/** Append the peaks from a .peaks file into the workspace * @param outWS :: the workspace in which to place the information * @param filename :: path to the .peaks file */ void LoadIsawPeaks::appendFile( PeaksWorkspace_sptr outWS, std::string filename ) { // Open the file std::ifstream in( filename.c_str() ); // Read the header, load the instrument double T0; std::string s = readHeader( outWS, in , T0); // set T0 in the run parameters API::Run & m_run = outWS->mutableRun(); m_run.addProperty<double>("T0", T0, true); if( !in.good() || s.length() < 1 ) throw std::runtime_error( "End of Peaks file before peaks" ); if( s.compare( std::string( "0" ) ) != 0 ) throw std::logic_error( "No header for Peak segments" ); readToEndOfLine( in , true ); s = getWord( in , false ); int run, bankNum; double chi , phi , omega , monCount; // Build the universal goniometer that will build the rotation matrix. Mantid::Geometry::Goniometer uniGonio; uniGonio.makeUniversalGoniometer(); // TODO: Can we find the number of peaks to get better progress reporting? Progress prog(this, 0.0, 1.0, 100); while( in.good() ) { // Read the header if necessary s = readPeakBlockHeader( s , in , run , bankNum , chi , phi , omega , monCount ); // Build the Rotation matrix using phi,chi,omega uniGonio.setRotationAngle("phi", phi); uniGonio.setRotationAngle("chi", chi); uniGonio.setRotationAngle("omega", omega); //Put goniometer into peaks workspace outWS->mutableRun().setGoniometer(uniGonio, false); std::ostringstream oss; std::string bankString = "bank"; if (outWS->getInstrument()->getName() == "WISH") bankString = "WISHpanel0"; oss << bankString << bankNum; std::string bankName = oss.str(); int seqNum = -1; try { // Read the peak Peak peak = readPeak(outWS, s, in, seqNum, bankName); // Get the calculated goniometer matrix Matrix<double> gonMat = uniGonio.getR(); peak.setGoniometerMatrix(gonMat); peak.setRunNumber(run); peak.setMonitorCount( monCount ); double tof = peak.getTOF(); Kernel::Units::Wavelength wl; wl.initialize(peak.getL1(), peak.getL2(), peak.getScattering(), 0, peak.getInitialEnergy(), 0.0); peak.setWavelength(wl.singleFromTOF( tof)); // Add the peak to workspace outWS->addPeak(peak); } catch (std::runtime_error & e) { g_log.warning() << "Error reading peak SEQN " << seqNum << " : " << e.what() << std::endl; } prog.report(); } }
void PeakHKLErrors::functionDeriv1D(Jacobian *out, const double *xValues, const size_t nData) { PeaksWorkspace_sptr Peaks = AnalysisDataService::Instance().retrieveWS<PeaksWorkspace>( PeakWorkspaceName); boost::shared_ptr<Geometry::Instrument> instNew = getNewInstrument(Peaks); const DblMatrix &UB = Peaks->sample().getOrientedLattice().getUB(); DblMatrix UBinv(UB); UBinv.Invert(); UBinv /= 2 * M_PI; double GonRotx = getParameter("GonRotx"); double GonRoty = getParameter("GonRoty"); double GonRotz = getParameter("GonRotz"); Matrix<double> InvGonRotxMat = RotationMatrixAboutRegAxis(GonRotx, 'x'); Matrix<double> InvGonRotyMat = RotationMatrixAboutRegAxis(GonRoty, 'y'); Matrix<double> InvGonRotzMat = RotationMatrixAboutRegAxis(GonRotz, 'z'); Matrix<double> GonRot = InvGonRotxMat * InvGonRotyMat * InvGonRotzMat; InvGonRotxMat.Invert(); InvGonRotyMat.Invert(); InvGonRotzMat.Invert(); std::map<int, Kernel::Matrix<double>> RunNums2GonMatrix; getRun2MatMap(Peaks, OptRuns, RunNums2GonMatrix); g_log.debug() << "----------------------------Derivative------------------------\n"; V3D samplePosition = instNew->getSample()->getPos(); IPeak &ppeak = Peaks->getPeak(0); double L0 = ppeak.getL1(); double velocity = (L0 + ppeak.getL2()) / ppeak.getTOF(); double K = 2 * M_PI / ppeak.getWavelength() / velocity; // 2pi/lambda = K* velocity V3D beamDir = instNew->getBeamDirection(); size_t paramNums[] = {parameterIndex(std::string("SampleXOffset")), parameterIndex(std::string("SampleYOffset")), parameterIndex(std::string("SampleZOffset"))}; for (size_t i = 0; i < nData; i += 3) { int peakNum = boost::math::iround(xValues[i]); IPeak &peak_old = Peaks->getPeak(peakNum); Peak peak = createNewPeak(peak_old, instNew, 0, peak_old.getL1()); int runNum = peak_old.getRunNumber(); std::string runNumStr = std::to_string(runNum); for (int kk = 0; kk < static_cast<int>(nParams()); kk++) { out->set(i, kk, 0.0); out->set(i + 1, kk, 0.0); out->set(i + 2, kk, 0.0); } double chi, phi, omega; size_t chiParamNum, phiParamNum, omegaParamNum; size_t N = OptRuns.find("/" + runNumStr); if (N < OptRuns.size()) { chi = getParameter("chi" + (runNumStr)); phi = getParameter("phi" + (runNumStr)); omega = getParameter("omega" + (runNumStr)); peak.setGoniometerMatrix(GonRot * RunNums2GonMatrix[runNum]); chiParamNum = parameterIndex("chi" + (runNumStr)); phiParamNum = parameterIndex("phi" + (runNumStr)); omegaParamNum = parameterIndex("omega" + (runNumStr)); } else { Geometry::Goniometer Gon(peak.getGoniometerMatrix()); std::vector<double> phichiOmega = Gon.getEulerAngles("YZY"); chi = phichiOmega[1]; phi = phichiOmega[2]; omega = phichiOmega[0]; // peak.setGoniometerMatrix( GonRot*Gon.getR()); chiParamNum = phiParamNum = omegaParamNum = nParams() + 10; peak.setGoniometerMatrix(GonRot * peak.getGoniometerMatrix()); } V3D sampOffsets(getParameter("SampleXOffset"), getParameter("SampleYOffset"), getParameter("SampleZOffset")); peak.setSamplePos(peak.getSamplePos() + sampOffsets); // NOTE:Use getQLabFrame except for below. // For parameters the getGoniometerMatrix should remove GonRot, for derivs // wrt GonRot*, wrt chi*,phi*,etc. // Deriv wrt chi phi and omega if (phiParamNum < nParams()) { Matrix<double> chiMatrix = RotationMatrixAboutRegAxis(chi, 'z'); Matrix<double> phiMatrix = RotationMatrixAboutRegAxis(phi, 'y'); Matrix<double> omegaMatrix = RotationMatrixAboutRegAxis(omega, 'y'); Matrix<double> dchiMatrix = DerivRotationMatrixAboutRegAxis(chi, 'z'); Matrix<double> dphiMatrix = DerivRotationMatrixAboutRegAxis(phi, 'y'); Matrix<double> domegaMatrix = DerivRotationMatrixAboutRegAxis(omega, 'y'); Matrix<double> InvG = omegaMatrix * chiMatrix * phiMatrix; InvG.Invert(); // Calculate Derivatives wrt chi(phi,omega) in degrees Matrix<double> R = omegaMatrix * chiMatrix * dphiMatrix; Matrix<double> InvR = InvG * R * InvG * -1; V3D lab = peak.getQLabFrame(); V3D Dhkl0 = UBinv * InvR * lab; R = omegaMatrix * dchiMatrix * phiMatrix; InvR = InvG * R * InvG * -1; V3D Dhkl1 = UBinv * InvR * peak.getQLabFrame(); R = domegaMatrix * chiMatrix * phiMatrix; InvR = InvG * R * InvG * -1; V3D Dhkl2 = UBinv * InvR * peak.getQLabFrame(); // R.transpose should be R inverse out->set(i, chiParamNum, Dhkl1[0]); out->set(i + 1, chiParamNum, Dhkl1[1]); out->set(i + 2, chiParamNum, Dhkl1[2]); out->set(i, phiParamNum, Dhkl0[0]); out->set(i + 1, phiParamNum, Dhkl0[1]); out->set(i + 2, phiParamNum, Dhkl0[2]); out->set(i, omegaParamNum, Dhkl2[0]); out->set(i + 1, omegaParamNum, Dhkl2[1]); out->set(i + 2, omegaParamNum, Dhkl2[2]); } // if optimize for chi phi and omega on this peak //------------------------Goniometer Rotation Derivatives //----------------------- Matrix<double> InvGonRot(GonRot); InvGonRot.Invert(); Matrix<double> InvGon = InvGonRot * peak.getGoniometerMatrix(); InvGon.Invert(); V3D DGonx = (UBinv * InvGon * InvGonRotzMat * InvGonRotyMat * DerivRotationMatrixAboutRegAxis( -GonRotx, 'x') * // - gives inverse of GonRot peak.getQLabFrame()) * -1; V3D DGony = (UBinv * InvGon * InvGonRotzMat * DerivRotationMatrixAboutRegAxis(-GonRoty, 'y') * InvGonRotxMat * peak.getQLabFrame()) * -1; V3D DGonz = (UBinv * InvGon * DerivRotationMatrixAboutRegAxis(-GonRotz, 'z') * InvGonRotyMat * InvGonRotxMat * peak.getQLabFrame()) * -1; size_t paramnum = parameterIndex("GonRotx"); out->set(i, paramnum, DGonx[0]); out->set(i + 1, paramnum, DGonx[1]); out->set(i + 2, paramnum, DGonx[2]); out->set(i, parameterIndex("GonRoty"), DGony[0]); out->set(i + 1, parameterIndex("GonRoty"), DGony[1]); out->set(i + 2, parameterIndex("GonRoty"), DGony[2]); out->set(i, parameterIndex("GonRotz"), DGonz[0]); out->set(i + 1, parameterIndex("GonRotz"), DGonz[1]); out->set(i + 2, parameterIndex("GonRotz"), DGonz[2]); //-------------------- Sample Orientation derivatives //---------------------------------- // Qlab = -KV + k|V|*beamdir // D = pos-sampPos //|V|= vmag=(L0 + D )/tof // t1= tof - L0/|V| {time from sample to pixel} // V = D/t1 V3D D = peak.getDetPos() - samplePosition; double vmag = (L0 + D.norm()) / peak.getTOF(); double t1 = peak.getTOF() - L0 / vmag; // Derivs wrt sample x, y, z // Ddsx =( - 1, 0, 0), d|D|^2/dsx -> 2|D|d|D|/dsx =d(tranp(D)* D)/dsx =2 // Ddsx* tranp(D) //|D| also called Dmag V3D Dmagdsxsysz(D); Dmagdsxsysz *= (-1 / D.norm()); V3D vmagdsxsysz = Dmagdsxsysz / peak.getTOF(); V3D t1dsxsysz = vmagdsxsysz * (L0 / vmag / vmag); Matrix<double> Gon = peak.getGoniometerMatrix(); Gon.Invert(); // x=0 is deriv wrt SampleXoffset, x=1 is deriv wrt SampleYoffset, etc. for (int x = 0; x < 3; x++) { V3D pp; pp[x] = 1; V3D dQlab1 = pp / -t1 - D * (t1dsxsysz[x] / t1 / t1); V3D dQlab2 = beamDir * vmagdsxsysz[x]; V3D dQlab = dQlab2 - dQlab1; dQlab *= K; V3D dQSamp = Gon * dQlab; V3D dhkl = UBinv * dQSamp; out->set(i, paramNums[x], dhkl[0]); out->set(i + 1, paramNums[x], dhkl[1]); out->set(i + 2, paramNums[x], dhkl[2]); } } }
void FindPeaksMD::findPeaks(typename MDEventWorkspace<MDE, nd>::sptr ws) { if (nd < 3) throw std::invalid_argument("Workspace must have at least 3 dimensions."); progress(0.01, "Refreshing Centroids"); // TODO: This might be slow, progress report? // Make sure all centroids are fresh ws->getBox()->refreshCentroid(); typedef IMDBox<MDE,nd>* boxPtr; if (ws->getNumExperimentInfo() == 0) throw std::runtime_error("No instrument was found in the MDEventWorkspace. Cannot find peaks."); // TODO: Do we need to pick a different instrument info? ExperimentInfo_sptr ei = ws->getExperimentInfo(0); // Instrument associated with workspace Geometry::Instrument_const_sptr inst = ei->getInstrument(); // Find the run number int runNumber = ei->getRunNumber(); // Check that the workspace dimensions are in Q-sample-frame or Q-lab-frame. eDimensionType dimType; std::string dim0 = ws->getDimension(0)->getName(); if (dim0 == "H") { dimType = HKL; throw std::runtime_error("Cannot find peaks in a workspace that is already in HKL space."); } else if (dim0 == "Q_lab_x") { dimType = QLAB; } else if (dim0 == "Q_sample_x") dimType = QSAMPLE; else throw std::runtime_error("Unexpected dimensions: need either Q_lab_x or Q_sample_x."); // Find the goniometer rotation matrix Mantid::Kernel::Matrix<double> goniometer(3,3, true); // Default IDENTITY matrix try { goniometer = ei->mutableRun().getGoniometerMatrix(); } catch (std::exception & e) { g_log.warning() << "Error finding goniometer matrix. It will not be set in the peaks found." << std::endl; g_log.warning() << e.what() << std::endl; } /// Arbitrary scaling factor for density to make more manageable numbers, especially for older file formats. signal_t densityScalingFactor = 1e-6; // Calculate a threshold below which a box is too diffuse to be considered a peak. signal_t thresholdDensity = 0.0; thresholdDensity = ws->getBox()->getSignalNormalized() * DensityThresholdFactor * densityScalingFactor; g_log.notice() << "Threshold signal density: " << thresholdDensity << std::endl; // We will fill this vector with pointers to all the boxes (up to a given depth) typename std::vector<boxPtr> boxes; // Get all the MDboxes progress(0.10, "Getting Boxes"); ws->getBox()->getBoxes(boxes, 1000, true); // TODO: Here keep only the boxes > e.g. 3 * mean. typedef std::pair<double, boxPtr> dens_box; // Map that will sort the boxes by increasing density. The key = density; value = box *. typename std::multimap<double, boxPtr> sortedBoxes; progress(0.20, "Sorting Boxes by Density"); typename std::vector<boxPtr>::iterator it1; typename std::vector<boxPtr>::iterator it1_end = boxes.end(); for (it1 = boxes.begin(); it1 != it1_end; it1++) { boxPtr box = *it1; double density = box->getSignalNormalized() * densityScalingFactor; // Skip any boxes with too small a signal density. if (density > thresholdDensity) sortedBoxes.insert(dens_box(density,box)); } // List of chosen possible peak boxes. std::vector<boxPtr> peakBoxes; prog = new Progress(this, 0.30, 0.95, MaxPeaks); int64_t numBoxesFound = 0; // Now we go (backwards) through the map // e.g. from highest density down to lowest density. typename std::multimap<double, boxPtr>::reverse_iterator it2; typename std::multimap<double, boxPtr>::reverse_iterator it2_end = sortedBoxes.rend(); for (it2 = sortedBoxes.rbegin(); it2 != it2_end; it2++) { signal_t density = it2->first; boxPtr box = it2->second; #ifndef MDBOX_TRACK_CENTROID coord_t boxCenter[nd]; box->calculateCentroid(boxCenter); #else const coord_t * boxCenter = box->getCentroid(); #endif // Compare to all boxes already picked. bool badBox = false; for (typename std::vector<boxPtr>::iterator it3=peakBoxes.begin(); it3 != peakBoxes.end(); it3++) { #ifndef MDBOX_TRACK_CENTROID coord_t otherCenter[nd]; (*it3)->calculateCentroid(otherCenter); #else const coord_t * otherCenter = (*it3)->getCentroid(); #endif // Distance between this box and a box we already put in. coord_t distSquared = 0.0; for (size_t d=0; d<nd; d++) { coord_t dist = otherCenter[d] - boxCenter[d]; distSquared += (dist * dist); } // Reject this box if it is too close to another previously found box. if (distSquared < peakRadiusSquared) { badBox = true; break; } } // The box was not rejected for another reason. if (!badBox) { if (numBoxesFound++ >= MaxPeaks) { g_log.notice() << "Number of peaks found exceeded the limit of " << MaxPeaks << ". Stopping peak finding." << std::endl; break; } peakBoxes.push_back(box); g_log.information() << "Found box at "; for (size_t d=0; d<nd; d++) g_log.information() << (d>0?",":"") << boxCenter[d]; g_log.information() << "; Density = " << density << std::endl; // Report progres for each box found. prog->report("Finding Peaks"); } } prog->resetNumSteps(numBoxesFound, 0.95, 1.0); // Copy the instrument, sample, run to the peaks workspace. peakWS->copyExperimentInfoFrom(ei.get()); // --- Convert the "boxes" to peaks ---- for (typename std::vector<boxPtr>::iterator it3=peakBoxes.begin(); it3 != peakBoxes.end(); it3++) { // The center of the box = Q in the lab frame boxPtr box = *it3; #ifndef MDBOX_TRACK_CENTROID coord_t boxCenter[nd]; box->calculateCentroid(boxCenter); #else const coord_t * boxCenter = box->getCentroid(); #endif V3D Q(boxCenter[0], boxCenter[1], boxCenter[2]); // Create a peak and add it // Empty starting peak. Peak p; try { if (dimType == QLAB) { // Build using the Q-lab-frame constructor p = Peak(inst, Q); // Save gonio matrix for later p.setGoniometerMatrix(goniometer); } else if (dimType == QSAMPLE) { // Build using the Q-sample-frame constructor p = Peak(inst, Q, goniometer); } } catch (std::exception &e) { g_log.notice() << "Error creating peak at " << Q << " because of '" << e.what() << "'. Peak will be skipped." << std::endl; continue; } try { // Look for a detector p.findDetector(); } catch (...) { /* Ignore errors in ray-tracer TODO: Handle for WISH data later */ } // The "bin count" used will be the box density. p.setBinCount( box->getSignalNormalized() * densityScalingFactor); // Save the run number found before. p.setRunNumber(runNumber); peakWS->addPeak(p); // Report progres for each box found. prog->report("Adding Peaks"); } // for each box found }
/** * Calculates the h,k, and l offsets from an integer for (some of )the peaks, *given the parameter values. * * @param out For each peak there are 3 consecutive elements in this array. The *first is for the h offset from an * integer, the second is the k offset and the 3rd is the l offset * @param xValues xValues give the index in the PeaksWorkspace for the peak. *For each peak considered there are * three consecutive entries all with the same index * @param nData The size of the xValues and out arrays */ void PeakHKLErrors::function1D(double *out, const double *xValues, const size_t nData) const { PeaksWorkspace_sptr Peaks = AnalysisDataService::Instance().retrieveWS<PeaksWorkspace>( PeakWorkspaceName); boost::shared_ptr<Geometry::Instrument> instNew = getNewInstrument(Peaks); if (!Peaks) throw std::invalid_argument("Peaks not stored under the name " + PeakWorkspaceName); std::map<int, Mantid::Kernel::Matrix<double>> RunNum2GonMatrixMap; getRun2MatMap(Peaks, OptRuns, RunNum2GonMatrixMap); const DblMatrix &UBx = Peaks->sample().getOrientedLattice().getUB(); DblMatrix UBinv(UBx); UBinv.Invert(); UBinv /= (2 * M_PI); double GonRotx = getParameter("GonRotx"); double GonRoty = getParameter("GonRoty"); double GonRotz = getParameter("GonRotz"); Matrix<double> GonRot = RotationMatrixAboutRegAxis(GonRotx, 'x') * RotationMatrixAboutRegAxis(GonRoty, 'y') * RotationMatrixAboutRegAxis(GonRotz, 'z'); double ChiSqTot = 0.0; for (size_t i = 0; i < nData; i += 3) { int peakNum = boost::math::iround(xValues[i]); IPeak &peak_old = Peaks->getPeak(peakNum); int runNum = peak_old.getRunNumber(); std::string runNumStr = std::to_string(runNum); Peak peak = createNewPeak(peak_old, instNew, 0, peak_old.getL1()); size_t N = OptRuns.find("/" + runNumStr + "/"); if (N < OptRuns.size()) { peak.setGoniometerMatrix(GonRot * RunNum2GonMatrixMap[runNum]); } else { peak.setGoniometerMatrix(GonRot * peak.getGoniometerMatrix()); } V3D sampOffsets(getParameter("SampleXOffset"), getParameter("SampleYOffset"), getParameter("SampleZOffset")); peak.setSamplePos(peak.getSamplePos() + sampOffsets); V3D hkl = UBinv * peak.getQSampleFrame(); for (int k = 0; k < 3; k++) { double d1 = hkl[k] - floor(hkl[k]); if (d1 > .5) d1 = d1 - 1; if (d1 < -.5) d1 = d1 + 1; out[i + k] = d1; ChiSqTot += d1 * d1; } } g_log.debug() << "------------------------Function---------------------------" "--------------------\n"; for (size_t p = 0; p < nParams(); p++) { g_log.debug() << parameterName(p) << "(" << getParameter(p) << "),"; if ((p + 1) % 6 == 0) g_log.debug() << '\n'; } g_log.debug() << '\n'; g_log.debug() << "Off constraints="; for (size_t p = 0; p < nParams(); p++) { IConstraint *constr = getConstraint(p); if (constr) if ((constr->check() > 0)) g_log.debug() << "(" << parameterName(p) << "=" << constr->check() << ");"; } g_log.debug() << '\n'; g_log.debug() << " Chi**2 = " << ChiSqTot << " nData = " << nData << '\n'; }