コード例 #1
0
ファイル: LoadIsawPeaks.cpp プロジェクト: BigShows/mantid
  /** Append the peaks from a .peaks file into the workspace
   * @param outWS :: the workspace in which to place the information
   * @param filename :: path to the .peaks file
   */
  void LoadIsawPeaks::appendFile( PeaksWorkspace_sptr outWS, std::string filename )
  {

    // Open the file
    std::ifstream in( filename.c_str() );


    // Read the header, load the instrument
    double T0;
    std::string s = readHeader( outWS, in , T0);
    // set T0 in the run parameters
    API::Run & m_run = outWS->mutableRun();
    m_run.addProperty<double>("T0", T0, true);

    if( !in.good() || s.length() < 1 )
      throw std::runtime_error( "End of Peaks file before peaks" );

    if( s.compare( std::string( "0" ) ) != 0 )
      throw std::logic_error( "No header for Peak segments"  );

    readToEndOfLine( in ,  true );
    s = getWord( in , false );

    int run, bankNum;
    double chi , phi , omega , monCount;

    // Build the universal goniometer that will build the rotation matrix.
    Mantid::Geometry::Goniometer uniGonio;
    uniGonio.makeUniversalGoniometer();

    // TODO: Can we find the number of peaks to get better progress reporting?
    Progress prog(this, 0.0, 1.0, 100);

    while( in.good() )
    {
      // Read the header if necessary
      s = readPeakBlockHeader( s ,  in  , run , bankNum , chi , phi ,
          omega , monCount );
      // Build the Rotation matrix using phi,chi,omega
      uniGonio.setRotationAngle("phi", phi);
      uniGonio.setRotationAngle("chi", chi);
      uniGonio.setRotationAngle("omega", omega);
      //Put goniometer into peaks workspace
      outWS->mutableRun().setGoniometer(uniGonio, false);


      std::ostringstream oss;
      std::string bankString = "bank";
      if (outWS->getInstrument()->getName() == "WISH") bankString = "WISHpanel0";
      oss << bankString << bankNum;
      std::string bankName = oss.str();

      int seqNum = -1;

      try
      {
        // Read the peak
        Peak peak = readPeak(outWS, s, in, seqNum, bankName);

        // Get the calculated goniometer matrix
        Matrix<double> gonMat = uniGonio.getR();

        peak.setGoniometerMatrix(gonMat);
        peak.setRunNumber(run);
        peak.setMonitorCount( monCount );

        double tof = peak.getTOF();
        Kernel::Units::Wavelength wl;

        wl.initialize(peak.getL1(), peak.getL2(), peak.getScattering(), 0,
                  peak.getInitialEnergy(), 0.0);

        peak.setWavelength(wl.singleFromTOF( tof));
        // Add the peak to workspace
        outWS->addPeak(peak);
      }
      catch (std::runtime_error & e)
      {
        g_log.warning() << "Error reading peak SEQN " << seqNum << " : " << e.what() << std::endl;
      }

      prog.report();
    }

  }
コード例 #2
0
void PeakHKLErrors::functionDeriv1D(Jacobian *out, const double *xValues,
                                    const size_t nData) {
  PeaksWorkspace_sptr Peaks =
      AnalysisDataService::Instance().retrieveWS<PeaksWorkspace>(
          PeakWorkspaceName);
  boost::shared_ptr<Geometry::Instrument> instNew = getNewInstrument(Peaks);

  const DblMatrix &UB = Peaks->sample().getOrientedLattice().getUB();
  DblMatrix UBinv(UB);
  UBinv.Invert();
  UBinv /= 2 * M_PI;

  double GonRotx = getParameter("GonRotx");
  double GonRoty = getParameter("GonRoty");
  double GonRotz = getParameter("GonRotz");
  Matrix<double> InvGonRotxMat = RotationMatrixAboutRegAxis(GonRotx, 'x');
  Matrix<double> InvGonRotyMat = RotationMatrixAboutRegAxis(GonRoty, 'y');
  Matrix<double> InvGonRotzMat = RotationMatrixAboutRegAxis(GonRotz, 'z');
  Matrix<double> GonRot = InvGonRotxMat * InvGonRotyMat * InvGonRotzMat;

  InvGonRotxMat.Invert();
  InvGonRotyMat.Invert();
  InvGonRotzMat.Invert();

  std::map<int, Kernel::Matrix<double>> RunNums2GonMatrix;
  getRun2MatMap(Peaks, OptRuns, RunNums2GonMatrix);

  g_log.debug()
      << "----------------------------Derivative------------------------\n";

  V3D samplePosition = instNew->getSample()->getPos();
  IPeak &ppeak = Peaks->getPeak(0);
  double L0 = ppeak.getL1();
  double velocity = (L0 + ppeak.getL2()) / ppeak.getTOF();

  double K =
      2 * M_PI / ppeak.getWavelength() / velocity; // 2pi/lambda = K* velocity
  V3D beamDir = instNew->getBeamDirection();

  size_t paramNums[] = {parameterIndex(std::string("SampleXOffset")),
                        parameterIndex(std::string("SampleYOffset")),
                        parameterIndex(std::string("SampleZOffset"))};

  for (size_t i = 0; i < nData; i += 3) {
    int peakNum = boost::math::iround(xValues[i]);
    IPeak &peak_old = Peaks->getPeak(peakNum);
    Peak peak = createNewPeak(peak_old, instNew, 0, peak_old.getL1());

    int runNum = peak_old.getRunNumber();
    std::string runNumStr = std::to_string(runNum);

    for (int kk = 0; kk < static_cast<int>(nParams()); kk++) {
      out->set(i, kk, 0.0);
      out->set(i + 1, kk, 0.0);
      out->set(i + 2, kk, 0.0);
    }

    double chi, phi, omega;
    size_t chiParamNum, phiParamNum, omegaParamNum;

    size_t N = OptRuns.find("/" + runNumStr);
    if (N < OptRuns.size()) {
      chi = getParameter("chi" + (runNumStr));
      phi = getParameter("phi" + (runNumStr));
      omega = getParameter("omega" + (runNumStr));

      peak.setGoniometerMatrix(GonRot * RunNums2GonMatrix[runNum]);

      chiParamNum = parameterIndex("chi" + (runNumStr));
      phiParamNum = parameterIndex("phi" + (runNumStr));
      omegaParamNum = parameterIndex("omega" + (runNumStr));
    } else {

      Geometry::Goniometer Gon(peak.getGoniometerMatrix());
      std::vector<double> phichiOmega = Gon.getEulerAngles("YZY");
      chi = phichiOmega[1];
      phi = phichiOmega[2];
      omega = phichiOmega[0];
      // peak.setGoniometerMatrix( GonRot*Gon.getR());
      chiParamNum = phiParamNum = omegaParamNum = nParams() + 10;
      peak.setGoniometerMatrix(GonRot * peak.getGoniometerMatrix());
    }
    V3D sampOffsets(getParameter("SampleXOffset"),
                    getParameter("SampleYOffset"),
                    getParameter("SampleZOffset"));
    peak.setSamplePos(peak.getSamplePos() + sampOffsets);
    // NOTE:Use getQLabFrame except for below.
    // For parameters the getGoniometerMatrix should remove GonRot, for derivs
    // wrt GonRot*, wrt chi*,phi*,etc.

    // Deriv wrt chi phi and omega
    if (phiParamNum < nParams()) {
      Matrix<double> chiMatrix = RotationMatrixAboutRegAxis(chi, 'z');
      Matrix<double> phiMatrix = RotationMatrixAboutRegAxis(phi, 'y');
      Matrix<double> omegaMatrix = RotationMatrixAboutRegAxis(omega, 'y');

      Matrix<double> dchiMatrix = DerivRotationMatrixAboutRegAxis(chi, 'z');
      Matrix<double> dphiMatrix = DerivRotationMatrixAboutRegAxis(phi, 'y');
      Matrix<double> domegaMatrix = DerivRotationMatrixAboutRegAxis(omega, 'y');

      Matrix<double> InvG = omegaMatrix * chiMatrix * phiMatrix;
      InvG.Invert();
      // Calculate Derivatives wrt chi(phi,omega) in degrees
      Matrix<double> R = omegaMatrix * chiMatrix * dphiMatrix;
      Matrix<double> InvR = InvG * R * InvG * -1;
      V3D lab = peak.getQLabFrame();
      V3D Dhkl0 = UBinv * InvR * lab;

      R = omegaMatrix * dchiMatrix * phiMatrix;
      InvR = InvG * R * InvG * -1;
      V3D Dhkl1 = UBinv * InvR * peak.getQLabFrame();

      R = domegaMatrix * chiMatrix * phiMatrix;
      InvR = InvG * R * InvG * -1;
      V3D Dhkl2 =
          UBinv * InvR * peak.getQLabFrame(); // R.transpose should be R inverse

      out->set(i, chiParamNum, Dhkl1[0]);
      out->set(i + 1, chiParamNum, Dhkl1[1]);
      out->set(i + 2, chiParamNum, Dhkl1[2]);
      out->set(i, phiParamNum, Dhkl0[0]);
      out->set(i + 1, phiParamNum, Dhkl0[1]);
      out->set(i + 2, phiParamNum, Dhkl0[2]);
      out->set(i, omegaParamNum, Dhkl2[0]);
      out->set(i + 1, omegaParamNum, Dhkl2[1]);
      out->set(i + 2, omegaParamNum, Dhkl2[2]);

    } // if optimize for chi phi and omega on this peak

    //------------------------Goniometer Rotation Derivatives
    //-----------------------
    Matrix<double> InvGonRot(GonRot);
    InvGonRot.Invert();
    Matrix<double> InvGon = InvGonRot * peak.getGoniometerMatrix();
    InvGon.Invert();
    V3D DGonx = (UBinv * InvGon * InvGonRotzMat * InvGonRotyMat *
                 DerivRotationMatrixAboutRegAxis(
                     -GonRotx, 'x') * // - gives inverse of GonRot
                 peak.getQLabFrame()) *
                -1;

    V3D DGony = (UBinv * InvGon * InvGonRotzMat *
                 DerivRotationMatrixAboutRegAxis(-GonRoty, 'y') *
                 InvGonRotxMat * peak.getQLabFrame()) *
                -1;
    V3D DGonz =
        (UBinv * InvGon * DerivRotationMatrixAboutRegAxis(-GonRotz, 'z') *
         InvGonRotyMat * InvGonRotxMat * peak.getQLabFrame()) *
        -1;

    size_t paramnum = parameterIndex("GonRotx");
    out->set(i, paramnum, DGonx[0]);
    out->set(i + 1, paramnum, DGonx[1]);
    out->set(i + 2, paramnum, DGonx[2]);
    out->set(i, parameterIndex("GonRoty"), DGony[0]);
    out->set(i + 1, parameterIndex("GonRoty"), DGony[1]);
    out->set(i + 2, parameterIndex("GonRoty"), DGony[2]);
    out->set(i, parameterIndex("GonRotz"), DGonz[0]);
    out->set(i + 1, parameterIndex("GonRotz"), DGonz[1]);
    out->set(i + 2, parameterIndex("GonRotz"), DGonz[2]);
    //-------------------- Sample Orientation derivatives
    //----------------------------------
    // Qlab = -KV + k|V|*beamdir
    // D = pos-sampPos
    //|V|= vmag=(L0 + D )/tof
    // t1= tof - L0/|V|   {time from sample to pixel}
    // V = D/t1
    V3D D = peak.getDetPos() - samplePosition;
    double vmag = (L0 + D.norm()) / peak.getTOF();
    double t1 = peak.getTOF() - L0 / vmag;

    // Derivs wrt sample x, y, z
    // Ddsx =( - 1, 0, 0),  d|D|^2/dsx -> 2|D|d|D|/dsx =d(tranp(D)* D)/dsx =2
    // Ddsx* tranp(D)
    //|D| also called Dmag
    V3D Dmagdsxsysz(D);
    Dmagdsxsysz *= (-1 / D.norm());

    V3D vmagdsxsysz = Dmagdsxsysz / peak.getTOF();

    V3D t1dsxsysz = vmagdsxsysz * (L0 / vmag / vmag);
    Matrix<double> Gon = peak.getGoniometerMatrix();
    Gon.Invert();

    // x=0 is deriv wrt SampleXoffset, x=1 is deriv wrt SampleYoffset, etc.
    for (int x = 0; x < 3; x++) {
      V3D pp;
      pp[x] = 1;
      V3D dQlab1 = pp / -t1 - D * (t1dsxsysz[x] / t1 / t1);
      V3D dQlab2 = beamDir * vmagdsxsysz[x];
      V3D dQlab = dQlab2 - dQlab1;
      dQlab *= K;

      V3D dQSamp = Gon * dQlab;
      V3D dhkl = UBinv * dQSamp;

      out->set(i, paramNums[x], dhkl[0]);
      out->set(i + 1, paramNums[x], dhkl[1]);
      out->set(i + 2, paramNums[x], dhkl[2]);
    }
  }
}
コード例 #3
0
  void FindPeaksMD::findPeaks(typename MDEventWorkspace<MDE, nd>::sptr ws)
  {
    if (nd < 3)
      throw std::invalid_argument("Workspace must have at least 3 dimensions.");

    progress(0.01, "Refreshing Centroids");

    // TODO: This might be slow, progress report?
    // Make sure all centroids are fresh
    ws->getBox()->refreshCentroid();

    typedef IMDBox<MDE,nd>* boxPtr;

    if (ws->getNumExperimentInfo() == 0)
      throw std::runtime_error("No instrument was found in the MDEventWorkspace. Cannot find peaks.");

    // TODO: Do we need to pick a different instrument info?
    ExperimentInfo_sptr ei = ws->getExperimentInfo(0);
    // Instrument associated with workspace
    Geometry::Instrument_const_sptr inst = ei->getInstrument();
    // Find the run number
    int runNumber = ei->getRunNumber();

    // Check that the workspace dimensions are in Q-sample-frame or Q-lab-frame.
    eDimensionType dimType;

    std::string dim0 = ws->getDimension(0)->getName();
    if (dim0 == "H")
    {
      dimType = HKL;
      throw std::runtime_error("Cannot find peaks in a workspace that is already in HKL space.");
    }
    else if (dim0 == "Q_lab_x")
    {
      dimType = QLAB;
    }
    else if (dim0 == "Q_sample_x")
      dimType = QSAMPLE;
    else
      throw std::runtime_error("Unexpected dimensions: need either Q_lab_x or Q_sample_x.");

    // Find the goniometer rotation matrix
    Mantid::Kernel::Matrix<double> goniometer(3,3, true); // Default IDENTITY matrix
    try
    {
      goniometer = ei->mutableRun().getGoniometerMatrix();
    }
    catch (std::exception & e)
    {
      g_log.warning() << "Error finding goniometer matrix. It will not be set in the peaks found." << std::endl;
      g_log.warning() << e.what() << std::endl;
    }

    /// Arbitrary scaling factor for density to make more manageable numbers, especially for older file formats.
    signal_t densityScalingFactor = 1e-6;

    // Calculate a threshold below which a box is too diffuse to be considered a peak.
    signal_t thresholdDensity = 0.0;
    thresholdDensity = ws->getBox()->getSignalNormalized() * DensityThresholdFactor * densityScalingFactor;
    g_log.notice() << "Threshold signal density: " << thresholdDensity << std::endl;

    // We will fill this vector with pointers to all the boxes (up to a given depth)
    typename std::vector<boxPtr> boxes;

    // Get all the MDboxes
    progress(0.10, "Getting Boxes");
    ws->getBox()->getBoxes(boxes, 1000, true);



    // TODO: Here keep only the boxes > e.g. 3 * mean.
    typedef std::pair<double, boxPtr> dens_box;

    // Map that will sort the boxes by increasing density. The key = density; value = box *.
    typename std::multimap<double, boxPtr> sortedBoxes;

    progress(0.20, "Sorting Boxes by Density");
    typename std::vector<boxPtr>::iterator it1;
    typename std::vector<boxPtr>::iterator it1_end = boxes.end();
    for (it1 = boxes.begin(); it1 != it1_end; it1++)
    {
      boxPtr box = *it1;
      double density = box->getSignalNormalized() * densityScalingFactor;
      // Skip any boxes with too small a signal density.
      if (density > thresholdDensity)
        sortedBoxes.insert(dens_box(density,box));
    }

    // List of chosen possible peak boxes.
    std::vector<boxPtr> peakBoxes;

    prog = new Progress(this, 0.30, 0.95, MaxPeaks);

    int64_t numBoxesFound = 0;
    // Now we go (backwards) through the map
    // e.g. from highest density down to lowest density.
    typename std::multimap<double, boxPtr>::reverse_iterator it2;
    typename std::multimap<double, boxPtr>::reverse_iterator it2_end = sortedBoxes.rend();
    for (it2 = sortedBoxes.rbegin(); it2 != it2_end; it2++)
    {
      signal_t density = it2->first;
      boxPtr box = it2->second;
#ifndef MDBOX_TRACK_CENTROID
      coord_t boxCenter[nd];
      box->calculateCentroid(boxCenter);
#else
      const coord_t * boxCenter = box->getCentroid();
#endif

      // Compare to all boxes already picked.
      bool badBox = false;
      for (typename std::vector<boxPtr>::iterator it3=peakBoxes.begin(); it3 != peakBoxes.end(); it3++)
      {

#ifndef MDBOX_TRACK_CENTROID
        coord_t otherCenter[nd];
        (*it3)->calculateCentroid(otherCenter);
#else
        const coord_t * otherCenter = (*it3)->getCentroid();
#endif

        // Distance between this box and a box we already put in.
        coord_t distSquared = 0.0;
        for (size_t d=0; d<nd; d++)
        {
          coord_t dist = otherCenter[d] - boxCenter[d];
          distSquared += (dist * dist);
        }

        // Reject this box if it is too close to another previously found box.
        if (distSquared < peakRadiusSquared)
        {
          badBox = true;
          break;
        }
      }

      // The box was not rejected for another reason.
      if (!badBox)
      {
        if (numBoxesFound++ >= MaxPeaks)
        {
          g_log.notice() << "Number of peaks found exceeded the limit of " << MaxPeaks << ". Stopping peak finding." << std::endl;
          break;
        }

        peakBoxes.push_back(box);
        g_log.information() << "Found box at ";
        for (size_t d=0; d<nd; d++)
          g_log.information() << (d>0?",":"") << boxCenter[d];
        g_log.information() << "; Density = " << density << std::endl;
        // Report progres for each box found.
        prog->report("Finding Peaks");
      }
    }

    prog->resetNumSteps(numBoxesFound, 0.95, 1.0);

    // Copy the instrument, sample, run to the peaks workspace.
    peakWS->copyExperimentInfoFrom(ei.get());

    // --- Convert the "boxes" to peaks ----
    for (typename std::vector<boxPtr>::iterator it3=peakBoxes.begin(); it3 != peakBoxes.end(); it3++)
    {
      // The center of the box = Q in the lab frame
      boxPtr box = *it3;
#ifndef MDBOX_TRACK_CENTROID
      coord_t boxCenter[nd];
      box->calculateCentroid(boxCenter);
#else
      const coord_t * boxCenter = box->getCentroid();
#endif

      V3D Q(boxCenter[0], boxCenter[1], boxCenter[2]);

      // Create a peak and add it
      // Empty starting peak.
      Peak p;
      try
      {
        if (dimType == QLAB)
        {
          // Build using the Q-lab-frame constructor
          p = Peak(inst, Q);
          // Save gonio matrix for later
          p.setGoniometerMatrix(goniometer);
        }
        else if (dimType == QSAMPLE)
        {
          // Build using the Q-sample-frame constructor
          p = Peak(inst, Q, goniometer);
        }
      }
      catch (std::exception &e)
      {
        g_log.notice() << "Error creating peak at " << Q << " because of '" << e.what() << "'. Peak will be skipped." << std::endl;
        continue;
      }

      try
      { // Look for a detector
        p.findDetector();
      }
      catch (...)
      { /* Ignore errors in ray-tracer TODO: Handle for WISH data later */ }

      // The "bin count" used will be the box density.
      p.setBinCount( box->getSignalNormalized() * densityScalingFactor);

      // Save the run number found before.
      p.setRunNumber(runNumber);

      peakWS->addPeak(p);

      // Report progres for each box found.
      prog->report("Adding Peaks");

    } // for each box found

  }
コード例 #4
0
/**
 * Calculates the h,k, and l offsets from an integer for (some of )the peaks,
 *given the parameter values.
 *
 * @param out  For each peak there are 3 consecutive elements in this array. The
 *first is for the h offset from an
 *             integer, the second is the k offset and the 3rd is the l offset
 * @param xValues  xValues give the index in the PeaksWorkspace for the peak.
 *For each peak considered there are
 *              three consecutive entries all with the same index
 * @param nData The size of the xValues and out arrays
 */
void PeakHKLErrors::function1D(double *out, const double *xValues,
                               const size_t nData) const {
  PeaksWorkspace_sptr Peaks =
      AnalysisDataService::Instance().retrieveWS<PeaksWorkspace>(
          PeakWorkspaceName);

  boost::shared_ptr<Geometry::Instrument> instNew = getNewInstrument(Peaks);

  if (!Peaks)
    throw std::invalid_argument("Peaks not stored under the name " +
                                PeakWorkspaceName);

  std::map<int, Mantid::Kernel::Matrix<double>> RunNum2GonMatrixMap;
  getRun2MatMap(Peaks, OptRuns, RunNum2GonMatrixMap);
  const DblMatrix &UBx = Peaks->sample().getOrientedLattice().getUB();

  DblMatrix UBinv(UBx);
  UBinv.Invert();
  UBinv /= (2 * M_PI);

  double GonRotx = getParameter("GonRotx");
  double GonRoty = getParameter("GonRoty");
  double GonRotz = getParameter("GonRotz");
  Matrix<double> GonRot = RotationMatrixAboutRegAxis(GonRotx, 'x') *
                          RotationMatrixAboutRegAxis(GonRoty, 'y') *
                          RotationMatrixAboutRegAxis(GonRotz, 'z');

  double ChiSqTot = 0.0;
  for (size_t i = 0; i < nData; i += 3) {
    int peakNum = boost::math::iround(xValues[i]);
    IPeak &peak_old = Peaks->getPeak(peakNum);

    int runNum = peak_old.getRunNumber();
    std::string runNumStr = std::to_string(runNum);
    Peak peak = createNewPeak(peak_old, instNew, 0, peak_old.getL1());

    size_t N = OptRuns.find("/" + runNumStr + "/");
    if (N < OptRuns.size()) {
      peak.setGoniometerMatrix(GonRot * RunNum2GonMatrixMap[runNum]);

    } else {
      peak.setGoniometerMatrix(GonRot * peak.getGoniometerMatrix());
    }
    V3D sampOffsets(getParameter("SampleXOffset"),
                    getParameter("SampleYOffset"),
                    getParameter("SampleZOffset"));
    peak.setSamplePos(peak.getSamplePos() + sampOffsets);

    V3D hkl = UBinv * peak.getQSampleFrame();

    for (int k = 0; k < 3; k++) {
      double d1 = hkl[k] - floor(hkl[k]);
      if (d1 > .5)
        d1 = d1 - 1;
      if (d1 < -.5)
        d1 = d1 + 1;

      out[i + k] = d1;
      ChiSqTot += d1 * d1;
    }
  }

  g_log.debug() << "------------------------Function---------------------------"
                   "--------------------\n";
  for (size_t p = 0; p < nParams(); p++) {
    g_log.debug() << parameterName(p) << "(" << getParameter(p) << "),";
    if ((p + 1) % 6 == 0)
      g_log.debug() << '\n';
  }
  g_log.debug() << '\n';
  g_log.debug() << "Off constraints=";
  for (size_t p = 0; p < nParams(); p++) {
    IConstraint *constr = getConstraint(p);
    if (constr)
      if ((constr->check() > 0))
        g_log.debug() << "(" << parameterName(p) << "=" << constr->check()
                      << ");";
  }
  g_log.debug() << '\n';

  g_log.debug() << "    Chi**2 = " << ChiSqTot << "     nData = " << nData
                << '\n';
}