void TPZAdaptMesh::BuildReferencePatch() { // the fGeoRef elements are a partition of the computational domain (should be) // create a computational element based on each reference element TPZGeoMesh *gmesh = fReferenceCompMesh->Reference(); gmesh->ResetReference(); TPZCompMesh *tmpcmesh = new TPZCompMesh (gmesh); int i,j; for (i=0;i<fGeoRef.NElements();i++){ long index; tmpcmesh->CreateCompEl(fGeoRef[i],index); } tmpcmesh->CleanUpUnconnectedNodes(); tmpcmesh->ExpandSolution(); TPZStack <long> patchelindex; TPZStack <TPZGeoEl *> toclonegel; TPZStack<long> elgraph; TPZVec<long> n2elgraph; TPZVec<long> n2elgraphid; TPZVec<long> elgraphindex; tmpcmesh->GetNodeToElGraph(n2elgraph,n2elgraphid,elgraph,elgraphindex); // we use the node to elgraph structure to decide which elements will be included int clnel = tmpcmesh->NElements(); // clnel corresponds to the number of patches // fPatch and fPatchIndex form a compacted list which form the patches. // Boundary elements will be added to each patch. fPatchIndex.Push(0); for (int ipatch=0; ipatch<clnel; ipatch++){ tmpcmesh->GetElementPatch(n2elgraph,n2elgraphid,elgraph,elgraphindex,ipatch,patchelindex); for (j=0; j<patchelindex.NElements(); j++){ TPZGeoEl *gel = tmpcmesh->ElementVec()[patchelindex[j]]->Reference(); // int count = 0; if(gel) fPatch.Push(gel); } int sum = fPatch.NElements(); fPatchIndex.Push(sum); } #ifdef DEBUG2 // CAJU TOOL { std::string filename("cMeshVtk."); { std::stringstream finalname; finalname << filename << 0 << ".vtk"; ofstream file(finalname.str().c_str()); /** @brief Generate an output of all geometric elements that have a computational counterpart to VTK */ //static void PrintCMeshVTK(TPZGeoMesh *gmesh, std::ofstream &file, bool matColor = false); TPZVTKGeoMesh::PrintCMeshVTK(gmesh,file,true); } for (int ip=0; ip<clnel; ip++) { int firstindex = fPatchIndex[ip]; int lastindex = fPatchIndex[ip+1]; gmesh->ResetReference(); tmpcmesh->LoadReferences(); std::set<TPZGeoEl *> loaded; for (int ind=firstindex; ind<lastindex; ind++) { TPZGeoEl *gel = fPatch[ind]; loaded.insert(gel); } int ngel = gmesh->NElements(); for (int el=0; el<ngel; el++) { TPZGeoEl *gel = gmesh->ElementVec()[el]; if (!gel) { continue; } if (gel->Reference() && loaded.find(gel) == loaded.end()) { gel->ResetReference(); } } std::stringstream finalname; finalname << filename << ip+1 << ".vtk"; ofstream file(finalname.str().c_str()); /** @brief Generate an output of all geometric elements that have a computational counterpart to VTK */ //static void PrintCMeshVTK(TPZGeoMesh *gmesh, std::ofstream &file, bool matColor = false); TPZVTKGeoMesh::PrintCMeshVTK(gmesh,file,true); } } #endif // cleaning reference to computational elements into temporary cmesh gmesh->ResetReference(); delete tmpcmesh; // loading references between geometric and computational meshes (originals) fReferenceCompMesh->LoadReferences(); }
int TPZGeoCloneMesh::main(){ cout << "**************************************" << endl; cout << "****** Getting Patchs!************" << endl; cout << "**************************************" << endl; /******************************************************* * Constru��o da malha * *****************************************************/ //malha quadrada de nr x nc const int numrel = 3; const int numcel = 3; // int numel = numrel*numcel; TPZVec<REAL> coord(2,0.); // criar um objeto tipo malha geometrica TPZGeoMesh geomesh; // criar nos int i,j; for(i=0; i<(numrel+1); i++) { for (j=0; j<(numcel+1); j++) { int64_t nodind = geomesh.NodeVec().AllocateNewElement(); TPZVec<REAL> coord(2); coord[0] = j;//co[nod][0]; coord[1] = i;//co[nod][1]; geomesh.NodeVec()[nodind] = TPZGeoNode(i*(numrel+1)+j,coord,geomesh); } } // cria��o dos elementos int elc, elr; TPZGeoEl *gel[numrel*numcel]; TPZVec<int64_t> indices(4); for(elr=0; elr<numrel; elr++) { for(elc=0; elc<numcel; elc++) { indices[0] = (numrel+1)*elr+elc; indices[1] = indices[0]+1; indices[3] = indices[0]+numrel+1; indices[2] = indices[1]+numrel+1; // O proprio construtor vai inserir o elemento na malha int64_t index; gel[elr*numrel+elc] = geomesh.CreateGeoElement(EQuadrilateral,indices,1,index); //gel[elr*numrel+elc] = new TPZGeoElQ2d(elr*numrel+elc,indices,1,geomesh); } } //Divis�o dos elementos TPZVec<TPZGeoEl *> sub; gel[0]->Divide(sub); // gel[1]->Divide(sub); // gel[3]->Divide(sub); ofstream output("patches.dat"); geomesh.Print(output); // TPZGeoElBC t3(gel[0],4,-1,geomesh); // TPZGeoElBC t4(gel[numel-1],6,-2,geomesh); geomesh.Print(output); geomesh.BuildConnectivity(); std::set <TPZGeoEl *> patch; TPZCompMesh *comp = new TPZCompMesh(&geomesh); // inserir os materiais TPZMaterial *meumat = new TPZElasticityMaterial(1,1.e5,0.2,0,0); comp->InsertMaterialObject(meumat); // inserir a condicao de contorno // TPZFMatrix val1(3,3,0.),val2(3,1,0.); // TPZMaterial *bnd = meumat->CreateBC (-1,0,val1,val2); // comp->InsertMaterialObject(bnd); // TPZFMatrix val3(3,3,1); // bnd = meumat->CreateBC (-2,1,val3,val2); // comp->InsertMaterialObject(bnd); comp->AutoBuild(); comp->Print(output); output.flush(); /********************************************************************** * Cria��o de uma malha computacional clone * ********************************************************************/ comp->GetRefPatches(patch); geomesh.ResetReference(); TPZStack <int64_t> patchel; TPZStack <TPZGeoEl *> toclonegel; TPZStack <int64_t> patchindex; TPZVec<int64_t> n2elgraph; TPZVec<int64_t> n2elgraphid; TPZStack<int64_t> elgraph; TPZVec<int64_t> elgraphindex; int64_t k; TPZCompMesh *clonecmesh = new TPZCompMesh(&geomesh); cout << "Check 1: number of reference elements for patch before createcompel: " << patch.size() << endl; std::set<TPZGeoEl *>::iterator it; for (it=patch.begin(); it!=patch.end(); it++) { //patch[i]->Print(cout); int64_t index; TPZGeoEl *gel = *it; clonecmesh->CreateCompEl(gel, index); // patch[i]->CreateCompEl(*clonecmesh,i); } // cout << "Check 2: number of reference elements for patch after createcompel: " << patch.NElements() << endl; clonecmesh->CleanUpUnconnectedNodes(); // clonecmesh->Print(cout); clonecmesh->GetNodeToElGraph(n2elgraph,n2elgraphid,elgraph,elgraphindex); int64_t clnel = clonecmesh->NElements(); // cout << "Number of elements in clonemessh: " << clnel << endl; //o primeiro patch come�a em zero patchindex.Push(0); for (i=0; i<clnel; i++){ //cout << endl << endl << "Evaluating patch for element: " << i << endl; clonecmesh->GetElementPatch(n2elgraph,n2elgraphid,elgraph,elgraphindex,i,patchel); cout << "Patch elements: " << patchel.NElements() << endl; /*for (k=0;k<patchel.NElements();k++){ clonecmesh->ElementVec()[patchel[k]]->Reference()->Print(); cout << endl; }*/ for (j=0; j<patchel.NElements(); j++){ //obten��o do elemento geom�trico do patch //cout << "Creating geometric clone elements for computational element :" << j << endl; TPZGeoEl *gel = clonecmesh->ElementVec()[patchel[j]]->Reference(); //gel->Print(cout); //inserir todos os pais do elemento geom�trico do patch int64_t count = 0; //cout << "Inserting father element:" << "\t"; while(gel){ TPZGeoEl *father = gel->Father(); if (father){ //father->Print(cout); gel = father; continue; } else toclonegel.Push(gel); gel = father; //cout << count << "\t"; count ++; } //cout << endl; } int64_t sum = toclonegel.NElements()-1; //cout << endl << sum << endl; patchindex.Push(sum); /*for (k=patchindex[i];k<patchindex[i+1];k++){ toclonegel[k]->Print(); }*/ } cout <<endl; cout << endl; TPZGeoCloneMesh geoclone(&geomesh); TPZStack<TPZGeoEl*> testpatch; for (j=0; j<1/*patchindex.NElements()-1*/;j++){ cout << "\n\n\nClone do Patch do elemento: " << j <<endl; k=0; cout << patchindex[j] << "\t" << patchindex[j+1] <<endl; for (i=patchindex[j];i<=patchindex[j+1];i++){ testpatch.Push(toclonegel[i]); toclonegel[i]->Print(); cout << k << endl; k++; } geoclone.SetElements(testpatch,testpatch[patchindex[j]]); geoclone.Print(cout); } //geoclone.SetElements(testpatch); //geoclone.Print(cout); /************************************************************************** * Fim da cria��o do clone **************************************************************************/ /* output <<"Impress�o dos Pathces\nN�mero total de patches encontrados\t" << patchindex.NElements()-1 << endl; cout << "\n\n&&&&&&&&&&&&&&&&&&&&&&&&\n N�mero total de patches: " << patchindex.NElements()-1 << endl << "&&&&&&&&&&&&&&&&&&&&&&&&" << endl; for (i=0;i<patchindex.NElements()-1;i++){ cout << "Patch do elemento " << i << "\t" << "N�mero de elementos componentes do patch: " << (patchindex[i+1]-patchindex[i]) << endl; for (j = patchindex[i]; j<patchindex[i+1]; j++){ toclonegel[j]->Print(); cout << "||||||||||||||||||||||||||||||||" << endl; } cout << "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n" <<">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n\n"; cout.flush(); } */ comp->LoadReferences(); cout.flush(); cout << endl; cout.flush(); delete comp; delete clonecmesh; return (0); }
TPZCompMesh *MalhaCompMultifisica(TPZGeoMesh * gmesh,TPZVec<TPZCompMesh *> meshvec, TPZMatUncoupledPoissonDisc* &mymaterial){ // Creating computational mesh for multiphysic elements gmesh->ResetReference(); TPZCompMesh *mphysics = new TPZCompMesh(gmesh); mphysics->SetAllCreateFunctionsMultiphysicElem(); int dim = 2; mphysics->SetDimModel(dim); mymaterial = new TPZMatUncoupledPoissonDisc(matId, mphysics->Dimension()); mymaterial->SetParameters(1., 1.); mymaterial->SetInternalFlux(-8.,0.); //mymaterial->SetInternalFlux(0.,0.); mymaterial->SetNonSymmetricOne(); mymaterial->SetNonSymmetricTwo(); mymaterial->SetPenaltyConstant(0., 0.); TPZMaterial * mat(mymaterial); mphysics->InsertMaterialObject(mat); TPZAutoPointer<TPZFunction<STATE> > forcef = new TPZDummyFunction<STATE>(ForcingF, 5); // // TPZAutoPointer<TPZFunction<STATE> > forcef = new TPZDummyFunction<STATE>(ForcingF); mymaterial->SetForcingFunction(forcef); ///Inserir condicao de contorno TPZFMatrix<STATE> val1(2,2,0.), val2(2,1,0.); TPZMaterial * BCond0 = mymaterial->CreateBC(mat, bc0,neumann_dirichlet, val1, val2); TPZMaterial * BCond2 = mymaterial->CreateBC(mat, bc2,neumann_dirichlet, val1, val2); TPZMaterial * BCond1 = mymaterial->CreateBC(mat, bc1,dirichlet, val1, val2); TPZMaterial * BCond3 = mymaterial->CreateBC(mat, bc3,dirichlet, val1, val2); // TPZMaterial * BCond0 = mymaterial->CreateBC(mat, bc0,dirichlet, val1, val2); // TPZMaterial * BCond2 = mymaterial->CreateBC(mat, bc2,dirichlet, val1, val2); // TPZMaterial * BCond1 = mymaterial->CreateBC(mat, bc1,dirichlet, val1, val2); // TPZMaterial * BCond3 = mymaterial->CreateBC(mat, bc3,dirichlet, val1, val2); mphysics->InsertMaterialObject(BCond0); mphysics->InsertMaterialObject(BCond1); mphysics->InsertMaterialObject(BCond2); mphysics->InsertMaterialObject(BCond3); mphysics->AutoBuild(); mphysics->AdjustBoundaryElements(); mphysics->CleanUpUnconnectedNodes(); //Creating multiphysic elements into mphysics computational mesh TPZBuildMultiphysicsMesh::AddElements(meshvec, mphysics); TPZBuildMultiphysicsMesh::AddConnects(meshvec,mphysics); TPZBuildMultiphysicsMesh::TransferFromMeshes(meshvec, mphysics); mphysics->Reference()->ResetReference(); mphysics->LoadReferences(); if (disc_functions==true){ //criar elementos de interface int nel = mphysics->ElementVec().NElements(); for(int el = 0; el < nel; el++) { TPZCompEl * compEl = mphysics->ElementVec()[el]; if(!compEl) continue; int index = compEl ->Index(); if(compEl->Dimension() == mphysics->Dimension()) { TPZMultiphysicsElement * InterpEl = dynamic_cast<TPZMultiphysicsElement *>(mphysics->ElementVec()[index]); if(!InterpEl) continue; InterpEl->CreateInterfaces(); } } } return mphysics; }