template<typename MatrixType> void selfadjointeigensolver_essential_check(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  RealScalar eival_eps = (std::min)(test_precision<RealScalar>(),  NumTraits<Scalar>::dummy_precision()*20000);
  
  SelfAdjointEigenSolver<MatrixType> eiSymm(m);
  VERIFY_IS_EQUAL(eiSymm.info(), Success);
  VERIFY_IS_APPROX(m.template selfadjointView<Lower>() * eiSymm.eigenvectors(),
                   eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal());
  VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
  VERIFY_IS_UNITARY(eiSymm.eigenvectors());

  if(m.cols()<=4)
  {
    SelfAdjointEigenSolver<MatrixType> eiDirect;
    eiDirect.computeDirect(m);  
    VERIFY_IS_EQUAL(eiDirect.info(), Success);
    VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiDirect.eigenvalues());
    if(! eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps) )
    {
      std::cerr << "reference eigenvalues: " << eiSymm.eigenvalues().transpose() << "\n"
                << "obtained eigenvalues:  " << eiDirect.eigenvalues().transpose() << "\n"
                << "diff:                  " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).transpose() << "\n"
                << "error (eps):           " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).norm() / eiSymm.eigenvalues().norm() << "  (" << eival_eps << ")\n";
    }
    VERIFY(eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps));
    VERIFY_IS_APPROX(m.template selfadjointView<Lower>() * eiDirect.eigenvectors(),
                    eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal());
    VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues());
    VERIFY_IS_UNITARY(eiDirect.eigenvectors());
  }
}
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  /* this test covers the following files:
     EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;

  RealScalar largerEps = 10*test_precision<RealScalar>();

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
  MatrixType symmC = symmA;
  
  svd_fill_random(symmA,Symmetric);

  symmA.template triangularView<StrictlyUpper>().setZero();
  symmC.template triangularView<StrictlyUpper>().setZero();

  MatrixType b = MatrixType::Random(rows,cols);
  MatrixType b1 = MatrixType::Random(rows,cols);
  MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
  symmB.template triangularView<StrictlyUpper>().setZero();
  
  CALL_SUBTEST( selfadjointeigensolver_essential_check(symmA) );

  SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
  // generalized eigen pb
  GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB);

  SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
  VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
  VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
  
  // generalized eigen problem Ax = lBx
  eiSymmGen.compute(symmC, symmB,Ax_lBx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
          symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem BAx = lx
  eiSymmGen.compute(symmC, symmB,BAx_lx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem ABx = lx
  eiSymmGen.compute(symmC, symmB,ABx_lx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));


  eiSymm.compute(symmC);
  MatrixType sqrtSymmA = eiSymm.operatorSqrt();
  VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
  VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());

  MatrixType id = MatrixType::Identity(rows, cols);
  VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));

  SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());

  eiSymmUninitialized.compute(symmA, false);
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());

  // test Tridiagonalization's methods
  Tridiagonalization<MatrixType> tridiag(symmC);
  VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal());
  VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>());
  Matrix<RealScalar,Dynamic,Dynamic> T = tridiag.matrixT();
  if(rows>1 && cols>1) {
    // FIXME check that upper and lower part are 0:
    //VERIFY(T.topRightCorner(rows-2, cols-2).template triangularView<Upper>().isZero());
  }
  VERIFY_IS_APPROX(tridiag.diagonal(), T.diagonal());
  VERIFY_IS_APPROX(tridiag.subDiagonal(), T.template diagonal<1>());
  VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
  VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
  
  // Test computation of eigenvalues from tridiagonal matrix
  if(rows > 1)
  {
    SelfAdjointEigenSolver<MatrixType> eiSymmTridiag;
    eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1), ComputeEigenvectors);
    VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmTridiag.eigenvalues());
    VERIFY_IS_APPROX(tridiag.matrixT(), eiSymmTridiag.eigenvectors().real() * eiSymmTridiag.eigenvalues().asDiagonal() * eiSymmTridiag.eigenvectors().real().transpose());
  }

  if (rows > 1)
  {
    // Test matrix with NaN
    symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC);
    VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
  }
}
예제 #3
0
bool HSpatialDivision2::divide(int target_count)
{
	/* - variables - */

	HSDVertexCluster2 vc;
	int i, lastClusterCount = 1, continuousUnchangeCount = 0;
	float diff;

	// maximum/minimum curvature and the direction
	float maxCurvature; // maximum curvature
	float minCurvature; // minimum curvature
	HNormal maxDir; // maximum curvature direction
	HNormal minDir; // maximum curvature direction

	SelfAdjointEigenSolver<Matrix3f> eigensolver;
	solver = &eigensolver;
	Matrix3f M;

	htime.setCheckPoint();

	/* - routines - */

	// init the first cluster
	for (i = 0; i < vertexCount; i ++) 
		if (vertices[i].clusterIndex != INVALID_CLUSTER_INDEX) 
			vc.addVertex(i, vertices[i]);

	cout << "\t-----------------------------------------------" << endl 
		 << "\tnon-referenced vertices count:\t" << vertexCount - vc.vIndices->size() << endl
		 << "\tminimum normal-vari factor:\t" << HSDVertexCluster2::MINIMUM_NORMAL_VARI << endl
		 << "\tvalid vertices count:\t" << vc.vIndices->size() << endl;

	flog << "\t-----------------------------------------------" << endl
		 << "\tnon-referenced vertices count:\t" << vertexCount - vc.vIndices->size() << endl
		 << "\tminimum normal-vari factor:\t" << HSDVertexCluster2::MINIMUM_NORMAL_VARI << endl
		 << "\tvalid vertices count:\t" << vc.vIndices->size() << endl;

	for (i = 0; i < faceCount; i ++) {
		vc.addFace(i);
	}
	vc.importance = vc.getImportance();
	clusters.addElement(vc);

	vector<int> index; // index of eigenvalues in eigensolver.eigenvalues()
	index.push_back(0);
	index.push_back(1);
	index.push_back(2);

	// subdivide until the divided clusters reach the target count
	while(clusters.count() < target_count)
	{
		//diff = ((float)target_count - (float)clusters.count()) / target_count;
		//if (diff < 0.01) {
		//	break;
		//}

		if (clusters.count() == lastClusterCount) {
			continuousUnchangeCount ++;
		}
		else {
			continuousUnchangeCount = 0;
		}

		if (continuousUnchangeCount >= 50) {
			cout << "\tstop without reaching the target count because of unchanged cluster count" << endl;
			flog << "\tstop without reaching the target count because of unchanged cluster count" << endl;
			break;
		}
		
		if (clusters.empty()) {
			cerr << "#error: don't know why but the clusters heap have came to empty" << endl;
			flog << "#error: don't know why but the clusters heap have came to empty" << endl;
			return false;
		}

		// get the value of the top in the heap of clusters and delete it
		lastClusterCount = clusters.count();
		vc = clusters.getTop();
 		clusters.deleteTop();

		//PrintHeap(fout, clusters);

		// get the eigenvalue
		M << vc.awQ.a11, vc.awQ.a12, vc.awQ.a13,
			 vc.awQ.a12, vc.awQ.a22, vc.awQ.a23,
			 vc.awQ.a13, vc.awQ.a23, vc.awQ.a33;
		eigensolver.compute(M);
		if (eigensolver.info() != Success) {
			cerr << "#error: eigenvalues computing error" << endl;
			flog << "#error: eigenvalues computing error" << endl;
			return false;
		}

		// sort the eigenvalues in descending order by the index
		std::sort(index.begin(), index.end(), cmp);

		// get the maximum/minimum curvature and the direction
		maxCurvature = eigensolver.eigenvalues()(index[1]); // maximum curvature
		minCurvature = eigensolver.eigenvalues()(index[2]); // minimum curvature
		maxDir.Set(eigensolver.eigenvectors()(0, index[1]),
			       eigensolver.eigenvectors()(1, index[1]),
			       eigensolver.eigenvectors()(2, index[1])); // maximum curvature direction
		minDir.Set(eigensolver.eigenvectors()(0, index[2]),
			       eigensolver.eigenvectors()(1, index[2]),
			       eigensolver.eigenvectors()(2, index[2])); // maximum curvature direction

		// partition to 8
		if (vc.awN.Length() / vc.area < SPHERE_MEAN_NORMAL_THRESH)
		{
			HNormal p_nm = maxDir ^ minDir;

			partition8(vc,
				p_nm, HFaceFormula::calcD(p_nm, vc.meanVertex),
				maxDir, HFaceFormula::calcD(maxDir, vc.meanVertex),
				minDir, HFaceFormula::calcD(minDir, vc.meanVertex));
		}
		// partition to 4
		else if (maxCurvature / minCurvature < MAX_MIN_CURVATURE_RATIO_TREATED_AS_HEMISPHERE)
		{
			partition4(vc, 
				maxDir, HFaceFormula::calcD(maxDir, vc.meanVertex),
				minDir, HFaceFormula::calcD(minDir, vc.meanVertex));
		}
		// partition to 2
		else {
			partition2(vc, maxDir, HFaceFormula::calcD(maxDir, vc.meanVertex));
		}

#ifdef PRINT_DEBUG_INFO
		PrintHeap(fdebug, clusters);
#endif
	}

	//PrintHeap(cout, clusters);

	cout << "\tsimplification time:\t" << htime.printElapseSec() << endl << endl;

	flog << "\tsimplification time:\t" << htime.printElapseSec() << endl << endl;

	return true;
}
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  /* this test covers the following files:
     EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;

  RealScalar largerEps = 10*test_precision<RealScalar>();

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
  symmA.template triangularView<StrictlyUpper>().setZero();

  MatrixType b = MatrixType::Random(rows,cols);
  MatrixType b1 = MatrixType::Random(rows,cols);
  MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
  symmB.template triangularView<StrictlyUpper>().setZero();

  SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
  // generalized eigen pb
  GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);

  #ifdef HAS_GSL
  if (internal::is_same<RealScalar,double>::value)
  {
    // restore symmA and symmB.
    symmA = MatrixType(symmA.template selfadjointView<Lower>());
    symmB = MatrixType(symmB.template selfadjointView<Lower>());
    typedef GslTraits<Scalar> Gsl;
    typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0;
    typename GslTraits<RealScalar>::Vector gEval=0;
    RealVectorType _eval;
    MatrixType _evec;
    convert<MatrixType>(symmA, gSymmA);
    convert<MatrixType>(symmB, gSymmB);
    convert<MatrixType>(symmA, gEvec);
    gEval = GslTraits<RealScalar>::createVector(rows);

    Gsl::eigen_symm(gSymmA, gEval, gEvec);
    convert(gEval, _eval);
    convert(gEvec, _evec);

    // test gsl itself !
    VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps));

    // compare with eigen
    VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues());
    VERIFY_IS_APPROX(_evec.cwiseAbs(), eiSymm.eigenvectors().cwiseAbs());

    // generalized pb
    Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec);
    convert(gEval, _eval);
    convert(gEvec, _evec);
    // test GSL itself:
    VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps));

    // compare with eigen
    MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse();
    VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues());
    VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs());

    Gsl::free(gSymmA);
    Gsl::free(gSymmB);
    GslTraits<RealScalar>::free(gEval);
    Gsl::free(gEvec);
  }
  #endif

  VERIFY_IS_EQUAL(eiSymm.info(), Success);
  VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox(
          eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
  VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());

  SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
  VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
  VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());

  // generalized eigen problem Ax = lBx
  eiSymmGen.compute(symmA, symmB,Ax_lBx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
          symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem BAx = lx
  eiSymmGen.compute(symmA, symmB,BAx_lx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem ABx = lx
  eiSymmGen.compute(symmA, symmB,ABx_lx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));


  MatrixType sqrtSymmA = eiSymm.operatorSqrt();
  VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
  VERIFY_IS_APPROX(sqrtSymmA, symmA.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());

  MatrixType id = MatrixType::Identity(rows, cols);
  VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));

  SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());

  eiSymmUninitialized.compute(symmA, false);
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());

  // test Tridiagonalization's methods
  Tridiagonalization<MatrixType> tridiag(symmA);
  // FIXME tridiag.matrixQ().adjoint() does not work
  VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());

  if (rows > 1)
  {
    // Test matrix with NaN
    symmA(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmA);
    VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
  }
}
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  /* this test covers the following files:
     EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;

  RealScalar largerEps = 10*test_precision<RealScalar>();

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
  MatrixType symmC = symmA;

  // randomly nullify some rows/columns
  {
    Index count = 1;//internal::random<Index>(-cols,cols);
    for(Index k=0; k<count; ++k)
    {
      Index i = internal::random<Index>(0,cols-1);
      symmA.row(i).setZero();
      symmA.col(i).setZero();
    }
  }

  symmA.template triangularView<StrictlyUpper>().setZero();
  symmC.template triangularView<StrictlyUpper>().setZero();

  MatrixType b = MatrixType::Random(rows,cols);
  MatrixType b1 = MatrixType::Random(rows,cols);
  MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
  symmB.template triangularView<StrictlyUpper>().setZero();

  SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
  SelfAdjointEigenSolver<MatrixType> eiDirect;
  eiDirect.computeDirect(symmA);
  // generalized eigen pb
  GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB);

  VERIFY_IS_EQUAL(eiSymm.info(), Success);
  VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox(
          eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
  VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());

  VERIFY_IS_EQUAL(eiDirect.info(), Success);
  VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox(
          eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps));
  VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues());

  SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
  VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
  VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());

  // generalized eigen problem Ax = lBx
  eiSymmGen.compute(symmC, symmB,Ax_lBx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
          symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem BAx = lx
  eiSymmGen.compute(symmC, symmB,BAx_lx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem ABx = lx
  eiSymmGen.compute(symmC, symmB,ABx_lx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));


  eiSymm.compute(symmC);
  MatrixType sqrtSymmA = eiSymm.operatorSqrt();
  VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
  VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());

  MatrixType id = MatrixType::Identity(rows, cols);
  VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));

  SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());

  eiSymmUninitialized.compute(symmA, false);
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());

  // test Tridiagonalization's methods
  Tridiagonalization<MatrixType> tridiag(symmC);
  // FIXME tridiag.matrixQ().adjoint() does not work
  VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());

  if (rows > 1)
  {
    // Test matrix with NaN
    symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC);
    VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
  }
}