SymmetricKey derive_key(const std::string& param, const SymmetricKey& masterkey, u32bit outputlength) { std::auto_ptr<KDF> kdf(get_kdf("KDF2(SHA-1)")); return kdf->derive_key(outputlength, masterkey.bits_of(), param); }
/* * Create a new Client Key Exchange message */ Client_Key_Exchange::Client_Key_Exchange(Handshake_IO& io, Handshake_State& state, const Policy& policy, Credentials_Manager& creds, const Public_Key* server_public_key, const std::string& hostname, RandomNumberGenerator& rng) { const std::string kex_algo = state.ciphersuite().kex_algo(); if(kex_algo == "PSK") { std::string identity_hint = ""; if(state.server_kex()) { TLS_Data_Reader reader("ClientKeyExchange", state.server_kex()->params()); identity_hint = reader.get_string(2, 0, 65535); } const std::string psk_identity = creds.psk_identity("tls-client", hostname, identity_hint); append_tls_length_value(m_key_material, psk_identity, 2); SymmetricKey psk = creds.psk("tls-client", hostname, psk_identity); std::vector<byte> zeros(psk.length()); append_tls_length_value(m_pre_master, zeros, 2); append_tls_length_value(m_pre_master, psk.bits_of(), 2); } else if(state.server_kex()) { TLS_Data_Reader reader("ClientKeyExchange", state.server_kex()->params()); SymmetricKey psk; if(kex_algo == "DHE_PSK" || kex_algo == "ECDHE_PSK") { std::string identity_hint = reader.get_string(2, 0, 65535); const std::string psk_identity = creds.psk_identity("tls-client", hostname, identity_hint); append_tls_length_value(m_key_material, psk_identity, 2); psk = creds.psk("tls-client", hostname, psk_identity); } if(kex_algo == "DH" || kex_algo == "DHE_PSK") { BigInt p = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); BigInt g = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); BigInt Y = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); if(reader.remaining_bytes()) throw Decoding_Error("Bad params size for DH key exchange"); if(p.bits() < policy.minimum_dh_group_size()) throw TLS_Exception(Alert::INSUFFICIENT_SECURITY, "Server sent DH group of " + std::to_string(p.bits()) + " bits, policy requires at least " + std::to_string(policy.minimum_dh_group_size())); /* * A basic check for key validity. As we do not know q here we * cannot check that Y is in the right subgroup. However since * our key is ephemeral there does not seem to be any * advantage to bogus keys anyway. */ if(Y <= 1 || Y >= p - 1) throw TLS_Exception(Alert::INSUFFICIENT_SECURITY, "Server sent bad DH key for DHE exchange"); DL_Group group(p, g); if(!group.verify_group(rng, false)) throw TLS_Exception(Alert::INSUFFICIENT_SECURITY, "DH group validation failed"); DH_PublicKey counterparty_key(group, Y); DH_PrivateKey priv_key(rng, group); PK_Key_Agreement ka(priv_key, "Raw"); secure_vector<byte> dh_secret = CT::strip_leading_zeros( ka.derive_key(0, counterparty_key.public_value()).bits_of()); if(kex_algo == "DH") m_pre_master = dh_secret; else { append_tls_length_value(m_pre_master, dh_secret, 2); append_tls_length_value(m_pre_master, psk.bits_of(), 2); } append_tls_length_value(m_key_material, priv_key.public_value(), 2); } else if(kex_algo == "ECDH" || kex_algo == "ECDHE_PSK") { const byte curve_type = reader.get_byte(); if(curve_type != 3) throw Decoding_Error("Server sent non-named ECC curve"); const u16bit curve_id = reader.get_u16bit(); const std::string name = Supported_Elliptic_Curves::curve_id_to_name(curve_id); if(name == "") throw Decoding_Error("Server sent unknown named curve " + std::to_string(curve_id)); EC_Group group(name); std::vector<byte> ecdh_key = reader.get_range<byte>(1, 1, 255); ECDH_PublicKey counterparty_key(group, OS2ECP(ecdh_key, group.get_curve())); ECDH_PrivateKey priv_key(rng, group); PK_Key_Agreement ka(priv_key, "Raw"); secure_vector<byte> ecdh_secret = ka.derive_key(0, counterparty_key.public_value()).bits_of(); if(kex_algo == "ECDH") m_pre_master = ecdh_secret; else { append_tls_length_value(m_pre_master, ecdh_secret, 2); append_tls_length_value(m_pre_master, psk.bits_of(), 2); } append_tls_length_value(m_key_material, priv_key.public_value(), 1); } #if defined(BOTAN_HAS_SRP6) else if(kex_algo == "SRP_SHA") { const BigInt N = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); const BigInt g = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); std::vector<byte> salt = reader.get_range<byte>(1, 1, 255); const BigInt B = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); const std::string srp_group = srp6_group_identifier(N, g); const std::string srp_identifier = creds.srp_identifier("tls-client", hostname); const std::string srp_password = creds.srp_password("tls-client", hostname, srp_identifier); std::pair<BigInt, SymmetricKey> srp_vals = srp6_client_agree(srp_identifier, srp_password, srp_group, "SHA-1", salt, B, rng); append_tls_length_value(m_key_material, BigInt::encode(srp_vals.first), 2); m_pre_master = srp_vals.second.bits_of(); } #endif else { throw Internal_Error("Client_Key_Exchange: Unknown kex " + kex_algo); } reader.assert_done(); } else { // No server key exchange msg better mean RSA kex + RSA key in cert if(kex_algo != "RSA") throw Unexpected_Message("No server kex but negotiated kex " + kex_algo); if(!server_public_key) throw Internal_Error("No server public key for RSA exchange"); if(auto rsa_pub = dynamic_cast<const RSA_PublicKey*>(server_public_key)) { const Protocol_Version offered_version = state.client_hello()->version(); m_pre_master = rng.random_vec(48); m_pre_master[0] = offered_version.major_version(); m_pre_master[1] = offered_version.minor_version(); PK_Encryptor_EME encryptor(*rsa_pub, "PKCS1v15"); const std::vector<byte> encrypted_key = encryptor.encrypt(m_pre_master, rng); append_tls_length_value(m_key_material, encrypted_key, 2); } else throw TLS_Exception(Alert::HANDSHAKE_FAILURE, "Expected a RSA key in server cert but got " + server_public_key->algo_name()); } state.hash().update(io.send(*this)); }
/* * Read a Client Key Exchange message */ Client_Key_Exchange::Client_Key_Exchange(const std::vector<byte>& contents, const Handshake_State& state, const Private_Key* server_rsa_kex_key, Credentials_Manager& creds, const Policy& policy, RandomNumberGenerator& rng) { const std::string kex_algo = state.ciphersuite().kex_algo(); if(kex_algo == "RSA") { BOTAN_ASSERT(state.server_certs() && !state.server_certs()->cert_chain().empty(), "RSA key exchange negotiated so server sent a certificate"); if(!server_rsa_kex_key) throw Internal_Error("Expected RSA kex but no server kex key set"); if(!dynamic_cast<const RSA_PrivateKey*>(server_rsa_kex_key)) throw Internal_Error("Expected RSA key but got " + server_rsa_kex_key->algo_name()); PK_Decryptor_EME decryptor(*server_rsa_kex_key, "PKCS1v15"); Protocol_Version client_version = state.client_hello()->version(); /* * This is used as the pre-master if RSA decryption fails. * Otherwise we can be used as an oracle. See Bleichenbacher * "Chosen Ciphertext Attacks against Protocols Based on RSA * Encryption Standard PKCS #1", Crypto 98 * * Create it here instead if in the catch clause as otherwise we * expose a timing channel WRT the generation of the fake value. * Some timing channel likely remains due to exception handling * and the like. */ secure_vector<byte> fake_pre_master = rng.random_vec(48); fake_pre_master[0] = client_version.major_version(); fake_pre_master[1] = client_version.minor_version(); try { TLS_Data_Reader reader("ClientKeyExchange", contents); m_pre_master = decryptor.decrypt(reader.get_range<byte>(2, 0, 65535)); if(m_pre_master.size() != 48 || client_version.major_version() != m_pre_master[0] || client_version.minor_version() != m_pre_master[1]) { throw Decoding_Error("Client_Key_Exchange: Secret corrupted"); } } catch(...) { m_pre_master = fake_pre_master; } } else { TLS_Data_Reader reader("ClientKeyExchange", contents); SymmetricKey psk; if(kex_algo == "PSK" || kex_algo == "DHE_PSK" || kex_algo == "ECDHE_PSK") { const std::string psk_identity = reader.get_string(2, 0, 65535); psk = creds.psk("tls-server", state.client_hello()->sni_hostname(), psk_identity); if(psk.length() == 0) { if(policy.hide_unknown_users()) psk = SymmetricKey(rng, 16); else throw TLS_Exception(Alert::UNKNOWN_PSK_IDENTITY, "No PSK for identifier " + psk_identity); } } if(kex_algo == "PSK") { std::vector<byte> zeros(psk.length()); append_tls_length_value(m_pre_master, zeros, 2); append_tls_length_value(m_pre_master, psk.bits_of(), 2); } #if defined(BOTAN_HAS_SRP6) else if(kex_algo == "SRP_SHA") { SRP6_Server_Session& srp = state.server_kex()->server_srp_params(); m_pre_master = srp.step2(BigInt::decode(reader.get_range<byte>(2, 0, 65535))).bits_of(); } #endif else if(kex_algo == "DH" || kex_algo == "DHE_PSK" || kex_algo == "ECDH" || kex_algo == "ECDHE_PSK") { const Private_Key& private_key = state.server_kex()->server_kex_key(); const PK_Key_Agreement_Key* ka_key = dynamic_cast<const PK_Key_Agreement_Key*>(&private_key); if(!ka_key) throw Internal_Error("Expected key agreement key type but got " + private_key.algo_name()); try { PK_Key_Agreement ka(*ka_key, "Raw"); std::vector<byte> client_pubkey; if(ka_key->algo_name() == "DH") client_pubkey = reader.get_range<byte>(2, 0, 65535); else client_pubkey = reader.get_range<byte>(1, 0, 255); secure_vector<byte> shared_secret = ka.derive_key(0, client_pubkey).bits_of(); if(ka_key->algo_name() == "DH") shared_secret = CT::strip_leading_zeros(shared_secret); if(kex_algo == "DHE_PSK" || kex_algo == "ECDHE_PSK") { append_tls_length_value(m_pre_master, shared_secret, 2); append_tls_length_value(m_pre_master, psk.bits_of(), 2); } else m_pre_master = shared_secret; } catch(std::exception &) { /* * Something failed in the DH computation. To avoid possible * timing attacks, randomize the pre-master output and carry * on, allowing the protocol to fail later in the finished * checks. */ m_pre_master = rng.random_vec(ka_key->public_value().size()); } } else throw Internal_Error("Client_Key_Exchange: Unknown kex type " + kex_algo); } }