, MAX_SOI_LAY);
	
	taV->put(&ed->eq_ta[0], 12);
	petV->put(&ed->eq_pet[0], 12);
    eetV->put(&ed->eq_eet[0], 12);
	co2V->put(&ed->eq_co2[0], 12);
	parV->put(&ed->eq_par[0], 12);
	growV->put(&ed->eq_grow[0], 12);
	envlaiV->put(&ve->envlaiall[0], 12);

	yreetV->put(&ed->eq_y_eet, 1);
	yrpetV->put(&ed->eq_y_pet, 1);
	yrco2V->put(&ed->eq_y_co2, 1);

	prveetmxV->put(&ed->eq_prveetmx);
	prvpetmxV->put(&ed->eq_prvpetmx);
	
	resFile->close();
	delete resFile;   //Yuan: if not, memory leaking may occur

//	exit(0);
};
コード例 #26
0
ファイル: ice_to_mesh.cpp プロジェクト: denyslf/jburkardt-cpp
void data_read ( string filename, int dim, int vertices, int edges,
  int triangles, int quadrilaterals, int tetrahedrons, int hexahedrons,
  double vertex_coordinate[], int vertex_label[], int edge_vertex[],
  int edge_label[], int triangle_vertex[], int triangle_label[],
  int quadrilateral_vertex[], int quadrilateral_label[],
  int tetrahedron_vertex[], int tetrahedron_label[], int hexahedron_vertex[],
  int hexahedron_label[] )

//****************************************************************************80
//
//  Purpose:
//
//    DATA_READ reads ICE data from a NETCDF file.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    30 November 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Pascal Frey,
//    MEDIT: An interactive mesh visualization software,
//    Technical Report RT-0253,
//    Institut National de Recherche en Informatique et en Automatique,
//    03 December 2001.
//
//    Russ Rew,
//    The NetCDF C++ Interface Guide,
//    Unidata Program Center, August 2008.
//
//  Parameters:
//
//    Input, string FILENAME, the name of the file to be read.
//    Ordinarily, the name should include the extension ".nc".
//
//    Input, int DIM, the spatial dimension, which should be 2 or 3.
//
//    Input, int VERTICES, the number of vertices.
//
//    Input, int EDGES, the number of edges (may be 0).
//
//    Input, int TRIANGLES, the number of triangles (may be 0).
//
//    Input, int QUADRILATERALS, the number of quadrilaterals (may be 0).
//
//    Input, int TETRAHEDRONS, the number of tetrahedrons (may be 0).
//
//    Input, int HEXAHEDRONS, the number of hexahedrons (may be 0).
//
//    Output, double VERTEX_COORDINATE[DIM*VERTICES], the coordinates
//    of each vertex.
//
//    Output, int VERTEX_LABEL[VERTICES], a label for each vertex.
//
//    Output, int EDGE_VERTEX[2*EDGES], the vertices that form each edge.
//
//    Output, int EDGE_LABEL[EDGES], a label for each edge.
//
//    Output, int TRIANGLE_VERTEX[3*TRIANGLES], the vertices that form
//    each triangle.
//
//    Output, int TRIANGLE_LABEL[TRIANGLES], a label for each triangle.
//
//    Output, int QUADRILATERAL_VERTEX[4*QUADRILATERALS], the vertices that
//    form each quadrilateral.
//
//    Output, int QUADRILATERAL_LABEL[QUADRILATERALS], a label for
//    each quadrilateral.
//
//    Output, int TETRAHEDRON_VERTEX[4*TETRAHEDRONS], the vertices that
//    form each tetrahedron.
//
//    Output, int TETRAHEDRON_LABEL[TETRAHEDRONS], a label for
//    each tetrahedron.
//
//    Output, int HEXAHEDRON_VERTEX[8*HEXAHEDRONS], the vertices that form
//    each hexahedron.
//
//    Output, int HEXAHEDRON_LABEL[HEXAHEDRONS], a label for each hexahedron.
//
{
//
//  Open the file in "read only" mode.
//
  NcFile dataFile ( filename.c_str ( ), NcFile::ReadOnly );

  if ( !dataFile.is_valid ( ) )
  {
    cout << "\n";
    cout << "DATA_READ: Fatal error!\n";
    cout << "  Could not open file.\n";
    exit ( 1 );
  }
//
//  Vertices.
//
  NcVar *var_vertex_coordinate = dataFile.get_var ( "Vertex_Coordinate" );
  var_vertex_coordinate->get ( &vertex_coordinate[0], dim, vertices );

  NcVar *var_vertex_label = dataFile.get_var ( "Vertex_Label" );
  var_vertex_label->get ( &vertex_label[0], vertices );
//
//  Edges.
//
  if ( 0 < edges )
  {
    NcVar *var_edge_vertex = dataFile.get_var ( "Edge_Vertex" );
    var_edge_vertex->get ( &edge_vertex[0], 2, edges );

    NcVar *var_edge_label = dataFile.get_var ( "Edge_Label" );
    var_edge_label->get ( &edge_label[0], edges );
  }
//
//  Triangles.
//
  if ( 0 < triangles )
  {
    NcVar *var_triangle_vertex = dataFile.get_var ( "Triangle_Vertex" );
    var_triangle_vertex->get ( &triangle_vertex[0], 3, triangles );

    NcVar *var_triangle_label = dataFile.get_var ( "Triangle_Label" );
    var_triangle_label->get ( &triangle_label[0], triangles );
  }
//
//  Quadrilaterals.
//
  if ( 0 < quadrilaterals )
  {
    NcVar *var_quadrilateral_vertex = dataFile.get_var ( "Quadrilateral_Vertex" );
    var_quadrilateral_vertex->get ( &quadrilateral_vertex[0], 4, quadrilaterals );

    NcVar *var_quadrilateral_label = dataFile.get_var ( "Quadrilateral_Label" );
    var_quadrilateral_label->get ( &quadrilateral_label[0], quadrilaterals );
  }
//
//  Tetrahedrons.
//
  if ( 0 < tetrahedrons )
  {
    NcVar *var_tetrahedron_vertex = dataFile.get_var ( "Tetrahedron_Vertex" );
    var_tetrahedron_vertex->get ( &tetrahedron_vertex[0], 4, tetrahedrons );

    NcVar *var_tetrahedron_label = dataFile.get_var ( "Tetrahedron_Label" );
    var_tetrahedron_label->get ( &tetrahedron_label[0], tetrahedrons );
  }
//
//  Hexahedrons.
//
  if ( 0 < hexahedrons )
  {
    NcVar *var_hexahedron_vertex = dataFile.get_var ( "Hexahedron_Vertex" );
    var_hexahedron_vertex->get ( &hexahedron_vertex[0], 8, hexahedrons );

    NcVar *var_hexahedron_label = dataFile.get_var ( "Hexahedron_Label" );
    var_hexahedron_label->get ( &hexahedron_label[0], hexahedrons );
  }
//
//  Close the file.
//
  dataFile.close ( );

  return;
}
コード例 #27
0
void CopyNcVar(
	NcFile & ncIn,
	NcFile & ncOut,
	const std::string & strVarName,
	bool fCopyAttributes,
	bool fCopyData
) {
	if (!ncIn.is_valid()) {
		_EXCEPTIONT("Invalid input file specified");
	}
	if (!ncOut.is_valid()) {
		_EXCEPTIONT("Invalid output file specified");
	}
	NcVar * var = ncIn.get_var(strVarName.c_str());
	if (var == NULL) {
		_EXCEPTION1("NetCDF file does not contain variable \"%s\"",
			strVarName.c_str());
	}

	NcVar * varOut;

	std::vector<NcDim *> dimOut;
	dimOut.resize(var->num_dims());

	std::vector<long> counts;
	counts.resize(var->num_dims());

	long nDataSize = 1;

	for (int d = 0; d < var->num_dims(); d++) {
		NcDim * dimA = var->get_dim(d);

		dimOut[d] = ncOut.get_dim(dimA->name());

		if (dimOut[d] == NULL) {
			if (dimA->is_unlimited()) {
				dimOut[d] = ncOut.add_dim(dimA->name());
			} else {
				dimOut[d] = ncOut.add_dim(dimA->name(), dimA->size());
			}

			if (dimOut[d] == NULL) {
				_EXCEPTION2("Failed to add dimension \"%s\" (%i) to file",
					dimA->name(), dimA->size());
			}
		}
		if (dimOut[d]->size() != dimA->size()) {
			if (dimA->is_unlimited() && !dimOut[d]->is_unlimited()) {
				_EXCEPTION2("Mismatch between input file dimension \"%s\" and "
					"output file dimension (UNLIMITED / %i)",
					dimA->name(), dimOut[d]->size());
			} else if (!dimA->is_unlimited() && dimOut[d]->is_unlimited()) {
				_EXCEPTION2("Mismatch between input file dimension \"%s\" and "
					"output file dimension (%i / UNLIMITED)",
					dimA->name(), dimA->size());
			} else if (!dimA->is_unlimited() && !dimOut[d]->is_unlimited()) {
				_EXCEPTION3("Mismatch between input file dimension \"%s\" and "
					"output file dimension (%i / %i)",
					dimA->name(), dimA->size(), dimOut[d]->size());
			}
		}

		counts[d] = dimA->size();
		nDataSize *= counts[d];
	}

	// ncByte / ncChar type
	if ((var->type() == ncByte) || (var->type() == ncChar)) {
		DataVector<char> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		var->get(&(data[0]), &(counts[0]));
		varOut->put(&(data[0]), &(counts[0]));
	}

	// ncShort type
	if (var->type() == ncShort) {
		DataVector<short> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		if (fCopyData) {
			var->get(&(data[0]), &(counts[0]));
			varOut->put(&(data[0]), &(counts[0]));
		}
	}

	// ncInt type
	if (var->type() == ncInt) {
		DataVector<int> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		if (fCopyData) {
			var->get(&(data[0]), &(counts[0]));
			varOut->put(&(data[0]), &(counts[0]));
		}
	}

	// ncFloat type
	if (var->type() == ncFloat) {
		DataVector<float> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		if (fCopyData) {
			var->get(&(data[0]), &(counts[0]));
			varOut->put(&(data[0]), &(counts[0]));
		}
	}

	// ncDouble type
	if (var->type() == ncDouble) {
		DataVector<double> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		if (fCopyData) {
			var->get(&(data[0]), &(counts[0]));
			varOut->put(&(data[0]), &(counts[0]));
		}
	}

	// ncInt64 type
	if (var->type() == ncInt64) {
		DataVector<ncint64> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		if (fCopyData) {
			var->get(&(data[0]), &(counts[0]));
			varOut->put(&(data[0]), &(counts[0]));
		}
	}

	// Check output variable exists
	if (varOut == NULL) {
		_EXCEPTION1("Unable to create output variable \"%s\"",
			var->name());
	}

	// Copy attributes
	if (fCopyAttributes) {
		CopyNcVarAttributes(var, varOut);
	}
}
コード例 #28
0
ファイル: netcdf_mpas.cpp プロジェクト: denyslf/jburkardt-cpp
void netcdf_mpas_report ( string filename )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_REPORT reads an MPAS NETCDF grid file and reports.
//
//  Discussion:
//
//    In this example, we want to extract all the information from a file
//    of unknown type.
//
//    Here, we are pretending we have no idea what's in the file, so we
//    have to go step by step, making inquiries to NETCDF.
//
//    As we go, we print out what we have discovered.  We don't attempt
//    to return any of the data.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    29 December 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string FILENAME, the name of the NETCDF file to examine.
//
{
  NcAtt *att;
  NcDim *dim;
  int i;
  int j;
  long int len;

  NcToken name;
  int num_atts;
  int num_dims;
  int num_vars;
  NcType type;
  NcDim *unlimdimid;
  NcVar *var;

  cout << "\n";
  cout << "NETCDF_MPAS_REPORT:\n";
  cout << "  Report the information stored in a NETCDF\n";
  cout << "  file.  Although we wish to examine a file containing\n";
  cout << "  grid data generated by MPAS, we will assume we do not\n";
  cout << "  have any idea of what is in the file.  So we just read,\n";
  cout << "  inquire, and print out.\n";

  cout << "\n";
  cout << "  The name of the file is \"" << filename << "\"\n";
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Return information about the NETCDF file.
//
  num_dims = ncid.num_dims ( );
  num_vars = ncid.num_vars ( );
  num_atts = ncid.num_atts ( );
  unlimdimid = ncid.rec_dim ( );

  cout << "\n";
  cout << "PRIMARY PARAMETERS:\n";
  cout << "\n";
  cout << "  The number of dimensions         NUM_DIMS   = " << num_dims << "\n";
  cout << "  The number of variables          NUM_VARS   = " << num_vars << "\n";
  cout << "  The number of global attributes  NUM_ATTS   = " << num_atts << "\n";
  cout << "  The unlimited dimension (if any) UNLIMDIMID = \"" << (*unlimdimid).name ( ) << "\"\n";
//
//  Retrieve global attributes.
//  First, we must evaluate the constant "NC_GLOBAL".
//
//  nc_global = netcdf.getConstant ( 'NC_GLOBAL' );

  cout << "\n";
  cout << "GLOBAL ATTRIBUTES:\n";
  cout << " Att  --------Name--------  Type   Len\n";
  cout << "\n";
  for ( i = 0; i < num_atts; i++ )
  {
    att = ncid.get_att ( i );
    name = (*att).name ( );
    type = (*att).type ( );
    len = (*att).num_vals ( );
    cout << "  " << setw(2) << i
         << "  \"" << setw(18) << name << "\""
         << "  " << setw(4) << type
         << "  " << setw(4) << len << "\n";
  }
//
//  Determine names and extents of dimensions.
//  Since each NAME is a char array, we make a cell array to hold them.
//
  cout << "\n";
  cout << "DIMENSIONS:\n";
  cout << " Dim  --------Name--------  Extent\n";
  cout << "\n";

  for ( i = 0; i < num_dims; i++ )
  {
    dim = ncid.get_dim ( i );
    name = (*dim).name ( );
    len = (*dim).size ( );
    cout << "  " << setw(2) << i
         << "  \"" << setw(18) << name << "\""
         << "  " << setw(6) << len << "\n";
  }
//
//  Get variable names, types, dimensions, number of attributes.
//
  cout << "\n";
  cout << "VARIABLES:\n";
  cout << " Var  --------Name--------  Type Natts Ndims  Dims\n";
  cout << "\n";

  for ( i = 0; i < num_vars; i++ )
  {
    var = ncid.get_var ( i );
    name = (*var).name ( );
    type = (*var).type ( );
    num_dims = (*var).num_dims ( );
    num_atts = (*var).num_atts ( );
    cout << "  " << setw(2) << i
         << "  \"" << setw(18) << name << "\""
         << "  " << setw(4) << type
         << "  " << setw(4) << num_atts
         << "  " << setw(4) << num_dims
         << "  ";
    for ( j = 0; j < num_dims; j++ )
    {
      dim = (*var).get_dim ( j );
      if ( j == 0 )
      {
        cout << "[";
      }
      cout << (*dim).name ( );
      if ( j < num_dims - 1 )
      {
        cout <<",";
      }
      else
      {
        cout << "]";
      }
    }
    cout << "\n";
  }
//
//  Close the file.
//
  ncid.close ( );

  return;
}
コード例 #29
0
ファイル: DataVar.cpp プロジェクト: svn2github/Escript
//
// Reads variable data from dump file
//
bool DataVar::initFromFile(const string& filename, const_DomainChunk_ptr dom)
{
    cleanup();
    
#if ESYS_HAVE_NETCDF
    NcError ncerr(NcError::silent_nonfatal);    
    NcFile* input = new NcFile(filename.c_str());
    if (!input->is_valid()) {
        cerr << "Could not open input file " << filename << "." << endl;
        delete input;
        return false;
    }

    NcDim* dim;
    NcAtt* att;

    att = input->get_att("type_id");
    int typeID = att->as_int(0);
    if (typeID != 2) {
        cerr << "WARNING: Only expanded data supported!" << endl;
        delete input;
        return false;
    }

    att = input->get_att("rank");
    rank = att->as_int(0);

    dim = input->get_dim("num_data_points_per_sample");
    ptsPerSample = dim->size();

    att = input->get_att("function_space_type");
    funcSpace = att->as_int(0);

    centering = dom->getCenteringForFunctionSpace(funcSpace);

    dim = input->get_dim("num_samples");
    numSamples = dim->size();

#ifdef _DEBUG
    cout << varName << ":\t" << numSamples << " samples,  "
        << ptsPerSample << " pts/s,  rank: " << rank << endl;
#endif

    domain = dom;
    NodeData_ptr nodes = domain->getMeshForFunctionSpace(funcSpace);
    if (nodes == NULL) {
        delete input;
        return false;
    }

    meshName = nodes->getName();
    siloMeshName = nodes->getFullSiloName();
    initialized = true;

    size_t dimSize = 1;
    vector<long> counts;

    if (rank > 0) {
        dim = input->get_dim("d0");
        int d = dim->size();
        shape.push_back(d);
        counts.push_back(d);
        dimSize *= d;
    }
    if (rank > 1) {
        dim = input->get_dim("d1");
        int d = dim->size();
        shape.push_back(d);
        counts.push_back(d);
        dimSize *= d;
    }
    if (rank > 2) {
        cerr << "WARNING: Rank " << rank << " data is not supported!\n";
        initialized = false;
    }
 
    if (initialized && numSamples > 0) {
        sampleID.insert(sampleID.end(), numSamples, 0);
        NcVar* var = input->get_var("id");
        var->get(&sampleID[0], numSamples);

        size_t dataSize = dimSize*numSamples*ptsPerSample;
        counts.push_back(ptsPerSample);
        counts.push_back(numSamples);
        float* tempData = new float[dataSize];
        var = input->get_var("data");
        var->get(tempData, &counts[0]);

        const float* srcPtr = tempData;
        for (size_t i=0; i < dimSize; i++, srcPtr++) {
            float* c = averageData(srcPtr, dimSize);
            dataArray.push_back(c);
        }
        delete[] tempData;

        initialized = reorderSamples();
    }

    delete input;
#endif // ESYS_HAVE_NETCDF

    return initialized;
}
コード例 #30
0
void kernel::openCoordNetcdf () {
  
  // Open the NetCDF coordinate file output from the solver.
  
  using namespace netCDF;
  using namespace netCDF::exceptions;

  // Local mpi variables.
  int myRank = MPI::COMM_WORLD.Get_rank ();
  int worldSize = MPI::COMM_WORLD.Get_size ();
  
  if (myRank == 0)
    std::cout << "Opening coordinate file: " << blu << "./krn/xyzCrustMantle.nc"  << rst 
      << " with " << worldSize << " processors." << std::flush << std::endl;
  
  try {

    std::string coordName = "./krn/xyzCrustMantle.nc";

    // Open the file.
    NcFile dataFile (coordName, NcFile::read);
    
    // Get variable.
    NcVar NcRadius = dataFile.getVar ("radius");
    NcVar NcTheta  = dataFile.getVar ("theta");
    NcVar NcPhi    = dataFile.getVar ("phi");
    
    // Get array sizes.
    NcDim procDim  = NcRadius.getDim (0);
    NcDim coordDim = NcRadius.getDim (1);  
    numWroteProcs  = procDim.getSize ();
    numGLLPoints   = coordDim.getSize ();
  
    if (myRank == 0)
      std::cout << mgn << "Number of solver processers:\t " << numWroteProcs
        << "\nNumber of GLL points:\t\t " << numGLLPoints << rst << "\n" << std::endl;
    
    // Current error handling. Only can have as many cores as we did for the simulation.
    if (worldSize > numWroteProcs) {
      
      if (myRank == 0)
        std::cout << red << "Currently, you can only use as many cores for processing as were used " 
          << "in the forward run. Exiting.\n" << rst << std::flush << std::endl;
      
      MPI::COMM_WORLD.Abort (EXIT_FAILURE);
      exit (EXIT_FAILURE);
      
    }
    
    // Set up the MPI read chunk array.
    std::vector<size_t> start;
    std::vector<size_t> count;
    start.resize(2);
    count.resize(2);
    
    // Row major MPI read. Start at [myRank, 0]
    start[0] = myRank;
    start[1] = 0;
    
    // Read until end of line [myrank, numGLLPoints]
    count[0] = 1;
    count[1] = numGLLPoints;
    
    // Preallocate cartesian arrays.
    xStore = new float [numGLLPoints];
    yStore = new float [numGLLPoints];
    zStore = new float [numGLLPoints];
    
    // Of course only read in with the number of processors used to create the file.
    if (myRank < numWroteProcs) {
      radius = new float [numGLLPoints];
      theta  = new float [numGLLPoints];
      phi    = new float [numGLLPoints];
      
      NcRadius.getVar (start, count, radius);
      NcTheta.getVar  (start, count, theta);
      NcPhi.getVar    (start, count, phi);
    }
    
    // Save original arrays.
    radiusOrig = new float [numGLLPoints];
    thetaOrig  = new float [numGLLPoints];
    phiOrig    = new float [numGLLPoints];    
    for (size_t i=0; i<numGLLPoints; i++) {
      
      radiusOrig[i] = radius[i];
      thetaOrig[i]  = theta[i];
      phiOrig[i]    = phi[i];
      
    }
    
    // Destructor will close file.
        
  } catch (NcException &error) {
    
    std::cout << error.what() << std::endl;
    std::cout << red << "Failure reading: " << fileName << std::endl;
    std::exit (EXIT_FAILURE);
    
  }
  
}