void Transform::SetTransform(const Pose2& rPose1, const Pose2& rPose2)
  {
    if (rPose1 == rPose2)
    {
      m_Rotation.SetToIdentity();
      m_InverseRotation.SetToIdentity();
      m_Transform = Pose2();
      return;
    }

    // heading transformation
    m_Rotation.FromAxisAngle(0, 0, 1, rPose2.GetHeading() - rPose1.GetHeading());
    m_InverseRotation.FromAxisAngle(0, 0, 1, rPose1.GetHeading() - rPose2.GetHeading());

    // position transformation
    Pose2 newPosition;
    if (rPose1.GetX() != 0.0 || rPose1.GetY() != 0.0)
    {
      newPosition = rPose2 - m_Rotation * rPose1;
    }
    else
    {
      newPosition = rPose2;
    }

    m_Transform = Pose2(newPosition.GetPosition(), rPose2.GetHeading() - rPose1.GetHeading());
  }
コード例 #2
0
ファイル: timePose2.cpp プロジェクト: exoter-rover/slam-gtsam
/* ************************************************************************* */
Vector Pose2BetweenFactorEvaluateErrorDefault(const Pose2& measured, const Pose2& p1, const Pose2& p2,
        boost::optional<Matrix&> H1, boost::optional<Matrix&> H2)
{
    Pose2 hx = p1.between(p2, H1, H2); // h(x)
    // manifold equivalent of h(x)-z -> log(z,h(x))
    return measured.localCoordinates(hx);
}
コード例 #3
0
ファイル: timePose2.cpp プロジェクト: exoter-rover/slam-gtsam
/* ************************************************************************* */
Pose2 Pose2betweenOptimized(const Pose2& r1, const Pose2& r2,
                            boost::optional<Matrix3&> H1, boost::optional<Matrix3&> H2)
{
    // get cosines and sines from rotation matrices
    const Rot2& R1 = r1.r(), R2 = r2.r();
    double c1=R1.c(), s1=R1.s(), c2=R2.c(), s2=R2.s();

    // Assert that R1 and R2 are normalized
    assert(std::abs(c1*c1 + s1*s1 - 1.0) < 1e-5 && std::abs(c2*c2 + s2*s2 - 1.0) < 1e-5);

    // Calculate delta rotation = between(R1,R2)
    double c = c1 * c2 + s1 * s2, s = -s1 * c2 + c1 * s2;
    Rot2 R(Rot2::atan2(s,c)); // normalizes

    // Calculate delta translation = unrotate(R1, dt);
    Point2 dt = r2.t() - r1.t();
    double x = dt.x(), y = dt.y();
    Point2 t(c1 * x + s1 * y, -s1 * x + c1 * y);

    // FD: This is just -AdjointMap(between(p2,p1)) inlined and re-using above
    if (H1) {
        double dt1 = -s2 * x + c2 * y;
        double dt2 = -c2 * x - s2 * y;
        *H1 = Matrix3();
        (*H1) <<
              -c,  -s,  dt1,
              s,  -c,  dt2,
              0.0, 0.0,-1.0;
    }
    if (H2) *H2 = Matrix3::Identity();

    return Pose2(R,t);
}
コード例 #4
0
ファイル: timePose2.cpp プロジェクト: exoter-rover/slam-gtsam
/* ************************************************************************* */
int main()
{
    int n = 50000000;
    cout << "NOTE:  Times are reported for " << n << " calls" << endl;

    // create a random pose:
    double x = 4.0, y = 2.0, r = 0.3;
    Vector v = (Vector(3) << x, y, r).finished();
    Pose2 X = Pose2(3,2,0.4), X2 = X.retract(v), X3(5,6,0.3);

    TEST(Expmap, Pose2::Expmap(v));
    TEST(Retract, X.retract(v));
    TEST(Logmap, Pose2::Logmap(X2));
    TEST(localCoordinates, X.localCoordinates(X2));

    Matrix H1, H2;
    Matrix3 H1f, H2f;
    TEST(Pose2BetweenFactorEvaluateErrorDefault, Pose2BetweenFactorEvaluateErrorDefault(X3, X, X2, H1, H2));
    TEST(Pose2BetweenFactorEvaluateErrorOptimizedBetween, Pose2BetweenFactorEvaluateErrorOptimizedBetween(X3, X, X2, H1, H2));
    TEST(Pose2BetweenFactorEvaluateErrorOptimizedBetweenFixed, Pose2BetweenFactorEvaluateErrorOptimizedBetweenFixed(X3, X, X2, H1f, H2f));

    // Print timings
    tictoc_print_();

    return 0;
}
コード例 #5
0
/* ************************************************************************* */
CalibratedCamera CalibratedCamera::Level(const Pose2& pose2, double height) {
	double st = sin(pose2.theta()), ct = cos(pose2.theta());
	Point3 x(st, -ct, 0), y(0, 0, -1), z(ct, st, 0);
	Rot3 wRc(x, y, z);
	Point3 t(pose2.x(), pose2.y(), height);
	Pose3 pose3(wRc, t);
	return CalibratedCamera(pose3);
}
コード例 #6
0
ファイル: Pose2.cpp プロジェクト: rubinasultan/gtsam
/* ************************************************************************* */
Vector Pose2::localCoordinates(const Pose2& p2) const {
#ifdef SLOW_BUT_CORRECT_EXPMAP
    return Logmap(between(p2));
#else
    Pose2 r = between(p2);
    return (Vector(3) << r.x(), r.y(), r.theta());
#endif
}
コード例 #7
0
ファイル: Pose2.cpp プロジェクト: rubinasultan/gtsam
/* ************************************************************************* */
Rot2 Pose2::bearing(const Pose2& point,
                    boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) const {
    Rot2 result = bearing(point.t(), H1, H2);
    if (H2) {
        Matrix H2_ = *H2 * point.r().matrix();
        *H2 = zeros(1, 3);
        insertSub(*H2, H2_, 0, 0);
    }
    return result;
}
コード例 #8
0
 // Using the NoiseModelFactor1 base class there are two functions that must be overridden.
 // The first is the 'evaluateError' function. This function implements the desired measurement
 // function, returning a vector of errors when evaluated at the provided variable value. It
 // must also calculate the Jacobians for this measurement function, if requested.
 Vector evaluateError(const Pose2& q, boost::optional<Matrix&> H = boost::none) const
 {
     // The measurement function for a GPS-like measurement is simple:
     // error_x = pose.x - measurement.x
     // error_y = pose.y - measurement.y
     // Consequently, the Jacobians are:
     // [ derror_x/dx  derror_x/dy  derror_x/dtheta ] = [1 0 0]
     // [ derror_y/dx  derror_y/dy  derror_y/dtheta ] = [0 1 0]
     if (H) (*H) = (Matrix(2,3) << 1.0,0.0,0.0, 0.0,1.0,0.0).finished();
     return (Vector(2) << q.x() - mx_, q.y() - my_).finished();
 }
コード例 #9
0
ファイル: Pose2.cpp プロジェクト: rubinasultan/gtsam
/* ************************************************************************* */
Vector Pose2::Logmap(const Pose2& p) {
    const Rot2& R = p.r();
    const Point2& t = p.t();
    double w = R.theta();
    if (std::abs(w) < 1e-10)
        return (Vector(3) << t.x(), t.y(), w);
    else {
        double c_1 = R.c()-1.0, s = R.s();
        double det = c_1*c_1 + s*s;
        Point2 p = R_PI_2 * (R.unrotate(t) - t);
        Point2 v = (w/det) * p;
        return (Vector(3) << v.x(), v.y(), w);
    }
}
コード例 #10
0
ファイル: Pose2.cpp プロジェクト: rubinasultan/gtsam
// see doc/math.lyx, SE(2) section
Pose2 Pose2::compose(const Pose2& p2, boost::optional<Matrix&> H1,
                     boost::optional<Matrix&> H2) const {
    // TODO: inline and reuse?
    if(H1) *H1 = p2.inverse().AdjointMap();
    if(H2) *H2 = I3;
    return (*this)*p2;
}
コード例 #11
0
ファイル: Pose2.cpp プロジェクト: rubinasultan/gtsam
/* ************************************************************************* */
double Pose2::range(const Pose2& pose2,
                    boost::optional<Matrix&> H1,
                    boost::optional<Matrix&> H2) const {
    Point2 d = pose2.t() - t_;
    if (!H1 && !H2) return d.norm();
    Matrix H;
    double r = d.norm(H);
    if (H1) *H1 = H * (Matrix(2, 3) <<
                           -r_.c(),  r_.s(),  0.0,
                           -r_.s(), -r_.c(),  0.0);
    if (H2) *H2 = H * (Matrix(2, 3) <<
                           pose2.r_.c(), -pose2.r_.s(),  0.0,
                           pose2.r_.s(),  pose2.r_.c(),  0.0);
    return r;
}
コード例 #12
0
// main
int main(int argc, char** argv) {

  // load Plaza1 data
  list<TimedOdometry> odometry = readOdometry();
//  size_t M = odometry.size();

  vector<RangeTriple> triples = readTriples();
  size_t K = triples.size();

  // parameters
  size_t start = 220, end=3000;
  size_t minK = 100; // first batch of smart factors
  size_t incK = 50; // minimum number of range measurements to process after
  bool robust = true;
  bool smart = true;

  // Set Noise parameters
  Vector priorSigmas = Vector3(1, 1, M_PI);
  Vector odoSigmas = Vector3(0.05, 0.01, 0.2);
  double sigmaR = 100; // range standard deviation
  const NM::Base::shared_ptr // all same type
  priorNoise = NM::Diagonal::Sigmas(priorSigmas), //prior
  odoNoise = NM::Diagonal::Sigmas(odoSigmas), // odometry
  gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust
  tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15), gaussian), //robust
  rangeNoise = robust ? tukey : gaussian;

  // Initialize iSAM
  ISAM2 isam;

  // Add prior on first pose
  Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120,
      M_PI - 2.02108900000000);
  NonlinearFactorGraph newFactors;
  newFactors.push_back(PriorFactor<Pose2>(0, pose0, priorNoise));

  ofstream os2(
      "/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResultLM.txt");
  ofstream os3(
      "/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResultSR.txt");

  //  initialize points (Gaussian)
  Values initial;
  if (!smart) {
    initial.insert(symbol('L', 1), Point2(-68.9265, 18.3778));
    initial.insert(symbol('L', 6), Point2(-37.5805, 69.2278));
    initial.insert(symbol('L', 0), Point2(-33.6205, 26.9678));
    initial.insert(symbol('L', 5), Point2(1.7095, -5.8122));
  }
  Values landmarkEstimates = initial; // copy landmarks
  initial.insert(0, pose0);

  //  initialize smart range factors
  size_t ids[] = { 1, 6, 0, 5 };
  typedef boost::shared_ptr<SmartRangeFactor> SmartPtr;
  map<size_t, SmartPtr> smartFactors;
  if (smart) {
    for(size_t jj: ids) {
      smartFactors[jj] = SmartPtr(new SmartRangeFactor(sigmaR));
      newFactors.push_back(smartFactors[jj]);
    }
  }

  // set some loop variables
  size_t i = 1; // step counter
  size_t k = 0; // range measurement counter
  Pose2 lastPose = pose0;
  size_t countK = 0, totalCount=0;

  // Loop over odometry
  gttic_(iSAM);
  for(const TimedOdometry& timedOdometry: odometry) {
    //--------------------------------- odometry loop -----------------------------------------
    double t;
    Pose2 odometry;
    boost::tie(t, odometry) = timedOdometry;

    // add odometry factor
    newFactors.push_back(
        BetweenFactor<Pose2>(i - 1, i, odometry,
            NM::Diagonal::Sigmas(odoSigmas)));

    // predict pose and add as initial estimate
    Pose2 predictedPose = lastPose.compose(odometry);
    lastPose = predictedPose;
    initial.insert(i, predictedPose);
    landmarkEstimates.insert(i, predictedPose);

    // Check if there are range factors to be added
    while (k < K && t >= boost::get<0>(triples[k])) {
      size_t j = boost::get<1>(triples[k]);
      double range = boost::get<2>(triples[k]);
      if (i > start) {
        if (smart && totalCount < minK) {
          smartFactors[j]->addRange(i, range);
          printf("adding range %g for %d on %d",range,(int)j,(int)i);cout << endl;
        }
        else {
          RangeFactor<Pose2, Point2> factor(i, symbol('L', j), range,
              rangeNoise);
          // Throw out obvious outliers based on current landmark estimates
          Vector error = factor.unwhitenedError(landmarkEstimates);
          if (k <= 200 || fabs(error[0]) < 5)
            newFactors.push_back(factor);
        }
        totalCount += 1;
      }
      k = k + 1;
      countK = countK + 1;
    }

    // Check whether to update iSAM 2
    if (k >= minK && countK >= incK) {
      gttic_(update);
      isam.update(newFactors, initial);
      gttoc_(update);
      gttic_(calculateEstimate);
      Values result = isam.calculateEstimate();
      gttoc_(calculateEstimate);
      lastPose = result.at<Pose2>(i);
      bool hasLandmarks = result.exists(symbol('L', ids[0]));
      if (hasLandmarks) {
        // update landmark estimates
        landmarkEstimates = Values();
        for(size_t jj: ids)
          landmarkEstimates.insert(symbol('L', jj), result.at(symbol('L', jj)));
      }
      newFactors = NonlinearFactorGraph();
      initial = Values();
      if (smart && !hasLandmarks) {
        cout << "initialize from smart landmarks" << endl;
        for(size_t jj: ids) {
          Point2 landmark = smartFactors[jj]->triangulate(result);
          initial.insert(symbol('L', jj), landmark);
          landmarkEstimates.insert(symbol('L', jj), landmark);
        }
      }
      countK = 0;
      for(const Values::ConstFiltered<Point2>::KeyValuePair& it: result.filter<Point2>())
        os2 << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t1"
            << endl;
      if (smart) {
        for(size_t jj: ids) {
          Point2 landmark = smartFactors[jj]->triangulate(result);
          os3 << jj << "\t" << landmark.x() << "\t" << landmark.y() << "\t1"
              << endl;
        }
      }
    }
    i += 1;
    if (i>end) break;
    //--------------------------------- odometry loop -----------------------------------------
  } // end for
  gttoc_(iSAM);

  // Print timings
  tictoc_print_();

  // Write result to file
  Values result = isam.calculateEstimate();
  ofstream os(
      "/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResult.txt");
  for(const Values::ConstFiltered<Pose2>::KeyValuePair& it: result.filter<Pose2>())
    os << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t"
        << it.value.theta() << endl;
  exit(0);
}
コード例 #13
0
// main
int main (int argc, char** argv) {

  // load Plaza2 data
  list<TimedOdometry> odometry = readOdometry();
//  size_t M = odometry.size();

  vector<RangeTriple> triples = readTriples();
  size_t K = triples.size();

  // parameters
  size_t minK = 150; // minimum number of range measurements to process initially
  size_t incK = 25; // minimum number of range measurements to process after
  bool groundTruth = false;
  bool robust = true;

  // Set Noise parameters
  Vector priorSigmas = Vector3(1,1,M_PI);
  Vector odoSigmas = Vector3(0.05, 0.01, 0.2);
  double sigmaR = 100; // range standard deviation
  const NM::Base::shared_ptr // all same type
  priorNoise = NM::Diagonal::Sigmas(priorSigmas), //prior
  odoNoise = NM::Diagonal::Sigmas(odoSigmas), // odometry
  gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust
  tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15), gaussian), //robust
  rangeNoise = robust ? tukey : gaussian;

  // Initialize iSAM
  ISAM2 isam;

  // Add prior on first pose
  Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120,
      M_PI - 2.02108900000000);
  NonlinearFactorGraph newFactors;
  newFactors.push_back(PriorFactor<Pose2>(0, pose0, priorNoise));
  Values initial;
  initial.insert(0, pose0);

  //  initialize points
  if (groundTruth) { // from TL file
    initial.insert(symbol('L', 1), Point2(-68.9265, 18.3778));
    initial.insert(symbol('L', 6), Point2(-37.5805, 69.2278));
    initial.insert(symbol('L', 0), Point2(-33.6205, 26.9678));
    initial.insert(symbol('L', 5), Point2(1.7095, -5.8122));
  } else { // drawn from sigma=1 Gaussian in matlab version
    initial.insert(symbol('L', 1), Point2(3.5784, 2.76944));
    initial.insert(symbol('L', 6), Point2(-1.34989, 3.03492));
    initial.insert(symbol('L', 0), Point2(0.725404, -0.0630549));
    initial.insert(symbol('L', 5), Point2(0.714743, -0.204966));
  }

  // set some loop variables
  size_t i = 1; // step counter
  size_t k = 0; // range measurement counter
  bool initialized = false;
  Pose2 lastPose = pose0;
  size_t countK = 0;

  // Loop over odometry
  gttic_(iSAM);
  BOOST_FOREACH(const TimedOdometry& timedOdometry, odometry) {
    //--------------------------------- odometry loop -----------------------------------------
    double t;
    Pose2 odometry;
    boost::tie(t, odometry) = timedOdometry;

    // add odometry factor
    newFactors.push_back(BetweenFactor<Pose2>(i-1, i, odometry,NM::Diagonal::Sigmas(odoSigmas)));

    // predict pose and add as initial estimate
    Pose2 predictedPose = lastPose.compose(odometry);
    lastPose = predictedPose;
    initial.insert(i, predictedPose);

    // Check if there are range factors to be added
    while (k < K && t >= boost::get<0>(triples[k])) {
      size_t j = boost::get<1>(triples[k]);
      double range = boost::get<2>(triples[k]);
      newFactors.push_back(RangeFactor<Pose2, Point2>(i, symbol('L', j), range,rangeNoise));
      k = k + 1;
      countK = countK + 1;
    }

    // Check whether to update iSAM 2
    if ((k > minK) && (countK > incK)) {
      if (!initialized) { // Do a full optimize for first minK ranges
        gttic_(batchInitialization);
        LevenbergMarquardtOptimizer batchOptimizer(newFactors, initial);
        initial = batchOptimizer.optimize();
        gttoc_(batchInitialization);
        initialized = true;
      }
      gttic_(update);
      isam.update(newFactors, initial);
      gttoc_(update);
      gttic_(calculateEstimate);
      Values result = isam.calculateEstimate();
      gttoc_(calculateEstimate);
      lastPose = result.at<Pose2>(i);
      newFactors = NonlinearFactorGraph();
      initial = Values();
      countK = 0;
    }
    i += 1;
    //--------------------------------- odometry loop -----------------------------------------
  } // BOOST_FOREACH
コード例 #14
0
ファイル: timePose2.cpp プロジェクト: exoter-rover/slam-gtsam
/* ************************************************************************* */
Pose2 Pose2betweenDefault(const Pose2& r1, const Pose2& r2) {
    return r1.inverse() * r2;
}
 karto::String StringHelper::ToString(const Pose2& rValue)
 {
   return rValue.ToString();
 }