OsdHbrMesh * ConvertToHBR( int nVertices, std::vector<int> const & faceVertCounts, std::vector<int> const & faceIndices, std::vector<int> const & vtxCreaseIndices, std::vector<double> const & vtxCreases, std::vector<int> const & edgeCrease1Indices, // face index, local edge index std::vector<float> const & edgeCreases1, std::vector<int> const & edgeCrease2Indices, // 2 vertex indices (Maya friendly) std::vector<double> const & edgeCreases2, OsdHbrMesh::InterpolateBoundaryMethod interpBoundary, HbrMeshUtil::SchemeType scheme, bool usingPtex, FVarDataDesc const * fvarDesc, std::vector<float> const * fvarData ) { static OpenSubdiv::HbrBilinearSubdivision<OpenSubdiv::OsdVertex> _bilinear; static OpenSubdiv::HbrLoopSubdivision<OpenSubdiv::OsdVertex> _loop; static OpenSubdiv::HbrCatmarkSubdivision<OpenSubdiv::OsdVertex> _catmark; // Build HBR mesh with/without face varying data, according to input data. // If a face-varying descriptor is passed in its memory needs to stay // alive as long as this hbrMesh is alive (for indices and widths arrays). OsdHbrMesh *hbrMesh; if ( fvarDesc ) { if (scheme == HbrMeshUtil::kCatmark) hbrMesh = new OsdHbrMesh(&_catmark, fvarDesc->getCount(), fvarDesc->getIndices(), fvarDesc->getWidths(), fvarDesc->getTotalWidth()); else if (scheme == HbrMeshUtil::kLoop) hbrMesh = new OsdHbrMesh(&_loop, fvarDesc->getCount(), fvarDesc->getIndices(), fvarDesc->getWidths(), fvarDesc->getTotalWidth()); else hbrMesh = new OsdHbrMesh(&_bilinear, fvarDesc->getCount(), fvarDesc->getIndices(), fvarDesc->getWidths(), fvarDesc->getTotalWidth()); } else { if (scheme == HbrMeshUtil::kCatmark) hbrMesh = new OsdHbrMesh(&_catmark); else if (scheme == HbrMeshUtil::kLoop) hbrMesh = new OsdHbrMesh(&_loop); else hbrMesh = new OsdHbrMesh(&_bilinear); } // create empty verts: actual vertices initialized in UpdatePoints(); OpenSubdiv::OsdVertex v; for (int i = 0; i < nVertices; ++i) { hbrMesh->NewVertex(i, v); } std::vector<int> vIndex; int nFaces = (int)faceVertCounts.size(); int fvcOffset = 0; // face-vertex count offset int ptxIdx = 0; for (int fi = 0; fi < nFaces; ++fi) { int nFaceVerts = faceVertCounts[fi]; vIndex.resize(nFaceVerts); bool valid = true; for (int fvi = 0; fvi < nFaceVerts; ++fvi) { vIndex[fvi] = faceIndices[fvi + fvcOffset]; int vNextIndex = faceIndices[(fvi+1) % nFaceVerts + fvcOffset]; // check for non-manifold face OsdHbrVertex * origin = hbrMesh->GetVertex(vIndex[fvi]); OsdHbrVertex * destination = hbrMesh->GetVertex(vNextIndex); if (!origin || !destination) { OSD_ERROR("ERROR : An edge was specified that connected a nonexistent vertex"); valid = false; } if (origin == destination) { OSD_ERROR("ERROR : An edge was specified that connected a vertex to itself"); valid = false; } OsdHbrHalfedge * opposite = destination->GetEdge(origin); if (opposite && opposite->GetOpposite()) { OSD_ERROR("ERROR : A non-manifold edge incident to more than 2 faces was found"); valid = false; } if (origin->GetEdge(destination)) { OSD_ERROR("ERROR : An edge connecting two vertices was specified more than once. " "It's likely that an incident face was flipped"); valid = false; } } if ( valid ) { if (scheme == HbrMeshUtil::kLoop) { // triangulate int triangle[3]; triangle[0] = vIndex[0]; for (int fvi = 2; fvi < nFaceVerts; ++fvi) { triangle[1] = vIndex[fvi-1]; triangle[2] = vIndex[fvi]; hbrMesh->NewFace(3, triangle, 0); } // ptex not fully implemented for loop, yet // fvar not fully implemented for loop, yet } else { // bilinear not entirely implemented OsdHbrFace *face = hbrMesh->NewFace(nFaceVerts, &(vIndex[0]), 0); if (usingPtex) { face->SetPtexIndex(ptxIdx); ptxIdx += (nFaceVerts == 4) ? 1 : nFaceVerts; } if (fvarData) { int fvarWidth = hbrMesh->GetTotalFVarWidth(); const float *faceData = &(*fvarData)[ fvcOffset*fvarWidth ]; for(int fvi=0; fvi<nFaceVerts; ++fvi) { OsdHbrVertex *v = hbrMesh->GetVertex( vIndex[fvi] ); OsdHbrFVarData& fvarData = v->GetFVarData(face); if ( ! fvarData.IsInitialized() ) { fvarData.SetAllData( fvarWidth, faceData ); } else if (!fvarData.CompareAll(fvarWidth, faceData)) { OsdHbrFVarData& fvarData = v->NewFVarData(face); fvarData.SetAllData( fvarWidth, faceData ); } // advance pointer to next set of face-varying data faceData += fvarWidth; } } } } else { OSD_ERROR("Face %d will be ignored\n", fi); } fvcOffset += nFaceVerts; } // Assign boundary interpolation methods hbrMesh->SetInterpolateBoundaryMethod(interpBoundary); if ( fvarDesc ) hbrMesh->SetFVarInterpolateBoundaryMethod(fvarDesc->getInterpBoundary()); // XXX hbr behavior doesn't match naming of k_Interpolate constants // hbrMesh->SetFVarInterpolateBoundaryMethod(OsdHbrMesh::k_InterpolateBoundaryEdgeAndCorner); // no for cube // hbrMesh->SetFVarInterpolateBoundaryMethod(OsdHbrMesh::k_InterpolateBoundaryNone); // yes for cube // hbrMesh->SetFVarInterpolateBoundaryMethod(OsdHbrMesh::k_InterpolateBoundaryEdgeOnly); // set edge crease in two different indexing way size_t nEdgeCreases = edgeCreases1.size(); for (size_t i = 0; i < nEdgeCreases; ++i) { if (edgeCreases1[i] <= 0.0) continue; OsdHbrHalfedge * e = hbrMesh-> GetFace(edgeCrease1Indices[i*2])-> GetEdge(edgeCrease1Indices[i*2+1]); if (!e) { OSD_ERROR("Can't find edge (face %d edge %d)\n", edgeCrease1Indices[i*2], edgeCrease1Indices[i*2+1]); continue; } e->SetSharpness(static_cast<float>(edgeCreases1[i])); } nEdgeCreases = edgeCreases2.size(); for (size_t i = 0; i < nEdgeCreases; ++i) { if (edgeCreases2[i] <= 0.0) continue; OsdHbrVertex * v0 = hbrMesh->GetVertex(edgeCrease2Indices[i*2]); OsdHbrVertex * v1 = hbrMesh->GetVertex(edgeCrease2Indices[i*2+1]); OsdHbrHalfedge * e = NULL; if (v0 && v1) if (!(e = v0->GetEdge(v1))) e = v1->GetEdge(v0); if (!e) { OSD_ERROR("ERROR can't find edge"); continue; } e->SetSharpness(static_cast<float>(edgeCreases2[i])); } // set corner { size_t nVertexCreases = vtxCreases.size(); for (size_t i = 0; i < nVertexCreases; ++i) { if (vtxCreases[i] <= 0.0) continue; OsdHbrVertex * v = hbrMesh->GetVertex(vtxCreaseIndices[i]); if (!v) { OSD_ERROR("Can't find vertex %d\n", vtxCreaseIndices[i]); continue; } v->SetSharpness(static_cast<float>(vtxCreases[i])); } } hbrMesh->Finish(); return hbrMesh; }
// Here is where the real meat of the OSD setup happens. The mesh topology is // created and stored for later use. Actual subdivision happens in updateGeom // which gets called at the end of this function and on frame change. // void createOsdContext(int level) { // // Setup an OsdHbr mesh based on the desired subdivision scheme // static OpenSubdiv::HbrCatmarkSubdivision<OpenSubdiv::OsdVertex> _catmark; OsdHbrMesh *hmesh(new OsdHbrMesh(&_catmark)); // // Now that we have a mesh, we need to add verticies and define the topology. // Here, we've declared the raw vertex data in-line, for simplicity // float verts[] = { 0.000000f, -1.414214f, 1.000000f, 1.414214f, 0.000000f, 1.000000f, -1.414214f, 0.000000f, 1.000000f, 0.000000f, 1.414214f, 1.000000f, -1.414214f, 0.000000f, -1.000000f, 0.000000f, 1.414214f, -1.000000f, 0.000000f, -1.414214f, -1.000000f, 1.414214f, 0.000000f, -1.000000f }; // // The cube faces are also in-lined, here they are specified as quads // int faces[] = { 0,1,3,2, 2,3,5,4, 4,5,7,6, 6,7,1,0, 1,7,5,3, 6,0,2,4 }; // // Record the original vertex positions and add verts to the mesh. // // OsdVertex is really just a place holder, it doesn't care what the // position of the vertex is, it's just being used here as a means of // defining the mesh topology. // for (unsigned i = 0; i < sizeof(verts)/sizeof(float); i += 3) { g_orgPositions.push_back(verts[i+0]); g_orgPositions.push_back(verts[i+1]); g_orgPositions.push_back(verts[i+2]); OpenSubdiv::OsdVertex vert; hmesh->NewVertex(i/3, vert); } // // Now specify the actual mesh topology by processing the faces array // const unsigned VERTS_PER_FACE = 4; for (unsigned i = 0; i < sizeof(faces)/sizeof(int); i += VERTS_PER_FACE) { // // Do some sanity checking. It is a good idea to keep this in your // code for your personal sanity as well. // // Note that this loop is not changing the HbrMesh, it's purely validating // the topology that is about to be created below. // for (unsigned j = 0; j < VERTS_PER_FACE; j++) { OsdHbrVertex * origin = hmesh->GetVertex(faces[i+j]); OsdHbrVertex * destination = hmesh->GetVertex(faces[i+((j+1)%VERTS_PER_FACE)]); OsdHbrHalfedge * opposite = destination->GetEdge(origin); if(origin==NULL || destination==NULL) { std::cerr << " An edge was specified that connected a nonexistent vertex" << std::endl; exit(1); } if(origin == destination) { std::cerr << " An edge was specified that connected a vertex to itself" << std::endl; exit(1); } if(opposite && opposite->GetOpposite() ) { std::cerr << " A non-manifold edge incident to more than 2 faces was found" << std::endl; exit(1); } if(origin->GetEdge(destination)) { std::cerr << " An edge connecting two vertices was specified more than once." " It's likely that an incident face was flipped" << std::endl; exit(1); } } // // Now, create current face given the number of verts per face and the // face index data. // /* OsdHbrFace * face = */ hmesh->NewFace(VERTS_PER_FACE, faces+i, 0); // // If you had ptex data, you would set it here, for example // /* face->SetPtexIndex(ptexIndex) */ } // // Apply some tags to drive the subdivision algorithm. Here we set the // default boundary interpolation mode along with a corner sharpness. See // the API and the renderman spec for the full list of available operations. // hmesh->SetInterpolateBoundaryMethod( OsdHbrMesh::k_InterpolateBoundaryEdgeOnly ); OsdHbrVertex * v = hmesh->GetVertex(0); v->SetSharpness(2.7f); // // Finalize the mesh object. The Finish() call is a signal to the internals // that optimizations can be made on the mesh data. // hmesh->Finish(); // // Setup some raw vectors of data. Remember that the actual point values were // not stored in the OsdVertex, so we keep track of them here instead // g_normals.resize(g_orgPositions.size(),0.0f); calcNormals( hmesh, g_orgPositions, g_normals ); // // At this point, we no longer need the topological structure of the mesh, // so we bake it down into subdivision tables by converting the HBR mesh // into an OSD mesh. Note that this is just storing the initial subdivision // tables, which will be used later during the actual subdivision process. // // Again, no vertex positions are being stored here, the point data will be // sent to the mesh in updateGeom(). // OpenSubdiv::FarMeshFactory<OpenSubdiv::OsdVertex> meshFactory(hmesh, level); g_farmesh = meshFactory.Create(); g_osdComputeContext = OpenSubdiv::OsdCpuComputeContext::Create(g_farmesh); delete hmesh; // // Initialize draw context and vertex buffer // g_vertexBuffer = OpenSubdiv::OsdCpuGLVertexBuffer::Create(6, /* 3 floats for position, + 3 floats for normal*/ g_farmesh->GetNumVertices()); g_drawContext = OpenSubdiv::OsdGLDrawContext::Create(g_farmesh->GetPatchTables(), false); g_drawContext->UpdateVertexTexture(g_vertexBuffer); // // Setup camera positioning based on object bounds. This really has nothing // to do with OSD. // computeCenterAndSize(g_orgPositions, g_center, &g_size); // // Finally, make an explicit call to updateGeom() to force creation of the // initial buffer objects for the first draw call. // updateGeom(); // // The OsdVertexBuffer provides GL identifiers which can be bound in the // standard way. Here we setup a single VAO and enable points and normals // as attributes on the vertex buffer and set the index buffer. // GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); glBindBuffer(GL_ARRAY_BUFFER, g_vertexBuffer->BindVBO()); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, 0); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, (float*)12); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_drawContext->GetPatchIndexBuffer()); glBindBuffer(GL_ARRAY_BUFFER, 0); }