コード例 #1
0
/**
 * This method is called at the beginning of an analysis so that any
 * necessary initializations may be performed.
 *
 * This method is meant to be called at the beginning of an integration 
 *
 * @param s Current state .
 *
 * @return -1 on error, 0 otherwise.
 */
int StaticOptimization::
begin(SimTK::State& s )
{
    if(!proceed()) return(0);

    // Make a working copy of the model
    delete _modelWorkingCopy;
    _modelWorkingCopy = _model->clone();
    _modelWorkingCopy->initSystem();

    // Replace model force set with only generalized forces
    if(_model) {
        SimTK::State& sWorkingCopyTemp = _modelWorkingCopy->updWorkingState();
        // Update the _forceSet we'll be computing inverse dynamics for
        if(_ownsForceSet) delete _forceSet;
        if(_useModelForceSet) {
            // Set pointer to model's internal force set
            _forceSet = &_modelWorkingCopy->updForceSet();
            _ownsForceSet = false;
        } else {
            ForceSet& as = _modelWorkingCopy->updForceSet();
            // Keep a copy of forces that are not muscles to restore them back.
            ForceSet* saveForces = as.clone();
            // Generate an force set consisting of a coordinate actuator for every unconstrained degree of freedom
            _forceSet = CoordinateActuator::CreateForceSetOfCoordinateActuatorsForModel(sWorkingCopyTemp,*_modelWorkingCopy,1,false);
            _ownsForceSet = false;
            _modelWorkingCopy->setAllControllersEnabled(false);
            _numCoordinateActuators = _forceSet->getSize();
            // Copy whatever forces that are not muscles back into the model
            
            for(int i=0; i<saveForces->getSize(); i++){
                const Force& f=saveForces->get(i);
                if ((dynamic_cast<const Muscle*>(&saveForces->get(i)))==NULL)
                    as.append(saveForces->get(i).clone());
            }
        }

        SimTK::State& sWorkingCopy = _modelWorkingCopy->initSystem();
        // Set modeling options for Actuators to be overriden
        for(int i=0; i<_forceSet->getSize(); i++) {
            ScalarActuator* act = dynamic_cast<ScalarActuator*>(&_forceSet->get(i));
            if( act ) {
                act->overrideActuation(sWorkingCopy, true);
            }
        }

        sWorkingCopy.setTime(s.getTime());
        sWorkingCopy.setQ(s.getQ());
        sWorkingCopy.setU(s.getU());
        sWorkingCopy.setZ(s.getZ());
        _modelWorkingCopy->getMultibodySystem().realize(s,SimTK::Stage::Velocity);
        _modelWorkingCopy->equilibrateMuscles(sWorkingCopy);
        // Gather indices into speed set corresponding to the unconstrained degrees of freedom 
        // (for which we will set acceleration constraints)
        _accelerationIndices.setSize(0);
        const CoordinateSet& coordSet = _model->getCoordinateSet();
        for(int i=0; i<coordSet.getSize(); i++) {
            const Coordinate& coord = coordSet.get(i);
            if(!coord.isConstrained(sWorkingCopy)) {
                Array<int> inds = _statesStore->
                    getColumnIndicesForIdentifier(coord.getName()) ;
                _accelerationIndices.append(inds[0]);
            }
        }

        int na = _forceSet->getSize();
        int nacc = _accelerationIndices.getSize();

        if(na < nacc) 
            throw(Exception("StaticOptimization: ERROR- over-constrained "
                "system -- need at least as many forces as there are degrees of freedom.\n") );

        _forceReporter.reset(new ForceReporter(_modelWorkingCopy));
        _forceReporter->begin(sWorkingCopy);
        _forceReporter->updForceStorage().reset();

        _parameters.resize(_modelWorkingCopy->getNumControls());
        _parameters = 0;
    }

    _statesSplineSet=GCVSplineSet(5,_statesStore);

    // DESCRIPTION AND LABELS
    constructDescription();
    constructColumnLabels();

    deleteStorage();
    allocateStorage();

    // RESET STORAGE
    _activationStorage->reset(s.getTime());
    _forceReporter->updForceStorage().reset(s.getTime());

    // RECORD
    int status = 0;
    if(_activationStorage->getSize()<=0) {
        status = record(s);
        const Set<Actuator>& fs = _modelWorkingCopy->getActuators();
        for(int k=0;k<fs.getSize();k++) {
            ScalarActuator* act = dynamic_cast<ScalarActuator *>(&fs[k]);
            if (act){
                cout << "Bounds for " << act->getName() << ": "
                    << act->getMinControl() << " to "
                    << act->getMaxControl() << endl;
            }
            else{
                std::string msg = getConcreteClassName();
                msg += "::can only process scalar Actuator types.";
                throw Exception(msg);
            }
        }
    }

    return(status);
}
コード例 #2
0
ファイル: CMC.cpp プロジェクト: bit20090138/opensim-core
// for adding any components to the model
void CMC::extendAddToSystem( SimTK::MultibodySystem& system)  const
{
    Super::extendAddToSystem(system);

    // add event handler for updating controls for next window 
    CMC* mutableThis = const_cast<CMC *>(this);
    ComputeControlsEventHandler* computeControlsHandler = 
        new ComputeControlsEventHandler(mutableThis);

    system.updDefaultSubsystem().addEventHandler(computeControlsHandler );

    const Set<Actuator>& fSet = getActuatorSet();
    int nActs = fSet.getSize();

    mutableThis->_controlSetIndices.setSize(nActs);

    // Create the control set that will hold the controls computed by CMC
    mutableThis->_controlSet.setName(_model->getName());
    mutableThis->_controlSet.setSize(0);

    // Define the control set used to specify control bounds and to hold 
    // the computed control values from the CMC algorithm
    double xmin =0, xmax=0;

    std::string actName = "";
    
    for(int i=0; i < nActs; ++i ) {

        ScalarActuator* act = dynamic_cast<ScalarActuator*>(&fSet[i]);
        //Actuator& act = getActuatorSet().get(i);

        ControlLinear *control = new ControlLinear();
        control->setName(act->getName() + ".excitation" );

        xmin = act->getMinControl();
        if (xmin ==-SimTK::Infinity)
            xmin =-MAX_CONTROLS_FOR_RRA;
        
        xmax =  act->getMaxControl();
        if (xmax ==SimTK::Infinity)
            xmax =MAX_CONTROLS_FOR_RRA;

        Muscle *musc = dynamic_cast<Muscle *>(act);
        // if controlling muscles, CMC requires that the control be constant (i.e. piecewise constant or use steps)
        // since it uses this assumption to rootsolve for the required controls over the CMC time-window.
        if(musc){
            control->setUseSteps(true);
            if(xmin < MIN_CMC_CONTROL_VALUE){
                cout << "CMC::Warning: CMC cannot compute controls for muscles with muscle controls < " << MIN_CMC_CONTROL_VALUE <<".\n" <<
                    "The minimum control limit for muscle '" << musc->getName() << "' has been reset to " << MIN_CMC_CONTROL_VALUE <<"." <<endl;
                xmin = MIN_CMC_CONTROL_VALUE;
            }
            if(xmax < MAX_CMC_CONTROL_VALUE){
                cout << "CMC::Warning: CMC cannot compute controls for muscles with muscle controls > " << MAX_CMC_CONTROL_VALUE <<".\n" <<
                    "The maximum control limit for muscle '" << musc->getName() << "' has been reset to " << MAX_CMC_CONTROL_VALUE << "." << endl;
                xmax = MAX_CMC_CONTROL_VALUE;
            }
        }

        control->setDefaultParameterMin(xmin);
        control->setDefaultParameterMax(xmax);

        mutableThis->_controlSet.adoptAndAppend(control);
        mutableThis->_controlSetIndices.set(i, i);
    }

    mutableThis->setNumControls(_controlSet.getSize());
}