template<typename MatrixType> void selfadjointeigensolver_essential_check(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; RealScalar eival_eps = (std::min)(test_precision<RealScalar>(), NumTraits<Scalar>::dummy_precision()*20000); SelfAdjointEigenSolver<MatrixType> eiSymm(m); VERIFY_IS_EQUAL(eiSymm.info(), Success); VERIFY_IS_APPROX(m.template selfadjointView<Lower>() * eiSymm.eigenvectors(), eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal()); VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); VERIFY_IS_UNITARY(eiSymm.eigenvectors()); if(m.cols()<=4) { SelfAdjointEigenSolver<MatrixType> eiDirect; eiDirect.computeDirect(m); VERIFY_IS_EQUAL(eiDirect.info(), Success); VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiDirect.eigenvalues()); if(! eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps) ) { std::cerr << "reference eigenvalues: " << eiSymm.eigenvalues().transpose() << "\n" << "obtained eigenvalues: " << eiDirect.eigenvalues().transpose() << "\n" << "diff: " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).transpose() << "\n" << "error (eps): " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).norm() / eiSymm.eigenvalues().norm() << " (" << eival_eps << ")\n"; } VERIFY(eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps)); VERIFY_IS_APPROX(m.template selfadjointView<Lower>() * eiDirect.eigenvectors(), eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal()); VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues()); VERIFY_IS_UNITARY(eiDirect.eigenvectors()); } }
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) { typedef typename MatrixType::Index Index; /* this test covers the following files: EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) */ Index rows = m.rows(); Index cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; RealScalar largerEps = 10*test_precision<RealScalar>(); MatrixType a = MatrixType::Random(rows,cols); MatrixType a1 = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; MatrixType symmC = symmA; svd_fill_random(symmA,Symmetric); symmA.template triangularView<StrictlyUpper>().setZero(); symmC.template triangularView<StrictlyUpper>().setZero(); MatrixType b = MatrixType::Random(rows,cols); MatrixType b1 = MatrixType::Random(rows,cols); MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; symmB.template triangularView<StrictlyUpper>().setZero(); CALL_SUBTEST( selfadjointeigensolver_essential_check(symmA) ); SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); // generalized eigen pb GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB); SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false); VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success); VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); // generalized eigen problem Ax = lBx eiSymmGen.compute(symmC, symmB,Ax_lBx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); // generalized eigen problem BAx = lx eiSymmGen.compute(symmC, symmB,BAx_lx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); // generalized eigen problem ABx = lx eiSymmGen.compute(symmC, symmB,ABx_lx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); eiSymm.compute(symmC); MatrixType sqrtSymmA = eiSymm.operatorSqrt(); VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA); VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt()); MatrixType id = MatrixType::Identity(rows, cols); VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1)); SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized; VERIFY_RAISES_ASSERT(eiSymmUninitialized.info()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); eiSymmUninitialized.compute(symmA, false); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); // test Tridiagonalization's methods Tridiagonalization<MatrixType> tridiag(symmC); VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal()); VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>()); Matrix<RealScalar,Dynamic,Dynamic> T = tridiag.matrixT(); if(rows>1 && cols>1) { // FIXME check that upper and lower part are 0: //VERIFY(T.topRightCorner(rows-2, cols-2).template triangularView<Upper>().isZero()); } VERIFY_IS_APPROX(tridiag.diagonal(), T.diagonal()); VERIFY_IS_APPROX(tridiag.subDiagonal(), T.template diagonal<1>()); VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint()); VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint()); // Test computation of eigenvalues from tridiagonal matrix if(rows > 1) { SelfAdjointEigenSolver<MatrixType> eiSymmTridiag; eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1), ComputeEigenvectors); VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmTridiag.eigenvalues()); VERIFY_IS_APPROX(tridiag.matrixT(), eiSymmTridiag.eigenvectors().real() * eiSymmTridiag.eigenvalues().asDiagonal() * eiSymmTridiag.eigenvectors().real().transpose()); } if (rows > 1) { // Test matrix with NaN symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC); VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence); } }
bool HSpatialDivision2::divide(int target_count) { /* - variables - */ HSDVertexCluster2 vc; int i, lastClusterCount = 1, continuousUnchangeCount = 0; float diff; // maximum/minimum curvature and the direction float maxCurvature; // maximum curvature float minCurvature; // minimum curvature HNormal maxDir; // maximum curvature direction HNormal minDir; // maximum curvature direction SelfAdjointEigenSolver<Matrix3f> eigensolver; solver = &eigensolver; Matrix3f M; htime.setCheckPoint(); /* - routines - */ // init the first cluster for (i = 0; i < vertexCount; i ++) if (vertices[i].clusterIndex != INVALID_CLUSTER_INDEX) vc.addVertex(i, vertices[i]); cout << "\t-----------------------------------------------" << endl << "\tnon-referenced vertices count:\t" << vertexCount - vc.vIndices->size() << endl << "\tminimum normal-vari factor:\t" << HSDVertexCluster2::MINIMUM_NORMAL_VARI << endl << "\tvalid vertices count:\t" << vc.vIndices->size() << endl; flog << "\t-----------------------------------------------" << endl << "\tnon-referenced vertices count:\t" << vertexCount - vc.vIndices->size() << endl << "\tminimum normal-vari factor:\t" << HSDVertexCluster2::MINIMUM_NORMAL_VARI << endl << "\tvalid vertices count:\t" << vc.vIndices->size() << endl; for (i = 0; i < faceCount; i ++) { vc.addFace(i); } vc.importance = vc.getImportance(); clusters.addElement(vc); vector<int> index; // index of eigenvalues in eigensolver.eigenvalues() index.push_back(0); index.push_back(1); index.push_back(2); // subdivide until the divided clusters reach the target count while(clusters.count() < target_count) { //diff = ((float)target_count - (float)clusters.count()) / target_count; //if (diff < 0.01) { // break; //} if (clusters.count() == lastClusterCount) { continuousUnchangeCount ++; } else { continuousUnchangeCount = 0; } if (continuousUnchangeCount >= 50) { cout << "\tstop without reaching the target count because of unchanged cluster count" << endl; flog << "\tstop without reaching the target count because of unchanged cluster count" << endl; break; } if (clusters.empty()) { cerr << "#error: don't know why but the clusters heap have came to empty" << endl; flog << "#error: don't know why but the clusters heap have came to empty" << endl; return false; } // get the value of the top in the heap of clusters and delete it lastClusterCount = clusters.count(); vc = clusters.getTop(); clusters.deleteTop(); //PrintHeap(fout, clusters); // get the eigenvalue M << vc.awQ.a11, vc.awQ.a12, vc.awQ.a13, vc.awQ.a12, vc.awQ.a22, vc.awQ.a23, vc.awQ.a13, vc.awQ.a23, vc.awQ.a33; eigensolver.compute(M); if (eigensolver.info() != Success) { cerr << "#error: eigenvalues computing error" << endl; flog << "#error: eigenvalues computing error" << endl; return false; } // sort the eigenvalues in descending order by the index std::sort(index.begin(), index.end(), cmp); // get the maximum/minimum curvature and the direction maxCurvature = eigensolver.eigenvalues()(index[1]); // maximum curvature minCurvature = eigensolver.eigenvalues()(index[2]); // minimum curvature maxDir.Set(eigensolver.eigenvectors()(0, index[1]), eigensolver.eigenvectors()(1, index[1]), eigensolver.eigenvectors()(2, index[1])); // maximum curvature direction minDir.Set(eigensolver.eigenvectors()(0, index[2]), eigensolver.eigenvectors()(1, index[2]), eigensolver.eigenvectors()(2, index[2])); // maximum curvature direction // partition to 8 if (vc.awN.Length() / vc.area < SPHERE_MEAN_NORMAL_THRESH) { HNormal p_nm = maxDir ^ minDir; partition8(vc, p_nm, HFaceFormula::calcD(p_nm, vc.meanVertex), maxDir, HFaceFormula::calcD(maxDir, vc.meanVertex), minDir, HFaceFormula::calcD(minDir, vc.meanVertex)); } // partition to 4 else if (maxCurvature / minCurvature < MAX_MIN_CURVATURE_RATIO_TREATED_AS_HEMISPHERE) { partition4(vc, maxDir, HFaceFormula::calcD(maxDir, vc.meanVertex), minDir, HFaceFormula::calcD(minDir, vc.meanVertex)); } // partition to 2 else { partition2(vc, maxDir, HFaceFormula::calcD(maxDir, vc.meanVertex)); } #ifdef PRINT_DEBUG_INFO PrintHeap(fdebug, clusters); #endif } //PrintHeap(cout, clusters); cout << "\tsimplification time:\t" << htime.printElapseSec() << endl << endl; flog << "\tsimplification time:\t" << htime.printElapseSec() << endl << endl; return true; }
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) { typedef typename MatrixType::Index Index; /* this test covers the following files: EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) */ Index rows = m.rows(); Index cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; RealScalar largerEps = 10*test_precision<RealScalar>(); MatrixType a = MatrixType::Random(rows,cols); MatrixType a1 = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; symmA.template triangularView<StrictlyUpper>().setZero(); MatrixType b = MatrixType::Random(rows,cols); MatrixType b1 = MatrixType::Random(rows,cols); MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; symmB.template triangularView<StrictlyUpper>().setZero(); SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); // generalized eigen pb GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB); #ifdef HAS_GSL if (internal::is_same<RealScalar,double>::value) { // restore symmA and symmB. symmA = MatrixType(symmA.template selfadjointView<Lower>()); symmB = MatrixType(symmB.template selfadjointView<Lower>()); typedef GslTraits<Scalar> Gsl; typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0; typename GslTraits<RealScalar>::Vector gEval=0; RealVectorType _eval; MatrixType _evec; convert<MatrixType>(symmA, gSymmA); convert<MatrixType>(symmB, gSymmB); convert<MatrixType>(symmA, gEvec); gEval = GslTraits<RealScalar>::createVector(rows); Gsl::eigen_symm(gSymmA, gEval, gEvec); convert(gEval, _eval); convert(gEvec, _evec); // test gsl itself ! VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps)); // compare with eigen VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues()); VERIFY_IS_APPROX(_evec.cwiseAbs(), eiSymm.eigenvectors().cwiseAbs()); // generalized pb Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec); convert(gEval, _eval); convert(gEvec, _evec); // test GSL itself: VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps)); // compare with eigen MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse(); VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues()); VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs()); Gsl::free(gSymmA); Gsl::free(gSymmB); GslTraits<RealScalar>::free(gEval); Gsl::free(gEvec); } #endif VERIFY_IS_EQUAL(eiSymm.info(), Success); VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox( eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false); VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success); VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); // generalized eigen problem Ax = lBx eiSymmGen.compute(symmA, symmB,Ax_lBx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); // generalized eigen problem BAx = lx eiSymmGen.compute(symmA, symmB,BAx_lx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); // generalized eigen problem ABx = lx eiSymmGen.compute(symmA, symmB,ABx_lx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); MatrixType sqrtSymmA = eiSymm.operatorSqrt(); VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA); VERIFY_IS_APPROX(sqrtSymmA, symmA.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt()); MatrixType id = MatrixType::Identity(rows, cols); VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1)); SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized; VERIFY_RAISES_ASSERT(eiSymmUninitialized.info()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); eiSymmUninitialized.compute(symmA, false); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); // test Tridiagonalization's methods Tridiagonalization<MatrixType> tridiag(symmA); // FIXME tridiag.matrixQ().adjoint() does not work VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint()); if (rows > 1) { // Test matrix with NaN symmA(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmA); VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence); } }
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) { typedef typename MatrixType::Index Index; /* this test covers the following files: EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) */ Index rows = m.rows(); Index cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; RealScalar largerEps = 10*test_precision<RealScalar>(); MatrixType a = MatrixType::Random(rows,cols); MatrixType a1 = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; MatrixType symmC = symmA; // randomly nullify some rows/columns { Index count = 1;//internal::random<Index>(-cols,cols); for(Index k=0; k<count; ++k) { Index i = internal::random<Index>(0,cols-1); symmA.row(i).setZero(); symmA.col(i).setZero(); } } symmA.template triangularView<StrictlyUpper>().setZero(); symmC.template triangularView<StrictlyUpper>().setZero(); MatrixType b = MatrixType::Random(rows,cols); MatrixType b1 = MatrixType::Random(rows,cols); MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; symmB.template triangularView<StrictlyUpper>().setZero(); SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); SelfAdjointEigenSolver<MatrixType> eiDirect; eiDirect.computeDirect(symmA); // generalized eigen pb GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB); VERIFY_IS_EQUAL(eiSymm.info(), Success); VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox( eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); VERIFY_IS_EQUAL(eiDirect.info(), Success); VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox( eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps)); VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues()); SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false); VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success); VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); // generalized eigen problem Ax = lBx eiSymmGen.compute(symmC, symmB,Ax_lBx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); // generalized eigen problem BAx = lx eiSymmGen.compute(symmC, symmB,BAx_lx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); // generalized eigen problem ABx = lx eiSymmGen.compute(symmC, symmB,ABx_lx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); eiSymm.compute(symmC); MatrixType sqrtSymmA = eiSymm.operatorSqrt(); VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA); VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt()); MatrixType id = MatrixType::Identity(rows, cols); VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1)); SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized; VERIFY_RAISES_ASSERT(eiSymmUninitialized.info()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); eiSymmUninitialized.compute(symmA, false); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); // test Tridiagonalization's methods Tridiagonalization<MatrixType> tridiag(symmC); // FIXME tridiag.matrixQ().adjoint() does not work VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint()); if (rows > 1) { // Test matrix with NaN symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC); VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence); } }