コード例 #1
0
void RevSparseHesSet(
	bool                      transpose         ,
	size_t                    q                 ,
	const VectorSet&          s                 ,
	VectorSet&                h                 ,
	size_t                    total_num_var     ,
	CppAD::vector<size_t>&    dep_taddr         ,
	CppAD::vector<size_t>&    ind_taddr         ,
	CppAD::player<Base>&      play              ,
	Sparsity&                 for_jac_sparsity  )
{
	// temporary indices
	size_t i, j;
	std::set<size_t>::const_iterator itr;

	// check VectorSet is Simple Vector class with sets for elements
	CheckSimpleVector<std::set<size_t>, VectorSet>(
		one_element_std_set<size_t>(), two_element_std_set<size_t>()
	);

	// range and domain dimensions for F
# ifndef NDEBUG
	size_t m = dep_taddr.size();
# endif
	size_t n = ind_taddr.size();

	CPPAD_ASSERT_KNOWN(
		q == for_jac_sparsity.end(),
		"RevSparseHes: q is not equal to its value\n"
		"in the previous call to ForSparseJac with this ADFun object."
	);
	CPPAD_ASSERT_KNOWN(
		s.size() == 1,
		"RevSparseHes: size of s is not equal to one."
	);

	// Array that will hold reverse Jacobian dependency flag.
	// Initialize as true for the dependent variables.
	pod_vector<bool> RevJac;
	RevJac.extend(total_num_var);	
	for(i = 0; i < total_num_var; i++)
		RevJac[i] = false;
	itr = s[0].begin();
	while( itr != s[0].end() )
	{	i = *itr++;
		CPPAD_ASSERT_KNOWN(
			i < m,
			"RevSparseHes: an element of the set s[0] has value "
			"greater than or equal m"
		);
		CPPAD_ASSERT_UNKNOWN( dep_taddr[i] < total_num_var );
		RevJac[ dep_taddr[i] ] = true;
	}


	// vector of sets that will hold reverse Hessain values
	Sparsity       rev_hes_sparsity;
	rev_hes_sparsity.resize(total_num_var, q);

	// compute the Hessian sparsity patterns
	RevHesSweep(
		n,
		total_num_var,
		&play,
		for_jac_sparsity, 
		RevJac.data(),
		rev_hes_sparsity
	);

	// return values corresponding to independent variables
	// j is index corresponding to reverse mode partial
	CPPAD_ASSERT_UNKNOWN( size_t(h.size()) == q || transpose );
	CPPAD_ASSERT_UNKNOWN( size_t(h.size()) == n || ! transpose );
	for(j = 0; j < n; j++)
	{	CPPAD_ASSERT_UNKNOWN( ind_taddr[j] < total_num_var );
		CPPAD_ASSERT_UNKNOWN( ind_taddr[j] == j + 1 );
		CPPAD_ASSERT_UNKNOWN( play.GetOp( ind_taddr[j] ) == InvOp );

		// extract the result from rev_hes_sparsity
		// and add corresponding elements to result sets in h
		CPPAD_ASSERT_UNKNOWN( rev_hes_sparsity.end() == q );
		rev_hes_sparsity.begin(j+1);
		i = rev_hes_sparsity.next_element();
		while( i < q )
		{	if( transpose )
				h[j].insert(i);
			else	h[i].insert(j);
			i = rev_hes_sparsity.next_element();
		}
	}

	return;
}
コード例 #2
0
void RevSparseHesBool(
	bool                      transpose         ,
	size_t                    q                 ,
	const VectorSet&          s                 ,
	VectorSet&                h                 ,
	size_t                    total_num_var     ,
	CppAD::vector<size_t>&    dep_taddr         ,
	CppAD::vector<size_t>&    ind_taddr         ,
	CppAD::player<Base>&      play              ,
	Sparsity&                 for_jac_sparsity  )
{
	// temporary indices
	size_t i, j;

	// check Vector is Simple VectorSet class with bool elements
	CheckSimpleVector<bool, VectorSet>();

	// range and domain dimensions for F
	size_t m = dep_taddr.size();
	size_t n = ind_taddr.size();

	CPPAD_ASSERT_KNOWN(
		q == for_jac_sparsity.end(),
		"RevSparseHes: q is not equal to its value\n"
		"in the previous call to ForSparseJac with this ADFun object."
	);
	CPPAD_ASSERT_KNOWN(
		size_t(s.size()) == m,
		"RevSparseHes: size of s is not equal to\n"
		"range dimension for ADFun object."
	);

	// Array that will hold reverse Jacobian dependency flag.
	// Initialize as true for the dependent variables.
	pod_vector<bool> RevJac;
	RevJac.extend(total_num_var);	
	for(i = 0; i < total_num_var; i++)
		RevJac[i] = false;
	for(i = 0; i < m; i++)
	{	CPPAD_ASSERT_UNKNOWN( dep_taddr[i] < total_num_var );
		RevJac[ dep_taddr[i] ] = s[i];
	}

	// vector of sets that will hold reverse Hessain values
	Sparsity       rev_hes_sparsity;
	rev_hes_sparsity.resize(total_num_var, q);

	// compute the Hessian sparsity patterns
	RevHesSweep(
		n,
		total_num_var,
		&play,
		for_jac_sparsity, 
		RevJac.data(),
		rev_hes_sparsity
	);

	// return values corresponding to independent variables
	CPPAD_ASSERT_UNKNOWN( size_t(h.size()) == n * q );
	for(j = 0; j < n; j++)
	{	for(i = 0; i < q; i++) 
		{	if( transpose )
				h[ j * q + i ] = false;
			else	h[ i * n + j ] = false;
		}
	}

	// j is index corresponding to reverse mode partial
	for(j = 0; j < n; j++)
	{	CPPAD_ASSERT_UNKNOWN( ind_taddr[j] < total_num_var );

		// ind_taddr[j] is operator taddr for j-th independent variable
		CPPAD_ASSERT_UNKNOWN( ind_taddr[j] == j + 1 );
		CPPAD_ASSERT_UNKNOWN( play.GetOp( ind_taddr[j] ) == InvOp );

		// extract the result from rev_hes_sparsity
		CPPAD_ASSERT_UNKNOWN( rev_hes_sparsity.end() == q );
		rev_hes_sparsity.begin(j + 1);
		i = rev_hes_sparsity.next_element();
		while( i < q )
		{	if( transpose )
				h[ j * q + i ] = true;
			else	h[ i * n + j ] = true;
			i = rev_hes_sparsity.next_element();
		}
	}

	return;
}