bool ReadAstro::open(const char *path) { assert(!m_ncfile); m_ncfile = new NcFile(path, NcFile::ReadOnly); if (!m_ncfile->is_valid()) { close(); sendError("failed to open NetCDF file %s", path); return false; } if (m_ncfile->get_format() == NcFile::BadFormat) { close(); sendError("bad NetCDF file"); return false; } fprintf(stderr, "dims=%d, vars=%d, attrs=%d\n", m_ncfile->num_dims(), m_ncfile->num_vars(), m_ncfile->num_atts()); for (int i = 0; i < m_ncfile->num_dims(); ++i) { fprintf(stderr, "%s: %ld\n", m_ncfile->get_dim(i)->name(), m_ncfile->get_dim(i)->size()); } for (int i = 0; i < m_ncfile->num_vars(); ++i) { fprintf(stderr, "%s: dims=%d atts=%d vals=%ld type=%d\n", m_ncfile->get_var(i)->name(), m_ncfile->get_var(i)->num_dims(), m_ncfile->get_var(i)->num_atts(), m_ncfile->get_var(i)->num_vals(), m_ncfile->get_var(i)->type()); //int dims = m_ncfile->get_var(i)->num_dims(); NcVar *var = m_ncfile->get_var(i); for (int j = 0; j < var->num_dims(); ++j) { fprintf(stderr, " %s: %ld edge=%ld\n", var->get_dim(j)->name(), var->get_dim(j)->size(), var->edges()[j]); } } for (int i = 0; i < m_ncfile->num_atts(); ++i) { fprintf(stderr, "%s\n", m_ncfile->get_att(i)->name()); } return true; }
bool FileArome::isValid(std::string iFilename) { bool status = false; NcFile file = NcFile(iFilename.c_str(), NcFile::ReadOnly); if(file.is_valid()) { status = hasDim(file, "time") && hasDim(file, "x") && hasDim(file, "y") && !hasDim(file, "ensemble_member") && hasVar(file, "latitude") && hasVar(file, "longitude"); } file.close(); return status; }
void FlowManager::output(const string &fileName) const { NcFile *file; struct stat statInfo; int ret = stat(fileName.c_str(), &statInfo); NcError ncError(NcError::silent_nonfatal); if (ret != 0 || TimeManager::isFirstStep()) { file = new NcFile(fileName.c_str(), NcFile::Replace); } else { file = new NcFile(fileName.c_str(), NcFile::Write); } if (!file->is_valid()) { char message[100]; sprintf(message, "Failed to open file %s.", fileName.c_str()); REPORT_ERROR(message) }
const bool read( const std::string filename ) { if ( m_file ) delete m_file; m_filename = filename; m_file = new NcFile( filename.c_str(), NcFile::ReadOnly ); if ( !m_file ) return( false ); if ( !m_file->is_valid() ) return( false ); const int ndims = m_file->num_dims(); for ( int i = 0; i < ndims; i++ ) { m_dims.push_back( new Dim( m_file->get_dim(i) ) ); } const int nvars = m_file->num_vars(); for ( int i = 0; i < nvars; i++ ) { m_vars.push_back( new Var( m_file->get_var(i) ) ); } return( true ); }
void CopyNcVar( NcFile & ncIn, NcFile & ncOut, const std::string & strVarName, bool fCopyAttributes, bool fCopyData ) { if (!ncIn.is_valid()) { _EXCEPTIONT("Invalid input file specified"); } if (!ncOut.is_valid()) { _EXCEPTIONT("Invalid output file specified"); } NcVar * var = ncIn.get_var(strVarName.c_str()); if (var == NULL) { _EXCEPTION1("NetCDF file does not contain variable \"%s\"", strVarName.c_str()); } NcVar * varOut; std::vector<NcDim *> dimOut; dimOut.resize(var->num_dims()); std::vector<long> counts; counts.resize(var->num_dims()); long nDataSize = 1; for (int d = 0; d < var->num_dims(); d++) { NcDim * dimA = var->get_dim(d); dimOut[d] = ncOut.get_dim(dimA->name()); if (dimOut[d] == NULL) { if (dimA->is_unlimited()) { dimOut[d] = ncOut.add_dim(dimA->name()); } else { dimOut[d] = ncOut.add_dim(dimA->name(), dimA->size()); } if (dimOut[d] == NULL) { _EXCEPTION2("Failed to add dimension \"%s\" (%i) to file", dimA->name(), dimA->size()); } } if (dimOut[d]->size() != dimA->size()) { if (dimA->is_unlimited() && !dimOut[d]->is_unlimited()) { _EXCEPTION2("Mismatch between input file dimension \"%s\" and " "output file dimension (UNLIMITED / %i)", dimA->name(), dimOut[d]->size()); } else if (!dimA->is_unlimited() && dimOut[d]->is_unlimited()) { _EXCEPTION2("Mismatch between input file dimension \"%s\" and " "output file dimension (%i / UNLIMITED)", dimA->name(), dimA->size()); } else if (!dimA->is_unlimited() && !dimOut[d]->is_unlimited()) { _EXCEPTION3("Mismatch between input file dimension \"%s\" and " "output file dimension (%i / %i)", dimA->name(), dimA->size(), dimOut[d]->size()); } } counts[d] = dimA->size(); nDataSize *= counts[d]; } // ncByte / ncChar type if ((var->type() == ncByte) || (var->type() == ncChar)) { DataVector<char> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } // ncShort type if (var->type() == ncShort) { DataVector<short> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncInt type if (var->type() == ncInt) { DataVector<int> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncFloat type if (var->type() == ncFloat) { DataVector<float> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncDouble type if (var->type() == ncDouble) { DataVector<double> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncInt64 type if (var->type() == ncInt64) { DataVector<ncint64> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // Check output variable exists if (varOut == NULL) { _EXCEPTION1("Unable to create output variable \"%s\"", var->name()); } // Copy attributes if (fCopyAttributes) { CopyNcVarAttributes(var, varOut); } }
// // Reads variable data from dump file // bool DataVar::initFromFile(const string& filename, const_DomainChunk_ptr dom) { cleanup(); #if ESYS_HAVE_NETCDF NcError ncerr(NcError::silent_nonfatal); NcFile* input = new NcFile(filename.c_str()); if (!input->is_valid()) { cerr << "Could not open input file " << filename << "." << endl; delete input; return false; } NcDim* dim; NcAtt* att; att = input->get_att("type_id"); int typeID = att->as_int(0); if (typeID != 2) { cerr << "WARNING: Only expanded data supported!" << endl; delete input; return false; } att = input->get_att("rank"); rank = att->as_int(0); dim = input->get_dim("num_data_points_per_sample"); ptsPerSample = dim->size(); att = input->get_att("function_space_type"); funcSpace = att->as_int(0); centering = dom->getCenteringForFunctionSpace(funcSpace); dim = input->get_dim("num_samples"); numSamples = dim->size(); #ifdef _DEBUG cout << varName << ":\t" << numSamples << " samples, " << ptsPerSample << " pts/s, rank: " << rank << endl; #endif domain = dom; NodeData_ptr nodes = domain->getMeshForFunctionSpace(funcSpace); if (nodes == NULL) { delete input; return false; } meshName = nodes->getName(); siloMeshName = nodes->getFullSiloName(); initialized = true; size_t dimSize = 1; vector<long> counts; if (rank > 0) { dim = input->get_dim("d0"); int d = dim->size(); shape.push_back(d); counts.push_back(d); dimSize *= d; } if (rank > 1) { dim = input->get_dim("d1"); int d = dim->size(); shape.push_back(d); counts.push_back(d); dimSize *= d; } if (rank > 2) { cerr << "WARNING: Rank " << rank << " data is not supported!\n"; initialized = false; } if (initialized && numSamples > 0) { sampleID.insert(sampleID.end(), numSamples, 0); NcVar* var = input->get_var("id"); var->get(&sampleID[0], numSamples); size_t dataSize = dimSize*numSamples*ptsPerSample; counts.push_back(ptsPerSample); counts.push_back(numSamples); float* tempData = new float[dataSize]; var = input->get_var("data"); var->get(tempData, &counts[0]); const float* srcPtr = tempData; for (size_t i=0; i < dimSize; i++, srcPtr++) { float* c = averageData(srcPtr, dimSize); dataArray.push_back(c); } delete[] tempData; initialized = reorderSamples(); } delete input; #endif // ESYS_HAVE_NETCDF return initialized; }
// // Creates NetCDF product // bool NetCDFProduct(MSG_header *PRO_head, MSG_data* PRO_data, int totalsegs, int *segsindexes, MSG_header *header, MSG_data *msgdat) { struct tm *tmtime; char NcName[1024]; char reftime[64]; char projname[16]; int wd, hg; int bpp; int ncal; float *cal; NcVar *ivar; NcVar *tvar; NcDim *tdim; NcDim *ldim; NcDim *cdim; NcDim *caldim; int npix = header[0].image_structure->number_of_columns; int nlin = header[0].image_structure->number_of_lines; size_t npixperseg = npix*nlin; size_t total_size = totalsegs*npixperseg; MSG_SAMPLE *pixels = new MSG_SAMPLE[total_size]; memset(pixels, 0, total_size*sizeof(MSG_SAMPLE)); size_t pos = 0; for (int i = 0; i < totalsegs; i ++) { if (segsindexes[i] >= 0) memcpy(pixels+pos, msgdat[segsindexes[i]].image->data, npixperseg*sizeof(MSG_SAMPLE)); pos += npixperseg; } nlin = nlin*totalsegs; // Manage subarea if (is_subarea) { if (AreaLinStart < 0 || AreaLinStart > nlin - AreaNlin || AreaNlin > nlin - AreaLinStart) { std::cerr << "Wrong Subarea in lines...." << std::endl; throw; } if (AreaPixStart < 0 || AreaPixStart > npix - AreaNpix || AreaNpix > npix - AreaPixStart) { std::cerr << "Wrong Subarea in Pixels...." << std::endl; throw; } size_t newsize = AreaNpix * AreaNlin; MSG_SAMPLE *newpix = new MSG_SAMPLE[newsize]; memset(newpix, 0, newsize*sizeof(MSG_SAMPLE)); for (int i = 0; i < AreaNlin; i ++) memcpy(newpix + i * AreaNpix, pixels + (AreaLinStart + i) * npix + AreaPixStart, AreaNpix * sizeof(MSG_SAMPLE)); delete [ ] pixels; pixels = newpix; total_size = newsize; } else { AreaNpix = npix; AreaNlin = nlin; } tmtime = PRO_data->prologue->image_acquisition.PlannedAquisitionTime.TrueRepeatCycleStart.get_timestruct( ); t_enum_MSG_spacecraft spc = header[0].segment_id->spacecraft_id; uint_1 chn = header[0].segment_id->spectral_channel_id; float sublon = header[0].image_navigation->subsatellite_longitude; int cfac = header[0].image_navigation->column_scaling_factor; int lfac = header[0].image_navigation->line_scaling_factor; int coff = header[0].image_navigation->column_offset; int loff = header[0].image_navigation->line_offset; float sh = header[0].image_navigation->satellite_h; char *channelstring = strdup(MSG_channel_name(spc, chn).c_str( )); char *channel = chname(channelstring, strlen(channelstring) + 1); // Build up output NetCDF file name and open it sprintf( NcName, "%s_%4d%02d%02d_%02d%02d.nc", channel, tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday, tmtime->tm_hour, tmtime->tm_min ); NcFile ncf ( NcName , NcFile::Replace ); if (! ncf.is_valid()) return false; // Fill arrays on creation ncf.set_fill(NcFile::Fill); // Add Global Attributes if (! ncf.add_att("Satellite", MSG_spacecraft_name(spc).c_str())) return false; sprintf(reftime, "%04d-%02d-%02d %02d:%02d:00 UTC", tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday, tmtime->tm_hour, tmtime->tm_min); if (! ncf.add_att("Antenna", "Fixed") ) return false; if (! ncf.add_att("Receiver", "HIMET") ) return false; if (! ncf.add_att("Time", reftime) ) return false; if (! ncf.add_att("Area_Name", "SpaceView" ) ) return false; sprintf(projname, "GEOS(%3.1f)", sublon); if (! ncf.add_att("Projection", projname) ) return false; if (! ncf.add_att("Columns", AreaNpix ) ) return false; if (! ncf.add_att("Lines", AreaNlin ) ) return false; if (! ncf.add_att("SampleX", 1.0 ) ) return false; if (! ncf.add_att("SampleY", 1.0 ) ) return false; if (! ncf.add_att("AreaStartPix", AreaPixStart ) ) return false; if (! ncf.add_att("AreaStartLin", AreaLinStart ) ) return false; if (! ncf.add_att("Column_Scale_Factor", cfac) ) return false; if (! ncf.add_att("Line_Scale_Factor", lfac) ) return false; if (! ncf.add_att("Column_Offset", coff) ) return false; if (! ncf.add_att("Line_Offset", loff) ) return false; if (! ncf.add_att("Orbit_Radius", sh) ) return false; if (! ncf.add_att("Longitude", sublon) ) return false; if (! ncf.add_att("NortPolar", 1) ) return false; if (! ncf.add_att("NorthSouth", 1) ) return false; if (! ncf.add_att("title", TITLE) ) return false; if (! ncf.add_att("Institution", INSTITUTION) ) return false; if (! ncf.add_att("Type", TYPE) ) return false; if (! ncf.add_att("Version", HIMET_VERSION) ) return false; if (! ncf.add_att("Conventions", "COARDS") ) return false; if (! ncf.add_att("history", "Created from raw data") ) return false; // Dimensions wd = AreaNpix; hg = AreaNlin; bpp = header[0].image_structure->number_of_bits_per_pixel; ncal = (int) pow(2.0, bpp); tdim = ncf.add_dim("time"); if (!tdim->is_valid()) return false; ldim = ncf.add_dim("line", hg); if (!ldim->is_valid()) return false; cdim = ncf.add_dim("column", wd); if (!cdim->is_valid()) return false; caldim = ncf.add_dim("calibration", ncal); if (!caldim->is_valid()) return false; // Get calibration values cal = PRO_data->prologue->radiometric_proc.get_calibration((int) chn, bpp); // Add Calibration values NcVar *cvar = ncf.add_var("calibration", ncFloat, caldim); if (!cvar->is_valid()) return false; cvar->add_att("long_name", "Calibration coefficients"); cvar->add_att("variable", channel); if (chn > 3 && chn < 12) cvar->add_att("units", "K"); else cvar->add_att("units", "mW m^-2 sr^-1 (cm^-1)^-1"); if (!cvar->put(cal, ncal)) return false; tvar = ncf.add_var("time", ncDouble, tdim); if (!tvar->is_valid()) return false; tvar->add_att("long_name", "Time"); tvar->add_att("units", "seconds since 2000-01-01 00:00:00 UTC"); double atime; time_t ttime; extern long timezone; ttime = mktime(tmtime); atime = ttime - 946684800 - timezone; if (!tvar->put(&atime, 1)) return false; ivar = ncf.add_var(channel, ncShort, tdim, ldim, cdim); if (!ivar->is_valid()) return false; if (!ivar->add_att("add_offset", 0.0)) return false; if (!ivar->add_att("scale_factor", 1.0)) return false; if (!ivar->add_att("chnum", chn)) return false; // Write output values if (!ivar->put((const short int *) pixels, 1, hg, wd)) return false; // Close NetCDF output (void) ncf.close( ); delete [ ] pixels; delete [ ] cal; return( true ); }
void size_read ( string filename, int *dim, int *vertices, int *edges, int *triangles, int *quadrilaterals, int *tetrahedrons, int *hexahedrons ) //*****************************************************************************80 // // Purpose: // // SIZE_READ reads ICE sizes from a NETCDF file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 November 2010 // // Author: // // John Burkardt // // Reference: // // Pascal Frey, // MEDIT: An interactive mesh visualization software, // Technical Report RT-0253, // Institut National de Recherche en Informatique et en Automatique, // 03 December 2001. // // Parameters: // // Input, string FILENAME, the name of the file to be read. // Ordinarily, the name should include the extension ".nc". // // Output, int *DIM, the spatial dimension, which should be 2 or 3. // // Output, int *VERTICES, the number of vertices. // // Output, int *EDGES, the number of edges (may be 0). // // Output, int *TRIANGLES, the number of triangles (may be 0). // // Output, int *QUADRILATERALS, the number of quadrilaterals (may be 0). // // Output, int *TETRAHEDRONS, the number of tetrahedrons (may be 0). // // Output, int *HEXAHEDRONS, the number of hexahedrons (may be 0). // { NcDim *dim_dimension; NcDim *dim_edges; NcDim *dim_eight; NcDim *dim_four; NcDim *dim_hexahedrons; NcToken dim_name; int dim_num; NcDim *dim_quadrilaterals; NcDim *dim_tetrahedrons; NcDim *dim_three; NcDim *dim_triangles; NcDim *dim_two; NcDim *dim_vertices; NcDim *dim_pointer; int i; // // Initialize everything to nothing. // *dim = 0; *vertices = 0; *edges = 0; *triangles = 0; *quadrilaterals = 0; *tetrahedrons = 0; *hexahedrons = 0; // // Open the file in "read only" mode. // NcFile dataFile ( filename.c_str ( ), NcFile::ReadOnly ); if ( !dataFile.is_valid ( ) ) { cout << "\n"; cout << "SIZE_READ: Fatal error!\n"; cout << " Could not open file.\n"; exit ( 1 ); } // // Get the dimension information. // // I would much prefer to write "0" as the size of certain dimensions, but I am not // allowed to, so I simply omit them from the file. // // Therefore, when I open the file and try to determine dimensions, some dimensions // are "missing", which I would have presumed I could discover painlessly by asking // for pointers to them, and getting NULLs back. But that doesn't seem to work either. // // So my bonehead backup is simply to read all the dimensions by index, retrieve // their names, and see what I find. // dim_num = dataFile.num_dims ( ); for ( i = 0; i < dim_num; i++ ) { dim_pointer = dataFile.get_dim ( i ); dim_name = dim_pointer->name ( ); if ( !strcmp ( dim_name, "Dimension" ) ) { *dim = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Vertices" ) ) { *vertices = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Edges" ) ) { *edges = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Triangles" ) ) { *triangles = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Quadrilaterals" ) ) { *quadrilaterals = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Tetrahedrons" ) ) { *tetrahedrons = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Hexahedrons" ) ) { *hexahedrons = dim_pointer->size ( ); } else { cout << " Ignoring information about dimension \"" << dim_name << "\".\n"; } } // // Close the file. // dataFile.close ( ); return; }
void data_read ( string filename, int dim, int vertices, int edges, int triangles, int quadrilaterals, int tetrahedrons, int hexahedrons, double vertex_coordinate[], int vertex_label[], int edge_vertex[], int edge_label[], int triangle_vertex[], int triangle_label[], int quadrilateral_vertex[], int quadrilateral_label[], int tetrahedron_vertex[], int tetrahedron_label[], int hexahedron_vertex[], int hexahedron_label[] ) //****************************************************************************80 // // Purpose: // // DATA_READ reads ICE data from a NETCDF file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 November 2010 // // Author: // // John Burkardt // // Reference: // // Pascal Frey, // MEDIT: An interactive mesh visualization software, // Technical Report RT-0253, // Institut National de Recherche en Informatique et en Automatique, // 03 December 2001. // // Russ Rew, // The NetCDF C++ Interface Guide, // Unidata Program Center, August 2008. // // Parameters: // // Input, string FILENAME, the name of the file to be read. // Ordinarily, the name should include the extension ".nc". // // Input, int DIM, the spatial dimension, which should be 2 or 3. // // Input, int VERTICES, the number of vertices. // // Input, int EDGES, the number of edges (may be 0). // // Input, int TRIANGLES, the number of triangles (may be 0). // // Input, int QUADRILATERALS, the number of quadrilaterals (may be 0). // // Input, int TETRAHEDRONS, the number of tetrahedrons (may be 0). // // Input, int HEXAHEDRONS, the number of hexahedrons (may be 0). // // Output, double VERTEX_COORDINATE[DIM*VERTICES], the coordinates // of each vertex. // // Output, int VERTEX_LABEL[VERTICES], a label for each vertex. // // Output, int EDGE_VERTEX[2*EDGES], the vertices that form each edge. // // Output, int EDGE_LABEL[EDGES], a label for each edge. // // Output, int TRIANGLE_VERTEX[3*TRIANGLES], the vertices that form // each triangle. // // Output, int TRIANGLE_LABEL[TRIANGLES], a label for each triangle. // // Output, int QUADRILATERAL_VERTEX[4*QUADRILATERALS], the vertices that // form each quadrilateral. // // Output, int QUADRILATERAL_LABEL[QUADRILATERALS], a label for // each quadrilateral. // // Output, int TETRAHEDRON_VERTEX[4*TETRAHEDRONS], the vertices that // form each tetrahedron. // // Output, int TETRAHEDRON_LABEL[TETRAHEDRONS], a label for // each tetrahedron. // // Output, int HEXAHEDRON_VERTEX[8*HEXAHEDRONS], the vertices that form // each hexahedron. // // Output, int HEXAHEDRON_LABEL[HEXAHEDRONS], a label for each hexahedron. // { // // Open the file in "read only" mode. // NcFile dataFile ( filename.c_str ( ), NcFile::ReadOnly ); if ( !dataFile.is_valid ( ) ) { cout << "\n"; cout << "DATA_READ: Fatal error!\n"; cout << " Could not open file.\n"; exit ( 1 ); } // // Vertices. // NcVar *var_vertex_coordinate = dataFile.get_var ( "Vertex_Coordinate" ); var_vertex_coordinate->get ( &vertex_coordinate[0], dim, vertices ); NcVar *var_vertex_label = dataFile.get_var ( "Vertex_Label" ); var_vertex_label->get ( &vertex_label[0], vertices ); // // Edges. // if ( 0 < edges ) { NcVar *var_edge_vertex = dataFile.get_var ( "Edge_Vertex" ); var_edge_vertex->get ( &edge_vertex[0], 2, edges ); NcVar *var_edge_label = dataFile.get_var ( "Edge_Label" ); var_edge_label->get ( &edge_label[0], edges ); } // // Triangles. // if ( 0 < triangles ) { NcVar *var_triangle_vertex = dataFile.get_var ( "Triangle_Vertex" ); var_triangle_vertex->get ( &triangle_vertex[0], 3, triangles ); NcVar *var_triangle_label = dataFile.get_var ( "Triangle_Label" ); var_triangle_label->get ( &triangle_label[0], triangles ); } // // Quadrilaterals. // if ( 0 < quadrilaterals ) { NcVar *var_quadrilateral_vertex = dataFile.get_var ( "Quadrilateral_Vertex" ); var_quadrilateral_vertex->get ( &quadrilateral_vertex[0], 4, quadrilaterals ); NcVar *var_quadrilateral_label = dataFile.get_var ( "Quadrilateral_Label" ); var_quadrilateral_label->get ( &quadrilateral_label[0], quadrilaterals ); } // // Tetrahedrons. // if ( 0 < tetrahedrons ) { NcVar *var_tetrahedron_vertex = dataFile.get_var ( "Tetrahedron_Vertex" ); var_tetrahedron_vertex->get ( &tetrahedron_vertex[0], 4, tetrahedrons ); NcVar *var_tetrahedron_label = dataFile.get_var ( "Tetrahedron_Label" ); var_tetrahedron_label->get ( &tetrahedron_label[0], tetrahedrons ); } // // Hexahedrons. // if ( 0 < hexahedrons ) { NcVar *var_hexahedron_vertex = dataFile.get_var ( "Hexahedron_Vertex" ); var_hexahedron_vertex->get ( &hexahedron_vertex[0], 8, hexahedrons ); NcVar *var_hexahedron_label = dataFile.get_var ( "Hexahedron_Label" ); var_hexahedron_label->get ( &hexahedron_label[0], hexahedrons ); } // // Close the file. // dataFile.close ( ); return; }
void ice_write ( std::string filename, int dim, int vertices, int edges, int triangles, int quadrilaterals, int tetrahedrons, int hexahedrons, double vertex_coordinate[], int vertex_label[], int edge_vertex[], int edge_label[], int triangle_vertex[], int triangle_label[], int quadrilateral_vertex[], int quadrilateral_label[], int tetrahedron_vertex[], int tetrahedron_label[], int hexahedron_vertex[], int hexahedron_label[] ) //****************************************************************************80 // // Purpose: // // ICE_WRITE writes 3D ICE sizes and data to a NETCDF file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 November 2010 // // Author: // // John Burkardt // // Reference: // // Pascal Frey, // MEDIT: An interactive mesh visualization software, // Technical Report RT-0253, // Institut National de Recherche en Informatique et en Automatique, // 03 December 2001. // // Parameters: // // Input, string FILENAME, the name of the file to be created. // Ordinarily, the name should include the extension ".nc". // // Input, int DIM, the spatial dimension, which should be 3. // // Input, int VERTICES, the number of vertices. // // Input, int EDGES, the number of edges (may be 0). // // Input, int TRIANGLES, the number of triangles (may be 0). // // Input, int QUADRILATERALS, the number of quadrilaterals (may be 0). // // Input, int TETRAHEDRONS, the number of tetrahedrons (may be 0). // // Input, int HEXAHEDRONS, the number of hexahedrons (may be 0). // // Input, double VERTEX_COORDINATE[3*VERTICES], the XYZ coordinates // of each vertex. // // Input, int VERTEX_LABEL[VERTICES], a label for each vertex. // // Input, int EDGE_VERTEX[2*EDGES], the vertices that form each edge. // // Input, int EDGE_LABEL[EDGES], a label for each edge. // // Input, int TRIANGLE_VERTEX[3*TRIANGLES], the vertices that form // each triangle. // // Input, int TRIANGLE_LABEL[TRIANGLES], a label for each triangle. // // Input, int QUADRILATERAL_VERTEX[4*QUADRILATERALS], the vertices that // form each quadrilateral. // // Input, int QUADRILATERAL_LABEL[QUADRILATERALS], a label for // each quadrilateral. // // Input, int TETRAHEDRON_VERTEX[4*TETRAHEDRONS], the vertices that // form each tetrahedron. // // Input, int TETRAHEDRON_LABEL[TETRAHEDRONS], a label for // each tetrahedron. // // Input, int HEXAHEDRON_VERTEX[8*HEXAHEDRONS], the vertices that form // each hexahedron. // // Input, int HEXAHEDRON_LABEL[HEXAHEDRONS], a label for each hexahedron. // { NcDim *dim_dimension; NcDim *dim_edges; NcDim *dim_eight; NcDim *dim_four; NcDim *dim_hexahedrons; NcDim *dim_quadrilaterals; NcDim *dim_tetrahedrons; NcDim *dim_three; NcDim *dim_triangles; NcDim *dim_two; NcDim *dim_vertices; NcVar *var_edge_vertex; NcVar *var_edge_label; NcVar *var_hexahedron_vertex; NcVar *var_hexahedron_label; NcVar *var_quadrilateral_vertex; NcVar *var_quadrilateral_label; NcVar *var_tetrahedron_vertex; NcVar *var_tetrahedron_label; NcVar *var_triangle_vertex; NcVar *var_triangle_label; NcVar *var_vertex_coordinate; NcVar *var_vertex_label; // // Create the file. // NcFile dataFile ( filename.c_str ( ), NcFile::Replace ); if ( !dataFile.is_valid ( ) ) { cout << "\n"; cout << "ICE_WRITE - Fatal error!\n"; cout << " Could not open the file.\n"; exit ( 1 ); } // // Dimension information. // dim_dimension = dataFile.add_dim ( "Dimension", dim ); dim_vertices = dataFile.add_dim ( "Vertices", vertices ); if ( 0 < edges ) { dim_edges = dataFile.add_dim ( "Edges", edges ); } if ( 0 < triangles ) { dim_triangles = dataFile.add_dim ( "Triangles", triangles ); } if ( 0 < quadrilaterals ) { dim_quadrilaterals = dataFile.add_dim ( "Quadrilaterals", quadrilaterals ); } if ( 0 < tetrahedrons ) { dim_tetrahedrons = dataFile.add_dim ( "Tetrahedrons", tetrahedrons ); } if ( 0 < hexahedrons ) { dim_hexahedrons = dataFile.add_dim ( "Hexahedrons", hexahedrons ); } dim_two = dataFile.add_dim ( "Two", 2 ); dim_three = dataFile.add_dim ( "Three", 3 ); dim_four = dataFile.add_dim ( "Four", 4 ); dim_eight = dataFile.add_dim ( "Eight", 8 ); // // Define variables. // var_vertex_coordinate = dataFile.add_var ( "Vertex_Coordinate", ncDouble, dim_three, dim_vertices ); var_vertex_label = dataFile.add_var ( "Vertex_Label", ncInt, dim_vertices ); if ( 0 < edges ) { var_edge_vertex = dataFile.add_var ( "Edge_Vertex", ncInt, dim_two, dim_edges ); var_edge_label = dataFile.add_var ( "Edge_Label", ncInt, dim_edges ); } if ( 0 < triangles ) { var_triangle_vertex = dataFile.add_var ( "Triangle_Vertex", ncInt, dim_three, dim_triangles ); var_triangle_label = dataFile.add_var ( "Triangle_Label", ncInt, dim_triangles ); } if ( 0 < quadrilaterals ) { var_quadrilateral_vertex = dataFile.add_var ( "Quadrilateral_Vertex", ncInt, dim_four, dim_quadrilaterals ); var_quadrilateral_label = dataFile.add_var ( "Quadrilateral_Label", ncInt, dim_quadrilaterals ); } if ( 0 < tetrahedrons ) { var_tetrahedron_vertex = dataFile.add_var ( "Tetrahedron_Vertex", ncInt, dim_four, dim_tetrahedrons ); var_tetrahedron_label = dataFile.add_var ( "Tetrahedron_Label", ncInt, dim_tetrahedrons ); } if ( 0 < hexahedrons ) { var_hexahedron_vertex = dataFile.add_var ( "Hexahedron_Vertex", ncInt, dim_eight, dim_hexahedrons ); var_hexahedron_label = dataFile.add_var ( "Hexahedron_Label", ncInt, dim_hexahedrons ); } // // Write the data. // var_vertex_coordinate->put ( &vertex_coordinate[0], 3, vertices ); var_vertex_label->put ( &vertex_label[0], vertices ); if ( 0 < edges ) { var_edge_vertex->put ( &edge_vertex[0], 2, edges ); var_edge_label->put ( &edge_label[0], edges ); } if ( 0 < triangles ) { var_triangle_vertex->put ( &triangle_vertex[0], 3, triangles ); var_triangle_label->put ( &triangle_label[0], triangles ); } if ( 0 < quadrilaterals ) { var_quadrilateral_vertex->put ( &quadrilateral_vertex[0], 4, quadrilaterals ); var_quadrilateral_label->put ( &quadrilateral_label[0], quadrilaterals ); } if ( 0 < tetrahedrons ) { var_tetrahedron_vertex->put ( &tetrahedron_vertex[0], 4, tetrahedrons ); var_tetrahedron_label->put ( &tetrahedron_label[0], tetrahedrons ); } if ( 0 < hexahedrons ) { var_hexahedron_vertex->put ( &hexahedron_vertex[0], 8, hexahedrons ); var_hexahedron_label->put ( &hexahedron_label[0], hexahedrons ); } // // Close the file. // dataFile.close ( ); return; }