コード例 #1
0
  //returns a projection onto the 2D plane 
  TVector3 Projection(TVector3 jaxis){
    //Find the projection of a jet onto this subspace

    if(v1.Mag() == 0) { scalar1 = 0; }   else { scalar1 = jaxis.Dot(v1)/(v1.Dot(v1)); } 
    if(v2.Mag() == 0) { scalar2 = 0; }   else { scalar2 = jaxis.Dot(v2)/(v2.Dot(v2)); } 
    v1 = scalar1*v1;
    v2 = scalar2*v2;
    proj(0) = v1(0) + v2(0);
    proj(1) = v1(1) + v2(1);
    proj(2) = v1(2) + v2(2); 
    
    return proj;
  }//end of projection
コード例 #2
0
// This is the pt corrected MR - here, we assume the pt
// of the Higgs is (MET+Pt+Qt);
// L1 and L2 are the 4-vectors for the 2 hemispheres, or in you case,
// the two leptons - setting mass to 0 should be fine
// MET is the MET 3 vector (don't forget to set the z-component of
// MET to 0)
// Also, 2 times this variable should give you the Higgs mass
double HWWKinematics::CalcMRNEW(){
  TVector3 vI = MET+L1.Vect()+L2.Vect();
  vI.SetZ(0.0);
  double L1pL2 = CalcMR(); //Note - this calls the old MR function
  double vptx = (L1+L2).Px();
  double vpty = (L1+L2).Py();
  TVector3 vpt;
  vpt.SetXYZ(vptx,vpty,0.0);
  
  float MR2 = 0.5*(L1pL2*L1pL2-vpt.Dot(vI)+L1pL2*sqrt(L1pL2*L1pL2+vI.Dot(vI)-2.*vI.Dot(vpt)));
  
  return sqrt(MR2);
  
}
コード例 #3
0
// M is the MET 3 vector (don't forget to set the z-component of
// MET to 0)
double HWWKinematics::CalcMRNEW(TLorentzVector P, TLorentzVector Q, TVector3 M){
 TVector3 vI = M+P.Vect()+Q.Vect();
 vI.SetZ(0.0);
 double PpQ = CalcMR(P,Q); //Note - this calls the old MR function
 double vptx = (P+Q).Px();
 double vpty = (P+Q).Py();
 TVector3 vpt;
 vpt.SetXYZ(vptx,vpty,0.0);

 float MR2 = 0.5*(PpQ*PpQ-vpt.Dot(vI)+PpQ*sqrt(PpQ*PpQ+vI.Dot(vI)-2.*vI.Dot(vpt)));

 return sqrt(MR2);

}
コード例 #4
0
// This is the pt corrected delta phi between the 2 leptons
// P and L2 are the 4-vectors for the 2 hemispheres, or in you case,
// the two leptons - setting mass to 0 should be fine
// MET is the MET 3 vector (don't forget to set the z-component of
// MET to 0)
// This function will do the correct Lorentz transformations of the 
// leptons for you
double HWWKinematics::CalcDeltaPhiRFRAME(){
  // first calculate pt-corrected MR
  float mymrnew = CalcMRNEW();
  
  // Now, boost lepton system to rest in z
  // (approximate accounting for longitudinal boost)
  TVector3 BL = L1.Vect()+L2.Vect();
  BL.SetX(0.0);
  BL.SetY(0.0);
  BL = (1./(L1.P()+L2.P()))*BL;
  L1.Boost(-BL);
  L2.Boost(-BL);
  
  // Next, calculate the transverse Lorentz transformation
  // to go to Higgs approximate rest frame
  TVector3 B = L1.Vect()+L2.Vect()+MET;
  B.SetZ(0.0);
  B = (-1./(sqrt(4.*mymrnew*mymrnew+B.Dot(B))))*B;
  
  L1.Boost(B);
  L2.Boost(B);
  
  //Now, re-calculate the delta phi
  // in the new reference frame:
  return L1.DeltaPhi(L2);
  
}
コード例 #5
0
// This is the deltaphi between the di-lepton system and the Higgs
// boost in the approximate Higgs rest frame, or R-FRAME
// L1 and L2 are the 4-vectors for the 2 hemispheres, or in you case,
// the two leptons - setting mass to 0 should be fine
// MET is the MET 3 vector (don't forget to set the z-component of
// MET to 0)
// This function will do the correct Lorentz transformations of the 
// leptons for you
double HWWKinematics::CalcDoubleDphiRFRAME(){
  // first calculate pt-corrected MR
  float mymrnew = CalcMRNEW();
  
  TVector3 BL = L1.Vect()+L2.Vect();
  BL.SetX(0.0);
  BL.SetY(0.0);
  BL = (1./(L1.P()+L2.P()))*BL;
  L1.Boost(-BL);
  L2.Boost(-BL);
  
  //Next, calculate the transverse Lorentz transformation
  TVector3 B = L1.Vect()+L2.Vect()+MET;
  B.SetZ(0.0);
  B = (-1./(sqrt(4.*mymrnew*mymrnew+B.Dot(B))))*B;
  
  L1.Boost(B);
  L2.Boost(B);
  
  // Now, calculate the delta phi
  // between di-lepton axis and boost
  // in new reference frame
  
  return B.DeltaPhi(L1.Vect()+L2.Vect());
  
}
コード例 #6
0
ファイル: ADDON3_LAC.C プロジェクト: dertexaner/LQ3
// // //
double analysisClass::visPzeta( unsigned int iMuR, unsigned int iTauR ){
  TVector3 muT; TVector3 tauT; TVector3 unitmuT; TVector3 unittauT; TVector3 unitbisecT; TVector3 MET;
  muT.SetPtEtaPhi(  muPtcorr(iMuR),    0, MuonPhi->at(iMuR)    );
  tauT.SetPtEtaPhi( tauPtcorr(iTauR), 0, HPSTauPhi->at(iTauR) );
  unitmuT=muT*(1./muT.Mag());  unittauT=tauT*(1./tauT.Mag());
  unitbisecT=(unitmuT+unittauT)*(1./((unitmuT+unittauT).Mag()));
  MET.SetPtEtaPhi( METcorr("Pt"), 0, METcorr("Phi")  );
  double pZetaVis;
  pZetaVis = unitbisecT.Dot( (muT+tauT)     );
  return pZetaVis;
}
コード例 #7
0
TVector3 CalculateScatVec(TVector3 Incoming ,TVector3 ScatLab){
  
      //What is quicker passing in same value each time or defining value here each time?
      
      zprime = income.Unit();
      yprime = zlab.Cross(-income);
      yprime = yprime.Unit();
      xprime = yprime.Cross(zprime);    
      xprime = xprime.Unit();
  
  
      RotM[0][0] = xlab.Dot(xprime) ;
      RotM[0][1] = xlab.Dot(yprime);
      RotM[0][2] = xlab.Dot(zprime);
      RotM[1][0] = ylab.Dot(xprime);
      RotM[1][1] = ylab.Dot(yprime) ;
      RotM[1][2] = ylab.Dot(zprime) ;
      RotM[2][0] = zlab.Dot(xprime);
      RotM[2][1] = zlab.Dot(yprime);
      RotM[2][2] = zlab.Dot(zprime);
      
      TVector3 ScatNuc;
      
      ScatNuc(0) = (RotM[0][0]*ScatLab(0) +  RotM[1][0]*ScatLab(1) + RotM[2][0]*ScatLab(2) );
      ScatNuc(1) = (RotM[0][1]*ScatLab(0) +  RotM[1][1]*ScatLab(1) + RotM[2][1]*ScatLab(2) );
      ScatNuc(2) = (RotM[0][2]*ScatLab(0) +  RotM[1][2]*ScatLab(1) + RotM[2][2]*ScatLab(2) );
      
      //std::cout << zprime(0) << " " << zprime(1) << " " << zprime(2) <<std::endl;
      return ScatNuc;
  
}
コード例 #8
0
// This is the pt corrected delta phi between the 2 mega-jets
// P and Q are the 4-vectors for the 2 hemispheres 
// M is the MET 3 vector (don't forget to set the z-component of
// MET to 0)
// This function will do the correct Lorentz transformations of the 
// leptons for you
double HWWKinematics::CalcDeltaPhiNEW(TLorentzVector P, TLorentzVector Q, TVector3 M){
    // first calculate pt-corrected MR
 float mymrnew = CalcMRNEW(L1,L2,MET);

    //Next, calculate the transverse Lorentz transformation
 TVector3 B = P.Vect()+Q.Vect()+MET;
 B.SetZ(0.0);
 B = (-1./(sqrt(4.*mymrnew*mymrnew+B.Dot(B))))*B;

 P.Boost(B);
 Q.Boost(B);

    //Now, re-calculate the delta phi
    // in the new reference frame:

 return P.DeltaPhi(Q);

}
コード例 #9
0
ファイル: ADDON3_LAC.C プロジェクト: dertexaner/LQ3
// // //
double analysisClass::deltaPzeta( unsigned int iMuR, unsigned int iTauR ){
  TVector3 muT; TVector3 tauT; TVector3 unitmuT; TVector3 unittauT; TVector3 unitbisecT; TVector3 MET;
  muT.SetPtEtaPhi(  muPtcorr(iMuR),    0, MuonPhi->at(iMuR)    );
  tauT.SetPtEtaPhi( tauPtcorr(iTauR), 0, HPSTauPhi->at(iTauR) );
  unitmuT=muT*(1./muT.Mag());  unittauT=tauT*(1./tauT.Mag());
  unitbisecT=(unitmuT+unittauT)*(1./((unitmuT+unittauT).Mag()));
  MET.SetPtEtaPhi( METcorr("Pt"), 0, METcorr("Phi")  );
  double pZeta;  double pZetaVis;
  pZeta    = unitbisecT.Dot( (muT+tauT+MET) );
  pZetaVis = unitbisecT.Dot( (muT+tauT)     );
  /*std::cout<<" TauMag, MuMag: "<<unitmuT.Mag()<<" "<<unittauT.Mag()<<std::endl;
  std::cout<<"  Mu-bisec: "<<muT.DeltaPhi(unitbisecT)<<std::endl;
  std::cout<<" Tau-bisec: "<<tauT.DeltaPhi(unitbisecT)<<std::endl;
  std::cout<<"    Tau-Mu: "<<tauT.DeltaPhi(muT)<<std::endl;
  std::cout<<"(pZeta-1.5*pZetaVis): "<<(pZeta-1.5*pZetaVis)<<std::endl;
  std::cout<<std::endl;*/
  return (pZeta-1.5*pZetaVis);
}
コード例 #10
0
double HWWKinematics::CalcUnboostedMTR(TLorentzVector P, TLorentzVector Q, TVector3 M){
    // first calculate pt-corrected MR
 float mymrnew = CalcMRNEW(L1,L2,MET);

    //Next, calculate the transverse Lorentz transformation
 TVector3 B = P.Vect()+Q.Vect()+MET;
 B.SetZ(0.0);
 B = (-1./(sqrt(4.*mymrnew*mymrnew+B.Dot(B))))*B;

 P.Boost(B);
 Q.Boost(B);

    //Now, re-calculate MTR in the new reference frame:
 float mymtrnew = CalcMTRNEW(P, Q);

    //R is now just the ratio of mymrnew and mymtrnew;

 return mymtrnew;
}
コード例 #11
0
ファイル: buildFakeAngTree.C プロジェクト: jetatar/snowShovel
void findEangHang(const TVector3& antnorm,
                  const TVector3& sourcedir,
                  Float_t& eang,
                  Float_t& hang) {
   // both should already be unit vectors
   
   // E angle projects onto the plane
   const TVector3 w = (antnorm.Dot(sourcedir)) * antnorm;
   const TVector3 v = sourcedir - w;
   eang = TMath::Abs( TMath::Pi() - v.Theta() );
   
   // H angle projects out of the plane
   hang = TMath::Abs( TMath::Pi() - w.Theta() );

#ifdef DEBUG
   Printf("w:");
   w.Print();
   Printf("v:");
   v.Print();
#endif

}
コード例 #12
0
//_____________________________________________________________________________
bool THaSpectrometerDetector::CalcTrackIntercept(THaTrack* theTrack, 
					 Double_t& t, Double_t& xcross, 
					 Double_t& ycross)
{
  // projects a given track on to the plane of the detector
  // xcross and ycross are the x and y coords of this intersection
  // t is the distance from the origin of the track to the given plane.
  // 
  // If a hit is NOT found, then t, xcross, and ycross are unchanged.
  TVector3 t0( theTrack->GetX(), theTrack->GetY(), 0.0 );
  Double_t norm = TMath::Sqrt(1.0 + theTrack->GetTheta()*theTrack->GetTheta() +
			      theTrack->GetPhi()*theTrack->GetPhi());
  TVector3 t_hat( theTrack->GetTheta()/norm, theTrack->GetPhi()/norm, 1.0/norm );

  TVector3 v;
  if( !IntersectPlaneWithRay( fXax, fYax, fOrigin, t0, t_hat, t, v ))
    return false;
  v -= fOrigin;
  xcross = v.Dot(fXax);
  ycross = v.Dot(fYax);

  return true;
}
コード例 #13
0
//________________________________________________________________________________
//void Db(const Char_t *tabNam  = "Calibrations/tpc/noiseElim", 
// void DbS(const Char_t *tabNam  = 
// 	"Survey/svt/LadderOnSurvey",Int_t date = 20051101, Int_t time = 0 
void MakeSvtWaferOnGlobal(Int_t date = 20050101, Int_t time = 65 ){ 
  TGeoHMatrix GL, WL,LSU,LSH,SHG,WG;
  if (dbMk == 0) Load();
  dbMk->SetDebug(2);
  dbMk->SetDateTime(date,time); 
  //  dbMk->SetFlavor("ofl+laserDV","tpcDriftVelocity");
  //  dbMk->SetMaxEntryTime(20040520,0);
  // to browse 1 database, use this one
  TDataSet *set = dbMk->GetDataBase("Geometry/ssd");
  if (! set) return;                                                              // Positioning of the SSD: 
  St_Survey *SsdOnGlobal = (St_Survey *) set->Find("SsdOnGlobal");
  if (! SsdOnGlobal)  {cout << "SsdOnGlobal has not been found"  << endl; return;}
  Survey_st *OnGlobal         = SsdOnGlobal->GetTable();        // SSD and SVT as whole 
  GL.SetRotation(&OnGlobal->r00);
  GL.SetTranslation(&OnGlobal->t0); //cout << "WL\t"; WL.Print();
  set = dbMk->GetDataBase("Geometry/svt");
  St_Survey *WaferOnLadder = (St_Survey *) set->Find("WaferOnLadder");
  St_Survey *LadderOnSurvey = (St_Survey *) set->Find("LadderOnSurvey");
  St_Survey *LadderOnShell = (St_Survey *) set->Find("LadderOnShell");
  St_Survey *ShellOnGlobal = (St_Survey *) set->Find("ShellOnGlobal");
  Int_t NW = WaferOnLadder->GetNRows();
  Int_t NL = LadderOnSurvey->GetNRows();
  Survey_st *waferOnLadder = WaferOnLadder->GetTable();
  Survey_st *ladderOnSurvey = LadderOnSurvey->GetTable();
  Survey_st *ladderOnShell = LadderOnShell->GetTable();
  Survey_st *shellOnGlobal0 = ShellOnGlobal->GetTable(0);
  Survey_st *shellOnGlobal1 = ShellOnGlobal->GetTable(1);
  St_svtWafersPosition *svtwafer = new St_svtWafersPosition("svtWafersPosition",216);
  svtWafersPosition_st row;
  for (Int_t i = 0; i < NW; i++, waferOnLadder++)
    {
      Int_t Idw = waferOnLadder->Id;
      WL.SetRotation(&waferOnLadder->r00);
      WL.SetTranslation(&waferOnLadder->t0);
      //	    if (i==0) WL.Print();
      Int_t wshell  = 0;
      Int_t wbarrel  = Idw/1000;
      Int_t wwafer  = (Idw - 1000*wbarrel)/100;
      Int_t wladder = Idw%100;
      Int_t wlayer = 2*wbarrel + wladder%2 - 1;
      //	    cout << waferOnLadder->Id << "  "<< Idw<< " " <<  100*wwafer + wladder + 1000*wlayer <<endl;
      for ( Int_t j = 0; j < NL; j++, ladderOnSurvey++, ladderOnShell++)
	{
	  Int_t Idl =  ladderOnSurvey->Id;
	  Int_t lbarrel  = Idl/1000;
	  Int_t lladder = Idl%100;
	  if( wladder ==  lladder )
	    {
	      LSU.SetRotation(&ladderOnSurvey->r00);
	      LSU.SetTranslation(&ladderOnSurvey->t0);
	      LSH.SetRotation(&ladderOnShell->r00);
	      LSH.SetTranslation(&ladderOnShell->t0);
	      if( (wbarrel == 1 && wladder <= 4) || (wbarrel == 2 && wladder <= 6) ||  (wbarrel == 3 && wladder <= 8) )
		{
		  SHG.SetRotation(&shellOnGlobal0->r00);
		  SHG.SetTranslation(&shellOnGlobal0->t0);
		}else
		{
		  SHG.SetRotation(&shellOnGlobal1->r00);
		  SHG.SetTranslation(&shellOnGlobal1->t0);
		}		    
	      //   SsdOnGlobal * ShellOnGlobal * LadderOnShell * LadderOnSurvey * WaferOnLadder 
	      WG = GL * SHG * LSH * LSU * WL; //  WG.Print();
	      //			    TGeoHMatrix WGInv = WG.Inverse();
	      Double_t *r = WG.GetRotationMatrix();
	      Int_t fail = 0;
	      for (int l = 0; l < 9; l++) {
		if (TMath::Abs(r[l]) >=  1.000001) fail++;
	      }
	      if (fail) {
		cout << "===============" << waferOnLadder->Id << "  "<< Idw << " " <<  100*wwafer + wladder + 1000*wlayer <<endl;
		cout << "WG\t"; WG.Print();
		//			      cout << "SHG\t"; SHG.Print();
		//			      cout << "LSH\t"; LSH.Print();
		//			      cout << "LSU\t"; LSU.Print();
		//			      cout << "WL\t"; WL.Print();
	      }
	      row.driftDirection[0] = r[0]; row.normalDirection[0] = r[1]; row.transverseDirection[0] = r[2];
	      row.driftDirection[1] = r[3]; row.normalDirection[1] = r[4]; row.transverseDirection[1] = r[5];
	      row.driftDirection[2] = r[6]; row.normalDirection[2] = r[7]; row.transverseDirection[2] = r[8];
	      Double_t norm;
	      TVector3 d(row.driftDirection); norm = 1/d.Mag(); d *= norm;
	      TVector3 t(row.transverseDirection); norm = 1/t.Mag(); t *= norm;
	      TVector3 n(row.normalDirection);
	      TVector3 c = d.Cross(t);
	      if (c.Dot(n) < 0) c *= -1;
	      d.GetXYZ(row.driftDirection);
	      t.GetXYZ(row.transverseDirection);
	      c.GetXYZ(row.normalDirection);
	      
	      row.ID = 100*wwafer + wladder + 1000*wlayer;
	      Double_t *wgtr = WG.GetTranslation();
	      memcpy(row.centerPosition,wgtr, 3*sizeof(Double_t));
	      svtwafer->AddAt(&row);
	      break;
	      
	    }
	}
    }
  ofstream out;
  out.open(Form("svtWafersPosition.%8i.%06i.C",date,time));
  svtwafer->SavePrimitive(out,""); 
  out.close();
  
}
コード例 #14
0
ファイル: Selector_p3pi.C プロジェクト: pomm/sim-recon
Bool_t Selector_p3pi::Process(Long64_t entry)
{
   // The Process() function is called for each entry in the tree (or possibly
   // keyed object in the case of PROOF) to be processed. The entry argument
   // specifies which entry in the currently loaded tree is to be processed.
   // It can be passed to either Selector_p3pi::GetEntry() or TBranch::GetEntry()
   // to read either all or the required parts of the data. When processing
   // keyed objects with PROOF, the object is already loaded and is available
   // via the fObject pointer.
   //
   // This function should contain the "body" of the analysis. It can contain
   // simple or elaborate selection criteria, run algorithms on the data
   // of the event and typically fill histograms.
   //
   // The processing can be stopped by calling Abort().
   //
   // Use fStatus to set the return value of TTree::Process().
   //
   // The return value is currently not used.

	GetEntry(entry);

	/********************************************* SETUP UNIQUENESS TRACKING ********************************************/

	//PREVENT-DOUBLE COUNTING WHEN HISTOGRAMMING
		//Sometimes, some content is the exact same between one combo and the next
			//e.g. maybe two combos have different beam particles, but the same data for the final-state
		//When histogramming, you don't want to double-count when this happens: artificially inflates your signal (or background)
		//So, for each quantity you histogram, keep track of what particles you used (for a given combo)
			//Use the combo-independent particle indices (i.e. the indices to "ChargedHypo," "NeutralShower," and/or "Beam"
		//Then for each combo, just compare to what you used before, and make sure it's unique

	//In general: Could have multiple particles with the same PID: Use a set (easier, faster to search)
	//In general: Multiple PIDs, so multiple sets: Contain within a map
	//Multiple combos: Contain maps within a set (easier, faster to search)
	set<map<Particle_t, set<Int_t> > > locUsedSoFar_Pi0Mass; 
	set<map<Particle_t, set<Int_t> > > locUsedSoFar_MissingMass;
	set<map<Particle_t, set<Int_t> > > locUsedSoFar_OmegaMass;
	set<Int_t> locUsedSoFar_BeamEnergy;
	set<Int_t> locUsedSoFar_MandelstamT;
	set<set<Int_t> > locUsedSoFar_ExtraPi0;
	bool locNumExtraTracksFilledFlag = false;

	/************************************************* LOOP OVER COMBOS *************************************************/

	//Loop over combos
	int locNumSurvivingCombos = 0;
	for(UInt_t loc_i = 0; loc_i < NumCombos; ++loc_i)
	{
		// Is used to mark when combos are cut
		if(IsComboCut[loc_i]) // Is false initially
			continue; // Combo has been cut previously

		/***************************************** READ/SETUP DATA FOR THIS COMBO ****************************************/

		// Particle info is split between combo-dependent and combo-independent
		// For combo-dependent (e.g. PID, kinfit p4), use the branches starting with the particle name (<Name>)
			// e.g. PiPlus__P4_KinFit
		// For combo-independent (e.g. measured p4, dE/dx, etc.), use the branches starting with either: 
			// "ChargedHypo," "NeutralShower," or "Beam"
			// However, these are arrays. The array index that you need is given by the branches:
			// "<Name>__ChargedIndex," "<Name>__ShowerIndex," or "ComboBeam__BeamIndex"
		// If using charged PIDs for which hypos are not created by default (e.g. e+, e-), beware! (pi+/-, k+/-, and p are fine)
			// The energy in the "P4_Measured" will be computed with a different mass than the one you're using
			// So you'll need to recompute it yourself.  However, the "P4_KinFit" will be fine. 

		// Get particle indices: These point from combo-particle to combo-independent data
		Int_t locPhoton1Index = Photon1__ShowerIndex[loc_i];
		Int_t locPhoton2Index = Photon2__ShowerIndex[loc_i];
		Int_t locPiPlusIndex = PiPlus__ChargedIndex[loc_i];
		Int_t locPiMinusIndex = PiMinus__ChargedIndex[loc_i];
		Int_t locProtonIndex = Proton__ChargedIndex[loc_i];
		Int_t locBeamIndex = ComboBeam__BeamIndex[loc_i];

		// Get Measured Neutral P4's: Combo-dependent (P4 defined by combo-dependent vertex position)
		TLorentzVector& locPhoton1P4_Measured = *((TLorentzVector*)Photon1__P4_Measured->At(loc_i));
		TLorentzVector& locPhoton2P4_Measured = *((TLorentzVector*)Photon2__P4_Measured->At(loc_i));

		// Get KinFit Neutral P4's: Combo-dependent
		TLorentzVector& locPhoton1P4_KinFit = *((TLorentzVector*)Photon1__P4_KinFit->At(loc_i));
		TLorentzVector& locPhoton2P4_KinFit = *((TLorentzVector*)Photon2__P4_KinFit->At(loc_i));

		// Get Measured Charged P4's: Combo-independent
		TLorentzVector& locPiPlusP4_Measured = *((TLorentzVector*)ChargedHypo__P4_Measured->At(locPiPlusIndex));
		TLorentzVector& locPiMinusP4_Measured = *((TLorentzVector*)ChargedHypo__P4_Measured->At(locPiMinusIndex));
		TLorentzVector& locProtonP4_Measured = *((TLorentzVector*)ChargedHypo__P4_Measured->At(locProtonIndex));

		// Get KinFit Charged P4's: Combo-dependent
		TLorentzVector& locPiPlusP4_KinFit = *((TLorentzVector*)PiPlus__P4_KinFit->At(loc_i));
		TLorentzVector& locPiMinusP4_KinFit = *((TLorentzVector*)PiMinus__P4_KinFit->At(loc_i));
		TLorentzVector& locProtonP4_KinFit = *((TLorentzVector*)Proton__P4_KinFit->At(loc_i));

		// Get Measured Beam P4: Combo-independent
		TLorentzVector& locBeamP4_Measured = *((TLorentzVector*)Beam__P4_Measured->At(locBeamIndex));

		// Get KinFit Beam P4: Combo-dependent
		TLorentzVector& locBeamP4_KinFit = *((TLorentzVector*)ComboBeam__P4_KinFit->At(locBeamIndex));

		// Combine 4-vectors
		TLorentzVector locPi0P4_Measured = locPhoton1P4_Measured + locPhoton2P4_Measured;
		TLorentzVector locPi0P4_KinFit = locPhoton1P4_KinFit + locPhoton2P4_KinFit;

		TLorentzVector locOmegaP4_Measured = locPiPlusP4_Measured + locPiMinusP4_Measured + locPi0P4_Measured;
		TLorentzVector locOmegaP4_KinFit = locPiPlusP4_KinFit + locPiMinusP4_KinFit + locPi0P4_KinFit;

		TLorentzVector locFinalStateP4_Measured = locOmegaP4_Measured + locProtonP4_Measured;
		TLorentzVector locFinalStateP4_KinFit = locOmegaP4_KinFit + locProtonP4_KinFit;

		TLorentzVector locInitialStateP4_Measured = locBeamP4_Measured + dTargetP4;
		TLorentzVector locInitialStateP4_KinFit = locBeamP4_KinFit + dTargetP4;

		TLorentzVector locMissingP4_Measured = locInitialStateP4_Measured - locFinalStateP4_Measured;

		/****************************************************** PI0 ******************************************************/

		//Mass
		double locPi0Mass_Measured = locPi0P4_Measured.M();
		double locPi0Mass_KinFit = locPi0P4_KinFit.M();

		//Build the map of particles used for the pi0 mass
		map<Particle_t, set<Int_t> > locUsedThisCombo_Pi0Mass;
		locUsedThisCombo_Pi0Mass[Gamma].insert(locPhoton1Index);
		locUsedThisCombo_Pi0Mass[Gamma].insert(locPhoton2Index);

		//compare to what's been used so far
		if(locUsedSoFar_Pi0Mass.find(locUsedThisCombo_Pi0Mass) == locUsedSoFar_Pi0Mass.end())
		{
			//unique pi0 combo: histogram it, and register this combo of particles
			dHist_Pi0Mass_Measured->Fill(locPi0Mass_Measured);
			dHist_Pi0Mass_KinFit->Fill(locPi0Mass_KinFit);
			locUsedSoFar_Pi0Mass.insert(locUsedThisCombo_Pi0Mass);
		}

		//Cut pi0 mass (+/- 3 sigma)
//		if((locPi0Mass_Measured < 0.0775209) || (locPi0Mass_Measured > 0.188047))
//			continue; //could also mark combo as cut, then save cut results to a new TTree
		if((locPi0Mass_KinFit < 0.102284) || (locPi0Mass_KinFit > 0.167278))
			continue; //could also mark combo as cut, then save cut results to a new TTree

		/********************************************* MISSING MASS SQUARED **********************************************/

		//Missing Mass Squared
		double locMissingMassSquared = locMissingP4_Measured.M2();

		//Build the map of particles used for the missing mass
			//For beam: Don't want to group with final-state photons. Instead use "Unknown" PID (not ideal, but it's easy). 
		map<Particle_t, set<Int_t> > locUsedThisCombo_MissingMass;
		locUsedThisCombo_MissingMass[Gamma] = locUsedThisCombo_Pi0Mass[Gamma];
		locUsedThisCombo_MissingMass[PiPlus].insert(locPiPlusIndex);
		locUsedThisCombo_MissingMass[PiMinus].insert(locPiMinusIndex);
		locUsedThisCombo_MissingMass[Proton].insert(locProtonIndex);
		locUsedThisCombo_MissingMass[Unknown].insert(locBeamIndex); //beam

		//compare to what's been used so far
		if(locUsedSoFar_MissingMass.find(locUsedThisCombo_MissingMass) == locUsedSoFar_MissingMass.end())
		{
			//unique missing mass combo: histogram it, and register this combo of particles
			dHist_MissingMassSquared->Fill(locMissingMassSquared);
			locUsedSoFar_MissingMass.insert(locUsedThisCombo_MissingMass);
		}

		//Cut
		if((locMissingMassSquared < -0.007) || (locMissingMassSquared > 0.005))
			continue; //could also mark combo as cut, then save cut results to a new TTree

		/***************************************************** OMEGA *****************************************************/

		//Mass
		double locOmegaMass_Measured = locOmegaP4_Measured.M();
		double locOmegaMass_KinFit = locOmegaP4_KinFit.M();

		//Build the map of particles used for the omega mass
		map<Particle_t, set<Int_t> > locUsedThisCombo_OmegaMass;
		locUsedThisCombo_OmegaMass[Gamma] = locUsedThisCombo_Pi0Mass[Gamma];
		locUsedThisCombo_OmegaMass[PiPlus].insert(locPiPlusIndex);
		locUsedThisCombo_OmegaMass[PiMinus].insert(locPiMinusIndex);

		//compare to what's been used so far
		bool locOmegaUniqueFlag = false; //will check later for asymmetry
		if(locUsedSoFar_OmegaMass.find(locUsedThisCombo_OmegaMass) == locUsedSoFar_OmegaMass.end())
		{
			//unique missing mass combo: histogram it, and register this combo of particles
			locOmegaUniqueFlag = true;
			dHist_OmegaMass_Measured->Fill(locOmegaMass_Measured);
			dHist_OmegaMass_KinFit->Fill(locOmegaMass_KinFit);
			locUsedSoFar_OmegaMass.insert(locUsedThisCombo_OmegaMass);
		}

		//Cut
		if((locOmegaMass_KinFit < 0.72) || (locOmegaMass_KinFit > 0.84))
			continue; //could also mark combo as cut, then save cut results to a new TTree

		/************************************************ BEAM ENERGY, T *************************************************/

		//Histogram beam energy (if haven't already)
		if(locUsedSoFar_BeamEnergy.find(locBeamIndex) == locUsedSoFar_BeamEnergy.end())
		{
			dHist_BeamEnergy->Fill(locBeamP4_KinFit.E());
			locUsedSoFar_BeamEnergy.insert(locBeamIndex);
		}
		if((locBeamP4_KinFit.E() < 2.5) || (locBeamP4_KinFit.E() > 3.0))
			continue; //could also mark combo as cut, then save cut results to a new TTree

		double locT = (locProtonP4_KinFit - dTargetP4).Mag2();
		if(locUsedSoFar_MandelstamT.find(locProtonIndex) == locUsedSoFar_MandelstamT.end())
		{
			dHist_MandelstamT->Fill(locT);
			locUsedSoFar_MandelstamT.insert(locProtonIndex);
		}

		if((fabs(locT) < 0.02) || (fabs(locT) > 0.3))
			continue;

		/*********************************************** EXTRA PARTICLES *************************************************/

		//loop through all hypotheses, find how many physical tracks there are
		set<Int_t> locFoundTrackIDs; //keep track of unique track ids
		for(size_t loc_j = 0; loc_j < NumChargedHypos; ++loc_j)
			locFoundTrackIDs.insert(ChargedHypo__TrackID[loc_j]);

		int locNumExtraTracks = locFoundTrackIDs.size() - 3; //proton, pi+, pi- used
		//Fill the histogram if it hasn't already been filled for this event (quantity is combo-independent)
		if(!locNumExtraTracksFilledFlag)
		{
			dHist_NumExtraTracks->Fill(locNumExtraTracks);
			locNumExtraTracksFilledFlag = true;
		}

		//cut, requiring no extra tracks in the event
		if(locNumExtraTracks > 0)
			continue;

		//Loop through showers, see if there are any additional pi0s
		TVector3 locProductionVertex = ((TLorentzVector*)ComboBeam__X4_Measured->At(loc_i))->Vect();
		for(Int_t loc_j = 0; loc_j < Int_t(NumNeutralShowers); ++loc_j)
		{
			if((loc_j == locPhoton1Index) || (loc_j == locPhoton2Index))
				continue; //don't choose a shower that's already in the combo

			//Construct extra photon 1 p4
			TLorentzVector& locShower1X4 = *((TLorentzVector*)NeutralShower__X4_Shower->At(loc_j));
			double locShower1Energy = (NeutralShower__Energy_BCAL[loc_j] > 0.0) ? NeutralShower__Energy_BCAL[loc_j] : NeutralShower__Energy_FCAL[loc_j];
			TVector3 locExtraPhoton1P3 = locShower1X4.Vect() - locProductionVertex;
			locExtraPhoton1P3.SetMag(locShower1Energy);
			TLorentzVector locExtraPhoton1P4(locExtraPhoton1P3, locShower1Energy);

			//need 2 photons for a pi0
			for(Int_t loc_k = loc_j + 1; loc_k < Int_t(NumNeutralShowers); ++loc_k)
			{
				if((loc_k == locPhoton1Index) || (loc_k == locPhoton2Index))
					continue; //don't choose a shower that's already in the combo

				//Construct extra photon 2 p4
				TLorentzVector& locShower2X4 = *((TLorentzVector*)NeutralShower__X4_Shower->At(loc_k));
				double locShower2Energy = (NeutralShower__Energy_BCAL[loc_k] > 0.0) ? NeutralShower__Energy_BCAL[loc_k] : NeutralShower__Energy_FCAL[loc_k];
				TVector3 locExtraPhoton2P3 = locShower2X4.Vect() - locProductionVertex;
				locExtraPhoton2P3.SetMag(locShower2Energy);
				TLorentzVector locExtraPhoton2P4(locExtraPhoton2P3, locShower2Energy);

				TLorentzVector locExtraPi0P4 = locExtraPhoton1P4 + locExtraPhoton2P4;
				double locExtraPi0Mass = locExtraPi0P4.M();

				//see if this combo has been histogrammed yet
				set<Int_t> locUsedThisCombo_ExtraPi0;
				locUsedThisCombo_ExtraPi0.insert(loc_j);
				locUsedThisCombo_ExtraPi0.insert(loc_k);
				if(locUsedSoFar_ExtraPi0.find(locUsedThisCombo_ExtraPi0) == locUsedSoFar_ExtraPi0.end())
				{
					//it has not: histogram and register
					dHist_ExtraPi0InvariantMass->Fill(locExtraPi0Mass);
					locUsedSoFar_ExtraPi0.insert(locUsedThisCombo_ExtraPi0);
				}
			}
		}

		++locNumSurvivingCombos;
		if(locNumSurvivingCombos > 1)
			cout << "# combos = " << locNumSurvivingCombos << endl;

		/************************************************ OMEGA ASYMMETRY ************************************************/

		//Polarization plane:
			//Beam is in the lab z-direction
			//(FYI) Circularly polarized photon beam: Polarization rotates through the plane perpendicular to the direction of the photon: The XY Plane
			//The polarization vector is perpendicular to the direction of the photon
			//Linearly polarized photon beam: Polarization is confined to a plane along the direction of the photon
				//Plane defined by z-direction & some angle phi. Thus, polarization vector defined by phi.
				//PARA: Polarization plane parallel to the floor: The XZ plane. Polarization Vector = +/- x-axis
				//PERP: Polarization plane perpendicular to the floor: The YZ plane. Polarization Vector = +/- y-axis
			//Here: Assume that the beam polarization plane is parallel to the floor (Run 3185) (xz plane, choose +x-axis)

		//Production CM frame: The center-of-mass frame of the production step. Here: g, p -> omega, p
			//In general, the beam energy is measured more accurately than the combination of all of the final-state particles
			//So define the production CM frame using the initial state
		TVector3 locBoostVector_ProdCM = -1.0*(locInitialStateP4_KinFit.BoostVector()); //negative due to coordinate system convention

		//boost beam & proton to production CM frame
		TLorentzVector locBeamP4_ProdCM(locBeamP4_KinFit);
		locBeamP4_ProdCM.Boost(locBoostVector_ProdCM);
		TLorentzVector locProtonP4_ProdCM(locProtonP4_KinFit);
		locProtonP4_ProdCM.Boost(locBoostVector_ProdCM);

		//Production plane:
			//The production plane is the plane containing the produced particles. Here: Defined by the proton and the omega
			//However, when you boost to the production CM frame, the production plane is no longer well defined: the particles are back-to-back
			//So, by convention, define the production plane in the production CM frame by the beam and the vector meson.

		//Production CM frame axes: "HELICITY SYSTEM"
			//The z-axis is defined as the direction of the meson (omega): z = Omega
			//The y-axis is defined by the vector cross product: y = Beam X Omega
			//The x-axis is defined by the vector cross product: x = y cross z
			//However, the proton momentum is in general better known than the omega momentum, so use it instead (they are back-to-back)
				//z = -1 * Proton
				//y = -1 * (Beam X Proton)
				//x = y cross z
			//Thus the production plane in the production frame is the XZ plane, and the normal vector is the Y-axis

		//Define production CM frame helicity axes
		TVector3 locHelicityZAxis_ProdCM = -1.0*locProtonP4_ProdCM.Vect().Unit();
		TVector3 locHelicityYAxis_ProdCM = -1.0*locBeamP4_ProdCM.Vect().Cross(locProtonP4_ProdCM.Vect()).Unit();
		TVector3 locHelicityXAxis_ProdCM = locHelicityYAxis_ProdCM.Cross(locHelicityZAxis_ProdCM).Unit();

		//Since the beam is in PARA configuration (Run 3185), the polarization vector is along the lab x-axis
			//Since the boost is in the z-direction, this vector is the same in the production CM frame
		TVector3 locPolUnit(1.0, 0.0, 0.0);

		//In the production CM frame, locPHI is the angle between the polarization vector and the production plane
		double locCosPHI = locBeamP4_ProdCM.Vect().Unit().Dot(locPolUnit.Cross(locHelicityYAxis_ProdCM));
		double locPHI = acos(locCosPHI); //reports phi between 0 and pi: sign ambiguity
		//Resolve the sign ambiguity
		double locSinPHI = locPolUnit.Dot(locHelicityYAxis_ProdCM);
		if(locSinPHI < 0.0)
			locPHI *= -1.0;

		//Now, we need the theta, phi angles between the omega decay plane and the production plane
		//The omega decay plane is defined by decay products in the omega CM frame
			//2 particles (vectors) define a plane.  
			//However, to conserve momentum, the third particle cannot be out of that plane (so must also be in it)
			//So, use the pi+ and the pi- to define the plane (pi0 measurement has less resolution)
		//By the way, for rho decays, the theta & phi angles are those of the pi+ in the rho CM frame, with respect to the helicity axes

		//boost pi+/- to omega CM frame
		TVector3 locBoostVector_OmegaCM = -1.0*(locOmegaP4_KinFit.BoostVector()); //negative due to coordinate system convention
		TLorentzVector locBeamP4_OmegaCM(locBeamP4_KinFit);
		locBeamP4_OmegaCM.Boost(locBoostVector_OmegaCM);
		TLorentzVector locProtonP4_OmegaCM(locProtonP4_KinFit);
		locProtonP4_OmegaCM.Boost(locBoostVector_OmegaCM);
		TLorentzVector locPiPlusP4_OmegaCM(locPiPlusP4_KinFit);
		locPiPlusP4_OmegaCM.Boost(locBoostVector_OmegaCM);
		TLorentzVector locPiMinusP4_OmegaCM(locPiMinusP4_KinFit);
		locPiMinusP4_OmegaCM.Boost(locBoostVector_OmegaCM);

		//Define omega CM frame helicity axes
			//These are defined the same way as before, but with the boost, the direction of the x & y axes has changed
		TVector3 locHelicityZAxis_OmegaCM = -1.0*locProtonP4_OmegaCM.Vect().Unit();
		TVector3 locHelicityYAxis_OmegaCM = -1.0*locBeamP4_OmegaCM.Vect().Cross(locProtonP4_OmegaCM.Vect()).Unit();
		TVector3 locHelicityXAxis_OmegaCM = locHelicityYAxis_OmegaCM.Cross(locHelicityZAxis_OmegaCM).Unit();

		//Compute the normal vector to the omega decay plane (pi+ x pi-)
		TVector3 locOmegaNormal = (locPiPlusP4_OmegaCM.Vect().Cross(locPiMinusP4_OmegaCM.Vect()));

		//Compute the theta angle to the omega decay plane
		double locCosTheta = locOmegaNormal.Dot(locHelicityZAxis_OmegaCM)/locOmegaNormal.Mag();
		double lcoTheta = acos(locCosTheta);

		//Compute the phi angle to the omega decay plane
		TVector3 locZCrossOmegaNormal = locHelicityZAxis_OmegaCM.Cross(locOmegaNormal);
		double locZCrossOmegaNormalMag = locZCrossOmegaNormal.Mag();
		double locCosPhi = locHelicityYAxis_OmegaCM.Dot(locZCrossOmegaNormal)/locZCrossOmegaNormalMag;
		double locPhi = acos(locCosPhi); //reports phi between 0 and pi: sign ambiguity
		//Resolve the sign ambiguity
		double locSinPhi = -1.0*locHelicityXAxis_OmegaCM.Dot(locZCrossOmegaNormal)/locZCrossOmegaNormalMag;
		if(locSinPhi < 0.0)
			locPhi *= -1.0;

		//Compute the "psi" angle: works at forward angles
		double locPsi = locPhi - locPHI;
		while(locPsi < -1.0*TMath::Pi())
			locPsi += 2.0*TMath::Pi();
		while(locPsi > TMath::Pi())
			locPsi -= 2.0*TMath::Pi();

		//result is defined by omega, only histogram if omega is unique
		if(locOmegaUniqueFlag)
		{
			dHist_OmegaPsi->Fill(180.0*locPsi/TMath::Pi());
			dHist_OmegaCosTheta->Fill(locCosTheta);
		}
	} //end combo loop

   return kTRUE;
}
コード例 #15
0
ファイル: NewVariables.cpp プロジェクト: marianstahl/SL_b2Xch
void NewVariables(){

  const double protonmass = 938.272013; //MeV
  const double pionmass = 139.57018; //MeV
  const double kaonmass = 493.677; //MeV
  //const double muonmass = 105.6583715; //MeV

  TStopwatch *clock = new TStopwatch();
  clock->Start(1);

  double p_PT, p_ETA, p_PHI;
  double K_PT, K_ETA, K_PHI;
  double pi_PT, pi_ETA, pi_PHI;
  double Xb_OWNPV_X, Xb_OWNPV_Y, Xb_OWNPV_Z;
  double Xb_ENDVERTEX_X, Xb_ENDVERTEX_Y, Xb_ENDVERTEX_Z;
  double Xb_PT, Xb_ETA, Xb_PHI, Xb_M;
  double Xc_PT, Xc_ETA, Xc_PHI, Xc_M;
  float Added_H_PT[200], Added_H_ETA[200], Added_H_PHI[200];
  int Added_n_Particles;

  gErrorIgnoreLevel = kError;
  TFile *fSLBS = new TFile("/auto/data/mstahl/SLBaryonSpectroscopy/SLBaryonSpectroscopyStrp21.root","read");
  TTree *Xic_tree = (TTree*)gDirectory->Get("Xib02XicMuNu/Xic2pKpi/DecayTree");
  gErrorIgnoreLevel = kPrint;
  Xic_tree->SetBranchStatus("*",0); //disable all branches
  //now switch on the ones we need (saves a lot of time)  
  Xic_tree->SetBranchStatus("Xib_M",1);
  Xic_tree->SetBranchStatus("Xib_PT",1);
  Xic_tree->SetBranchStatus("Xib_ETA",1);
  Xic_tree->SetBranchStatus("Xib_PHI",1);
  Xic_tree->SetBranchStatus("Xib_OWNPV_X",1);
  Xic_tree->SetBranchStatus("Xib_OWNPV_Y",1);
  Xic_tree->SetBranchStatus("Xib_OWNPV_Z",1);
  Xic_tree->SetBranchStatus("Xib_ENDVERTEX_X",1);
  Xic_tree->SetBranchStatus("Xib_ENDVERTEX_Y",1);
  Xic_tree->SetBranchStatus("Xib_ENDVERTEX_Z",1);

  Xic_tree->SetBranchStatus("Xic_M",1);
  Xic_tree->SetBranchStatus("Xic_PT",1);
  Xic_tree->SetBranchStatus("Xic_ETA",1);
  Xic_tree->SetBranchStatus("Xic_PHI",1);

  Xic_tree->SetBranchStatus("Added_n_Particles",1);
  Xic_tree->SetBranchStatus("Added_H_PT",1);
  Xic_tree->SetBranchStatus("Added_H_ETA",1);
  Xic_tree->SetBranchStatus("Added_H_PHI",1);

  Xic_tree->SetBranchStatus("p_PT",1);
  Xic_tree->SetBranchStatus("p_ETA",1);
  Xic_tree->SetBranchStatus("p_PHI",1);
  Xic_tree->SetBranchStatus("K_PT",1);
  Xic_tree->SetBranchStatus("K_ETA",1);
  Xic_tree->SetBranchStatus("K_PHI",1);
  Xic_tree->SetBranchStatus("pi_PT",1);
  Xic_tree->SetBranchStatus("pi_ETA",1);
  Xic_tree->SetBranchStatus("pi_PHI",1);

  //set the branch addresses
  Xic_tree->SetBranchAddress("Xib_M",&Xb_M);
  Xic_tree->SetBranchAddress("Xib_PT",&Xb_PT);
  Xic_tree->SetBranchAddress("Xib_ETA",&Xb_ETA);
  Xic_tree->SetBranchAddress("Xib_PHI",&Xb_PHI);
  Xic_tree->SetBranchAddress("Xib_OWNPV_X",&Xb_OWNPV_X);
  Xic_tree->SetBranchAddress("Xib_OWNPV_Y",&Xb_OWNPV_Y);
  Xic_tree->SetBranchAddress("Xib_OWNPV_Z",&Xb_OWNPV_Z);
  Xic_tree->SetBranchAddress("Xib_ENDVERTEX_X",&Xb_ENDVERTEX_X);
  Xic_tree->SetBranchAddress("Xib_ENDVERTEX_Y",&Xb_ENDVERTEX_Y);
  Xic_tree->SetBranchAddress("Xib_ENDVERTEX_Z",&Xb_ENDVERTEX_Z);

  Xic_tree->SetBranchAddress("Xic_M",&Xc_M);
  Xic_tree->SetBranchAddress("Xic_PT",&Xc_PT);
  Xic_tree->SetBranchAddress("Xic_ETA",&Xc_ETA);
  Xic_tree->SetBranchAddress("Xic_PHI",&Xc_PHI);

  Xic_tree->SetBranchAddress("Added_n_Particles",&Added_n_Particles);
  Xic_tree->SetBranchAddress("Added_H_PT",&Added_H_PT);
  Xic_tree->SetBranchAddress("Added_H_ETA",&Added_H_ETA);
  Xic_tree->SetBranchAddress("Added_H_PHI",&Added_H_PHI);

  Xic_tree->SetBranchAddress("p_PT",&p_PT);
  Xic_tree->SetBranchAddress("p_ETA",&p_ETA);
  Xic_tree->SetBranchAddress("p_PHI",&p_PHI);
  Xic_tree->SetBranchAddress("K_PT",&K_PT);
  Xic_tree->SetBranchAddress("K_ETA",&K_ETA);
  Xic_tree->SetBranchAddress("K_PHI",&K_PHI);
  Xic_tree->SetBranchAddress("pi_PT",&pi_PT);
  Xic_tree->SetBranchAddress("pi_ETA",&pi_ETA);
  Xic_tree->SetBranchAddress("pi_PHI",&pi_PHI);
  //SLBS_tree->AddBranchToCache("*");
  //SLBS_tree->LoadBaskets(1000000000);//Load baskets up to 1 GB to memory

  double Xb_CorrM, p_beta, K_beta, pi_beta;
  float Xcpi_CosTheta[200],XcK_CosTheta[200],Xcp_CosTheta[200];
  double p_as_piKpi_M, p_as_KKpi_M, pK_as_pipi_M, pK_as_ppi_M, pKpi_as_K_M, pKpi_as_p_M;

  TFile *f1 = new TFile("/auto/data/mstahl/SLBaryonSpectroscopy/SLBaryonSpectroscopyStrp21_friend.root","RECREATE");
  //f1->mkdir("Xib02XicMuNu/Xic2pKpi");
  //f1->cd("Xib02XicMuNu/Xic2pKpi");
  TTree added_Xic_tree("Xic2pKpi","Xic2pKpi");

  added_Xic_tree.Branch("Xib_CorrM", &Xb_CorrM, "Xib_CorrM/D");
  added_Xic_tree.Branch("p_beta", &p_beta, "p_beta/D");
  added_Xic_tree.Branch("K_beta", &K_beta, "K_beta/D");
  added_Xic_tree.Branch("pi_beta", &pi_beta, "pi_beta/D");
  added_Xic_tree.Branch("Added_n_Particles", &Added_n_Particles, "Added_n_Particles/I");
  added_Xic_tree.Branch("Xcpi_CosTheta", &Xcpi_CosTheta, "Xcpi_CosTheta[Added_n_Particles]/F");
  added_Xic_tree.Branch("XcK_CosTheta", &XcK_CosTheta, "XcK_CosTheta[Added_n_Particles]/F");
  added_Xic_tree.Branch("Xcp_CosTheta", &Xcp_CosTheta, "Xcp_CosTheta[Added_n_Particles]/F");
  added_Xic_tree.Branch("p_as_piKpi_M", &p_as_piKpi_M, "p_as_piKpi_M/D");
  added_Xic_tree.Branch("p_as_KKpi_M", &p_as_KKpi_M, "p_as_KKpi_M/D");
  added_Xic_tree.Branch("pK_as_pipi_M", &pK_as_pipi_M, "pK_as_pipi_M/D");
  added_Xic_tree.Branch("pK_as_ppi_M", &pK_as_ppi_M, "pK_as_ppi_M/D");
  added_Xic_tree.Branch("pKpi_as_K_M", &pKpi_as_K_M, "pKpi_as_K_M/D");
  added_Xic_tree.Branch("pKpi_as_p_M", &pKpi_as_p_M, "pKpi_as_p_M/D");

  UInt_t Xic_nevents = Xic_tree->GetEntries();
  cout << "Entries in Xic tree: " << Xic_nevents << endl;

  for (UInt_t evt = 0; evt < Xic_nevents;evt++) {
    Xic_tree->GetEntry(evt);

    TVector3 dir(Xb_ENDVERTEX_X-Xb_OWNPV_X,Xb_ENDVERTEX_Y-Xb_OWNPV_Y,Xb_ENDVERTEX_Z-Xb_OWNPV_Z);
    TVector3 mom;
    mom.SetPtEtaPhi(Xb_PT,Xb_ETA,Xb_PHI);
    double dmag2 = dir.Mag2();
    double ptprime = 0;
    if ( 0 == dmag2 ) ptprime = mom.Mag();
    else ptprime = (mom - dir * ( mom.Dot( dir ) / dmag2 )).Mag() ;
    Xb_CorrM = sqrt(Xb_M*Xb_M + ptprime*ptprime) + ptprime;

    TLorentzVector Xb;
    Xb.SetPtEtaPhiM(Xb_PT,Xb_ETA,Xb_PHI,Xb_CorrM);
    TLorentzVector Xc;
    Xc.SetPtEtaPhiM(Xc_PT,Xc_ETA,Xc_PHI,Xc_M);
    for(int i = 0; i < Added_n_Particles; i++){
      TLorentzVector Hpi;
      Hpi.SetPtEtaPhiM(Added_H_PT[i],Added_H_ETA[i],Added_H_PHI[i],pionmass);
      TLorentzVector HK;
      HK.SetPtEtaPhiM(Added_H_PT[i],Added_H_ETA[i],Added_H_PHI[i],kaonmass);
      TLorentzVector Hp;
      Hp.SetPtEtaPhiM(Added_H_PT[i],Added_H_ETA[i],Added_H_PHI[i],protonmass);
      TLorentzVector Xcpi = Hpi + Xc;
      TLorentzVector XcK = HK + Xc;
      TLorentzVector Xcp = Hp + Xc;
      Xcpi.Boost(-Xb.BoostVector());
      Xcpi_CosTheta[i] = cos(Xcpi.Angle(Xb.Vect()));
      XcK.Boost(-Xb.BoostVector());
      XcK_CosTheta[i] = cos(XcK.Angle(Xb.Vect()));
      Xcp.Boost(-Xb.BoostVector());
      Xcp_CosTheta[i] = cos(Xcp.Angle(Xb.Vect()));
    }

    TLorentzVector proton;
    proton.SetPtEtaPhiM(p_PT,p_ETA,p_PHI,protonmass);
    TLorentzVector kaon;
    kaon.SetPtEtaPhiM(K_PT,K_ETA,K_PHI,kaonmass);
    TLorentzVector pion;
    pion.SetPtEtaPhiM(pi_PT,pi_ETA,pi_PHI,pionmass);

    p_beta  = (-proton.P()+kaon.P()+pion.P())/(proton.P()+kaon.P()+pion.P());
    K_beta  = ( proton.P()-kaon.P()+pion.P())/(proton.P()+kaon.P()+pion.P());
    pi_beta = ( proton.P()+kaon.P()-pion.P())/(proton.P()+kaon.P()+pion.P());

    TLorentzVector p_as_pi;
    p_as_pi.SetVectM(proton.Vect(),pionmass);
    TLorentzVector p_as_K;
    p_as_K.SetVectM(proton.Vect(),kaonmass);

    TLorentzVector K_as_pi;
    K_as_pi.SetVectM(kaon.Vect(),pionmass);
    TLorentzVector K_as_p;
    K_as_p.SetVectM(kaon.Vect(),protonmass);

    TLorentzVector pi_as_K;
    pi_as_K.SetVectM(pion.Vect(),kaonmass);
    TLorentzVector pi_as_p;
    pi_as_p.SetVectM(pion.Vect(),protonmass);

    p_as_piKpi_M = (p_as_pi + kaon + pion).M();
    p_as_KKpi_M = (p_as_K + kaon + pion).M();

    pK_as_pipi_M = (proton + K_as_pi + pion).M();
    pK_as_ppi_M = (proton + K_as_p + pion).M();

    pKpi_as_K_M = (proton + kaon + pi_as_K).M();
    pKpi_as_p_M = (proton + kaon + pi_as_p).M();

    added_Xic_tree.Fill();

  }

  Xic_tree->SetDirectory(0);
  added_Xic_tree.Write();

  fSLBS->cd();
  TTree *Xic0_tree = (TTree*)gDirectory->Get("Xib2Xic0MuNu/Xic02pKKpi/DecayTree");

  double p_P, SSK1_P, SSK2_P, pi_P;
  double SSK1_PT, SSK2_PT, SSK1_ETA, SSK2_ETA, SSK1_PHI, SSK2_PHI;

  Xic0_tree->SetBranchStatus("*",0); //disable all branches
  //now switch on the ones we need (saves a lot of time)
  Xic0_tree->SetBranchStatus("Xib_M",1);
  Xic0_tree->SetBranchStatus("Xib_PT",1);
  Xic0_tree->SetBranchStatus("Xib_ETA",1);
  Xic0_tree->SetBranchStatus("Xib_PHI",1);
  Xic0_tree->SetBranchStatus("Xib_OWNPV_X",1);
  Xic0_tree->SetBranchStatus("Xib_OWNPV_Y",1);
  Xic0_tree->SetBranchStatus("Xib_OWNPV_Z",1);
  Xic0_tree->SetBranchStatus("Xib_ENDVERTEX_X",1);
  Xic0_tree->SetBranchStatus("Xib_ENDVERTEX_Y",1);
  Xic0_tree->SetBranchStatus("Xib_ENDVERTEX_Z",1);

  Xic0_tree->SetBranchStatus("Xic_M",1);
  Xic0_tree->SetBranchStatus("Xic_PT",1);
  Xic0_tree->SetBranchStatus("Xic_ETA",1);
  Xic0_tree->SetBranchStatus("Xic_PHI",1);

  Xic0_tree->SetBranchStatus("Added_n_Particles",1);
  Xic0_tree->SetBranchStatus("Added_H_PT",1);
  Xic0_tree->SetBranchStatus("Added_H_ETA",1);
  Xic0_tree->SetBranchStatus("Added_H_PHI",1);

  Xic0_tree->SetBranchStatus("p_P",1);
  Xic0_tree->SetBranchStatus("SSK1_P",1);
  Xic0_tree->SetBranchStatus("SSK2_P",1);
  Xic0_tree->SetBranchStatus("pi_P",1);

  Xic0_tree->SetBranchStatus("p_PT",1);
  Xic0_tree->SetBranchStatus("p_ETA",1);
  Xic0_tree->SetBranchStatus("p_PHI",1);
  Xic0_tree->SetBranchStatus("SSK1_PT",1);
  Xic0_tree->SetBranchStatus("SSK1_ETA",1);
  Xic0_tree->SetBranchStatus("SSK1_PHI",1);
  Xic0_tree->SetBranchStatus("SSK2_PT",1);
  Xic0_tree->SetBranchStatus("SSK2_ETA",1);
  Xic0_tree->SetBranchStatus("SSK2_PHI",1);
  Xic0_tree->SetBranchStatus("pi_PT",1);
  Xic0_tree->SetBranchStatus("pi_ETA",1);
  Xic0_tree->SetBranchStatus("pi_PHI",1);

  //set the branch addresses
  Xic0_tree->SetBranchAddress("Xib_M",&Xb_M);
  Xic0_tree->SetBranchAddress("Xib_PT",&Xb_PT);
  Xic0_tree->SetBranchAddress("Xib_ETA",&Xb_ETA);
  Xic0_tree->SetBranchAddress("Xib_PHI",&Xb_PHI);
  Xic0_tree->SetBranchAddress("Xib_OWNPV_X",&Xb_OWNPV_X);
  Xic0_tree->SetBranchAddress("Xib_OWNPV_Y",&Xb_OWNPV_Y);
  Xic0_tree->SetBranchAddress("Xib_OWNPV_Z",&Xb_OWNPV_Z);
  Xic0_tree->SetBranchAddress("Xib_ENDVERTEX_X",&Xb_ENDVERTEX_X);
  Xic0_tree->SetBranchAddress("Xib_ENDVERTEX_Y",&Xb_ENDVERTEX_Y);
  Xic0_tree->SetBranchAddress("Xib_ENDVERTEX_Z",&Xb_ENDVERTEX_Z);

  Xic0_tree->SetBranchAddress("Xic_M",&Xc_M);
  Xic0_tree->SetBranchAddress("Xic_PT",&Xc_PT);
  Xic0_tree->SetBranchAddress("Xic_ETA",&Xc_ETA);
  Xic0_tree->SetBranchAddress("Xic_PHI",&Xc_PHI);

  Xic0_tree->SetBranchAddress("Added_n_Particles",&Added_n_Particles);
  Xic0_tree->SetBranchAddress("Added_H_PT",&Added_H_PT);
  Xic0_tree->SetBranchAddress("Added_H_ETA",&Added_H_ETA);
  Xic0_tree->SetBranchAddress("Added_H_PHI",&Added_H_PHI);

  Xic0_tree->SetBranchAddress("p_P",&p_P);
  Xic0_tree->SetBranchAddress("SSK1_P",&SSK1_P);
  Xic0_tree->SetBranchAddress("SSK2_P",&SSK2_P);
  Xic0_tree->SetBranchAddress("pi_P",&pi_P);

  Xic0_tree->SetBranchAddress("p_PT",&p_PT);
  Xic0_tree->SetBranchAddress("SSK1_PT",&SSK1_PT);
  Xic0_tree->SetBranchAddress("SSK2_PT",&SSK2_PT);
  Xic0_tree->SetBranchAddress("pi_PT",&pi_PT);
  Xic0_tree->SetBranchAddress("p_ETA",&p_ETA);
  Xic0_tree->SetBranchAddress("SSK1_ETA",&SSK1_ETA);
  Xic0_tree->SetBranchAddress("SSK2_ETA",&SSK2_ETA);
  Xic0_tree->SetBranchAddress("pi_ETA",&pi_ETA);
  Xic0_tree->SetBranchAddress("p_PHI",&p_PHI);
  Xic0_tree->SetBranchAddress("SSK1_PHI",&SSK1_PHI);
  Xic0_tree->SetBranchAddress("SSK2_PHI",&SSK2_PHI);
  Xic0_tree->SetBranchAddress("pi_PHI",&pi_PHI);


  double SSK1_beta, SSK2_beta;

  f1->cd();
  //f1->mkdir("Xib2Xic0MuNu/Xic02pKKpi");
  //f1->cd("Xib2Xic0MuNu/Xic02pKKpi");
  TTree added_Xic0_tree("Xic02pKKpi","Xic02pKKpi");

  added_Xic0_tree.Branch("Xib_CorrM", &Xb_CorrM, "Xib_CorrM/D");
  added_Xic0_tree.Branch("p_beta", &p_beta, "p_beta/D");
  added_Xic0_tree.Branch("SSK1_beta", &SSK1_beta, "SSK1_beta/D");
  added_Xic0_tree.Branch("SSK2_beta", &SSK2_beta, "SSK2_beta/D");
  added_Xic0_tree.Branch("pi_beta", &pi_beta, "pi_beta/D");
  added_Xic0_tree.Branch("Added_n_Particles", &Added_n_Particles, "Added_n_Particles/I");
  added_Xic0_tree.Branch("Xcpi_CosTheta", &Xcpi_CosTheta, "Xcpi_CosTheta[Added_n_Particles]/F");
  added_Xic0_tree.Branch("XcK_CosTheta", &XcK_CosTheta, "XcK_CosTheta[Added_n_Particles]/F");
  added_Xic0_tree.Branch("Xcp_CosTheta", &Xcp_CosTheta, "Xcp_CosTheta[Added_n_Particles]/F");
  added_Xic0_tree.Branch("p_as_piKKpi_M", &p_as_piKpi_M, "p_as_piKKpi_M/D");
  added_Xic0_tree.Branch("p_as_KKKpi_M", &p_as_KKpi_M, "p_as_KKKpi_M/D");

  UInt_t Xic0_nevents = Xic0_tree->GetEntries();
  cout << "Entries in Xic0 tree: " << Xic0_nevents << endl;

  for (UInt_t evt = 0; evt < Xic0_nevents;evt++) {
    Xic0_tree->GetEntry(evt);

    TVector3 dir(Xb_ENDVERTEX_X-Xb_OWNPV_X,Xb_ENDVERTEX_Y-Xb_OWNPV_Y,Xb_ENDVERTEX_Z-Xb_OWNPV_Z);
    TVector3 mom;
    mom.SetPtEtaPhi(Xb_PT,Xb_ETA,Xb_PHI);
    double dmag2 = dir.Mag2();
    double ptprime = 0;
    if ( 0 == dmag2 ) ptprime = mom.Mag();
    else ptprime = (mom - dir * ( mom.Dot( dir ) / dmag2 )).Mag() ;
    Xb_CorrM = sqrt(Xb_M*Xb_M + ptprime*ptprime) + ptprime;

    TLorentzVector Xb;
    Xb.SetPtEtaPhiM(Xb_PT,Xb_ETA,Xb_PHI,Xb_CorrM);
    TLorentzVector Xc;
    Xc.SetPtEtaPhiM(Xc_PT,Xc_ETA,Xc_PHI,Xc_M);
    for(int i = 0; i < Added_n_Particles; i++){
      TLorentzVector Hpi;
      Hpi.SetPtEtaPhiM(Added_H_PT[i],Added_H_ETA[i],Added_H_PHI[i],pionmass);
      TLorentzVector HK;
      HK.SetPtEtaPhiM(Added_H_PT[i],Added_H_ETA[i],Added_H_PHI[i],kaonmass);
      TLorentzVector Hp;
      Hp.SetPtEtaPhiM(Added_H_PT[i],Added_H_ETA[i],Added_H_PHI[i],protonmass);
      TLorentzVector Xcpi = Hpi + Xc;
      TLorentzVector XcK = HK + Xc;
      TLorentzVector Xcp = Hp + Xc;
      Xcpi.Boost(-Xb.BoostVector());
      Xcpi_CosTheta[i] = cos(Xcpi.Angle(Xb.Vect()));
      XcK.Boost(-Xb.BoostVector());
      XcK_CosTheta[i] = cos(XcK.Angle(Xb.Vect()));
      Xcp.Boost(-Xb.BoostVector());
      Xcp_CosTheta[i] = cos(Xcp.Angle(Xb.Vect()));
    }
    p_beta    = (-p_P+SSK1_P+SSK2_P+pi_P)/(p_P+SSK1_P+SSK2_P+pi_P);
    SSK1_beta = ( p_P-SSK1_P+SSK2_P+pi_P)/(p_P+SSK1_P+SSK2_P+pi_P);
    SSK2_beta = ( p_P+SSK1_P-SSK2_P+pi_P)/(p_P+SSK1_P+SSK2_P+pi_P);
    pi_beta   = ( p_P+SSK1_P+SSK2_P-pi_P)/(p_P+SSK1_P+SSK2_P+pi_P);

    TLorentzVector proton;
    proton.SetPtEtaPhiM(p_PT,p_ETA,p_PHI,protonmass);
    TLorentzVector kaon1;
    kaon1.SetPtEtaPhiM(SSK1_PT,SSK1_ETA,SSK1_PHI,kaonmass);
    TLorentzVector kaon2;
    kaon2.SetPtEtaPhiM(SSK2_PT,SSK2_ETA,SSK2_PHI,kaonmass);
    TLorentzVector pion;
    pion.SetPtEtaPhiM(pi_PT,pi_ETA,pi_PHI,pionmass);

    TLorentzVector p_as_pi;
    p_as_pi.SetVectM(proton.Vect(),pionmass);
    TLorentzVector p_as_K;
    p_as_K.SetVectM(proton.Vect(),kaonmass);

    p_as_piKpi_M = (p_as_pi + kaon1 + kaon2 + pion).M();
    p_as_KKpi_M = (p_as_K + kaon1 + kaon2 + pion).M();

    added_Xic0_tree.Fill();

  }

  added_Xic0_tree.Write();

  fSLBS->cd();
  TTree *Omegac_tree = (TTree*)gDirectory->Get("Omegab2Omegac0MuNu/Omegac2pKKpi/DecayTree");

  Omegac_tree->SetBranchStatus("*",0); //disable all branches
  //now switch on the ones we need (saves a lot of time)
  Omegac_tree->SetBranchStatus("Omegab_M",1);
  Omegac_tree->SetBranchStatus("Omegab_PT",1);
  Omegac_tree->SetBranchStatus("Omegab_ETA",1);
  Omegac_tree->SetBranchStatus("Omegab_PHI",1);
  Omegac_tree->SetBranchStatus("Omegab_OWNPV_X",1);
  Omegac_tree->SetBranchStatus("Omegab_OWNPV_Y",1);
  Omegac_tree->SetBranchStatus("Omegab_OWNPV_Z",1);
  Omegac_tree->SetBranchStatus("Omegab_ENDVERTEX_X",1);
  Omegac_tree->SetBranchStatus("Omegab_ENDVERTEX_Y",1);
  Omegac_tree->SetBranchStatus("Omegab_ENDVERTEX_Z",1);

  Omegac_tree->SetBranchStatus("Omegac_M",1);
  Omegac_tree->SetBranchStatus("Omegac_PT",1);
  Omegac_tree->SetBranchStatus("Omegac_ETA",1);
  Omegac_tree->SetBranchStatus("Omegac_PHI",1);

  Omegac_tree->SetBranchStatus("Added_n_Particles",1);
  Omegac_tree->SetBranchStatus("Added_H_PT",1);
  Omegac_tree->SetBranchStatus("Added_H_ETA",1);
  Omegac_tree->SetBranchStatus("Added_H_PHI",1);

  Omegac_tree->SetBranchStatus("p_P",1);
  Omegac_tree->SetBranchStatus("SSK1_P",1);
  Omegac_tree->SetBranchStatus("SSK2_P",1);
  Omegac_tree->SetBranchStatus("pi_P",1);

  //set the branch addresses
  Omegac_tree->SetBranchAddress("Omegab_M",&Xb_M);
  Omegac_tree->SetBranchAddress("Omegab_PT",&Xb_PT);
  Omegac_tree->SetBranchAddress("Omegab_ETA",&Xb_ETA);
  Omegac_tree->SetBranchAddress("Omegab_PHI",&Xb_PHI);
  Omegac_tree->SetBranchAddress("Omegab_OWNPV_X",&Xb_OWNPV_X);
  Omegac_tree->SetBranchAddress("Omegab_OWNPV_Y",&Xb_OWNPV_Y);
  Omegac_tree->SetBranchAddress("Omegab_OWNPV_Z",&Xb_OWNPV_Z);
  Omegac_tree->SetBranchAddress("Omegab_ENDVERTEX_X",&Xb_ENDVERTEX_X);
  Omegac_tree->SetBranchAddress("Omegab_ENDVERTEX_Y",&Xb_ENDVERTEX_Y);
  Omegac_tree->SetBranchAddress("Omegab_ENDVERTEX_Z",&Xb_ENDVERTEX_Z);

  Omegac_tree->SetBranchAddress("Omegac_M",&Xc_M);
  Omegac_tree->SetBranchAddress("Omegac_PT",&Xc_PT);
  Omegac_tree->SetBranchAddress("Omegac_ETA",&Xc_ETA);
  Omegac_tree->SetBranchAddress("Omegac_PHI",&Xc_PHI);

  Omegac_tree->SetBranchAddress("Added_n_Particles",&Added_n_Particles);
  Omegac_tree->SetBranchAddress("Added_H_PT",&Added_H_PT);
  Omegac_tree->SetBranchAddress("Added_H_ETA",&Added_H_ETA);
  Omegac_tree->SetBranchAddress("Added_H_PHI",&Added_H_PHI);

  Omegac_tree->SetBranchAddress("p_P",&p_P);
  Omegac_tree->SetBranchAddress("SSK1_P",&SSK1_P);
  Omegac_tree->SetBranchAddress("SSK2_P",&SSK2_P);
  Omegac_tree->SetBranchAddress("pi_P",&pi_P);

  f1->cd();
  //f1->mkdir("Omegab2Omegac0MuNu/Omegac2pKKpi");
  //f1->cd("Omegab2Omegac0MuNu/Omegac2pKKpi");
  TTree added_Omegac_tree("Omegac2pKKpi","Omegac2pKKpi");

  added_Omegac_tree.Branch("Omegab_CorrM", &Xb_CorrM, "Omegab_CorrM/D");
  added_Omegac_tree.Branch("p_beta", &p_beta, "p_beta/D");
  added_Omegac_tree.Branch("SSK1_beta", &SSK1_beta, "SSK1_beta/D");
  added_Omegac_tree.Branch("SSK2_beta", &SSK2_beta, "SSK2_beta/D");
  added_Omegac_tree.Branch("pi_beta", &pi_beta, "pi_beta/D");
  added_Omegac_tree.Branch("Added_n_Particles", &Added_n_Particles, "Added_n_Particles/I");
  added_Omegac_tree.Branch("Xcpi_CosTheta", &Xcpi_CosTheta, "Xcpi_CosTheta[Added_n_Particles]/F");
  added_Omegac_tree.Branch("XcK_CosTheta", &XcK_CosTheta, "XcK_CosTheta[Added_n_Particles]/F");
  added_Omegac_tree.Branch("Xcp_CosTheta", &Xcp_CosTheta, "Xcp_CosTheta[Added_n_Particles]/F");

  UInt_t Omegac_nevents = Omegac_tree->GetEntries();
  cout << "Entries in Omegac tree: " << Omegac_nevents << endl;

  for (UInt_t evt = 0; evt < Omegac_nevents;evt++) {
    Omegac_tree->GetEntry(evt);

    TVector3 dir(Xb_ENDVERTEX_X-Xb_OWNPV_X,Xb_ENDVERTEX_Y-Xb_OWNPV_Y,Xb_ENDVERTEX_Z-Xb_OWNPV_Z);
    TVector3 mom;
    mom.SetPtEtaPhi(Xb_PT,Xb_ETA,Xb_PHI);
    double dmag2 = dir.Mag2();
    double ptprime = 0;
    if ( 0 == dmag2 ) ptprime = mom.Mag();
    else ptprime = (mom - dir * ( mom.Dot( dir ) / dmag2 )).Mag() ;
    Xb_CorrM = sqrt(Xb_M*Xb_M + ptprime*ptprime) + ptprime;

    TLorentzVector Xb;
    Xb.SetPtEtaPhiM(Xb_PT,Xb_ETA,Xb_PHI,Xb_CorrM);
    TLorentzVector Xc;
    Xc.SetPtEtaPhiM(Xc_PT,Xc_ETA,Xc_PHI,Xc_M);
    for(int i = 0; i < Added_n_Particles; i++){
      TLorentzVector Hpi;
      Hpi.SetPtEtaPhiM(Added_H_PT[i],Added_H_ETA[i],Added_H_PHI[i],pionmass);
      TLorentzVector HK;
      HK.SetPtEtaPhiM(Added_H_PT[i],Added_H_ETA[i],Added_H_PHI[i],kaonmass);
      TLorentzVector Hp;
      Hp.SetPtEtaPhiM(Added_H_PT[i],Added_H_ETA[i],Added_H_PHI[i],protonmass);
      TLorentzVector Xcpi = Hpi + Xc;
      TLorentzVector XcK = HK + Xc;
      TLorentzVector Xcp = Hp + Xc;
      Xcpi.Boost(-Xb.BoostVector());
      Xcpi_CosTheta[i] = cos(Xcpi.Angle(Xb.Vect()));
      XcK.Boost(-Xb.BoostVector());
      XcK_CosTheta[i] = cos(XcK.Angle(Xb.Vect()));
      Xcp.Boost(-Xb.BoostVector());
      Xcp_CosTheta[i] = cos(Xcp.Angle(Xb.Vect()));
    }
    p_beta    = (-p_P+SSK1_P+SSK2_P+pi_P)/(p_P+SSK1_P+SSK2_P+pi_P);
    SSK1_beta = ( p_P-SSK1_P+SSK2_P+pi_P)/(p_P+SSK1_P+SSK2_P+pi_P);
    SSK2_beta = ( p_P+SSK1_P-SSK2_P+pi_P)/(p_P+SSK1_P+SSK2_P+pi_P);
    pi_beta   = ( p_P+SSK1_P+SSK2_P-pi_P)/(p_P+SSK1_P+SSK2_P+pi_P);

    added_Omegac_tree.Fill();

  }

  added_Omegac_tree.Write();

  clock->Stop();clock->Print();delete clock;
  return;
}
コード例 #16
0
ファイル: Mesh.cpp プロジェクト: Zariostr/DGLE
DGLE_RESULT DGLE_API CMesh::RecalculateTangentSpace()
{
	if (!_pBuffer)
		return S_FALSE;
	
	TDrawDataDesc desc;
		
	_pBuffer->GetBufferDrawDataDesc(desc);

	if (desc.uiTextureVertexOffset == -1 ||
		(desc.uiTangentOffset == -1 && desc.uiBinormalOffset != -1) || (desc.uiTangentOffset != -1 && desc.uiBinormalOffset == -1)) // confusing situation should never happen
		return E_ABORT;

	if (desc.uiNormalOffset == -1)
		RecalculateNormals(false);

	uint stride, verts_data_size, verts_count, idxs_data_size, idxs_count;
	_CopyMeshData(desc, stride, verts_data_size, verts_count, idxs_data_size, idxs_count);

	TDrawDataDesc desc_new(desc);
	bool do_delete_new = false;

	if (desc.uiTangentOffset == -1 && desc.uiBinormalOffset == -1)
	{
		do_delete_new = true;

		const uint new_verts_data_size = verts_data_size + verts_count * 6 * sizeof(float);
		desc_new.pData = new uint8[new_verts_data_size + idxs_data_size];
		memcpy(desc_new.pData, desc.pData, verts_data_size);

		desc_new.uiTangentOffset = verts_data_size;
		desc_new.uiTangentStride = 0;

		desc_new.uiBinormalOffset = verts_data_size + verts_count * 3 * sizeof(float);
		desc_new.uiBinormalStride = 0;

		if (idxs_count != 0)
		{
			desc_new.pIndexBuffer = &desc_new.pData[new_verts_data_size];
			memcpy(&desc_new.pData[new_verts_data_size], &desc.pData[verts_data_size], idxs_data_size);
		}

		memset(&desc_new.pData[verts_data_size], 0, new_verts_data_size - verts_data_size);
	}
	else
	{
		const uint t_stride = desc_new.uiTangentStride == 0 ? 3 * sizeof(float) : desc_new.uiTangentStride,
			b_stride = desc_new.uiBinormalStride == 0 ? 3 * sizeof(float) : desc_new.uiBinormalStride;

		for (uint i = 0; i < verts_count; ++i)
		{
			*(reinterpret_cast<TVector3 *>(&desc_new.pData[desc_new.uiTangentOffset + i * t_stride])) = TVector3();
			*(reinterpret_cast<TVector3 *>(&desc_new.pData[desc_new.uiBinormalOffset + i * b_stride])) = TVector3();
		}
	}

	const uint t_stride = desc_new.uiTangentStride == 0 ? 3 * sizeof(float) : desc_new.uiTangentStride,
		b_stride = desc_new.uiBinormalStride == 0 ? 3 * sizeof(float) : desc_new.uiBinormalStride,
		tex_stride = desc_new.uiTextureVertexStride == 0 ? 2 * sizeof(float) : desc_new.uiTextureVertexStride,
		v_stride = desc_new.uiVertexStride == 0 ? 3 * sizeof(float) : desc_new.uiVertexStride,
		n_stride = desc_new.uiNormalStride == 0 ? 3 * sizeof(float) : desc_new.uiNormalStride,
		count = idxs_count == 0 ? verts_count / 3 : idxs_count / 3;

	for(uint i = 0; i < count; ++i)
	{
		uint face[3];

		if (idxs_count == 0)
		{
			face[0] = i * 3;
			face[1] = i * 3 + 1;
			face[2] = i * 3 + 2;
		}
		else
			if (desc_new.bIndexBuffer32)
			{
				face[0] = reinterpret_cast<uint *>(&desc_new.pIndexBuffer[i * 3 * sizeof(uint)])[0];
				face[1] = reinterpret_cast<uint *>(&desc_new.pIndexBuffer[i * 3 * sizeof(uint)])[1];
				face[2] = reinterpret_cast<uint *>(&desc_new.pIndexBuffer[i * 3 * sizeof(uint)])[2];
			}
			else
			{
				face[0] = reinterpret_cast<uint16 *>(&desc_new.pIndexBuffer[i * 3 * sizeof(uint16)])[0];
				face[1] = reinterpret_cast<uint16 *>(&desc_new.pIndexBuffer[i * 3 * sizeof(uint16)])[1];
				face[2] = reinterpret_cast<uint16 *>(&desc_new.pIndexBuffer[i * 3 * sizeof(uint16)])[2];
			}
			
		const TPoint3 * const v[3] = {
			reinterpret_cast<TPoint3 *>(&desc_new.pData[face[0] * v_stride]),
			reinterpret_cast<TPoint3 *>(&desc_new.pData[face[1] * v_stride]),
			reinterpret_cast<TPoint3 *>(&desc_new.pData[face[2] * v_stride])};

		const TPoint2 * const t[3] = {
			reinterpret_cast<TPoint2 *>(&desc_new.pData[desc_new.uiTextureVertexOffset + face[0] * tex_stride]),
			reinterpret_cast<TPoint2 *>(&desc_new.pData[desc_new.uiTextureVertexOffset + face[1] * tex_stride]),
			reinterpret_cast<TPoint2 *>(&desc_new.pData[desc_new.uiTextureVertexOffset + face[2] * tex_stride])};

		const TVector3 v1 = *v[1] - *v[0], v2 = *v[2] - *v[0];
		const TVector2 v3 = *t[1] - *t[0], v4 = *t[2] - *t[0];

		const float d = v3.Cross(v4);

		if (d == 0.f) continue;

		const float r = 1.f / d;

		const TVector3 sdir = TVector3(v4.y * v1.x - v4.x * v2.x, v4.y * v1.y - v4.x * v2.y, v4.y * v1.z - v4.x * v2.z) * r,
			tdir = TVector3(v3.x * v2.x - v3.y * v1.x, v3.x * v2.y - v3.y * v1.y, v3.x * v2.z - v3.y * v1.z) * r;

		*(reinterpret_cast<TVector3 *>(&desc_new.pData[desc_new.uiTangentOffset + face[0] * t_stride])) += sdir;
		*(reinterpret_cast<TVector3 *>(&desc_new.pData[desc_new.uiTangentOffset + face[1] * t_stride])) += sdir;
		*(reinterpret_cast<TVector3 *>(&desc_new.pData[desc_new.uiTangentOffset + face[2] * t_stride])) += sdir;

		*(reinterpret_cast<TVector3 *>(&desc_new.pData[desc_new.uiBinormalOffset + face[0] * b_stride])) += tdir;
		*(reinterpret_cast<TVector3 *>(&desc_new.pData[desc_new.uiBinormalOffset + face[1] * b_stride])) += tdir;
		*(reinterpret_cast<TVector3 *>(&desc_new.pData[desc_new.uiBinormalOffset + face[2] * b_stride])) += tdir;
	}

	for (uint i = 0; i < verts_count; ++i)
	{
		const TVector3 * const normal = reinterpret_cast<TVector3 *>(&desc_new.pData[desc_new.uiNormalOffset + i * n_stride]);
		TVector3 *tangent = reinterpret_cast<TVector3 *>(&desc_new.pData[desc_new.uiTangentOffset + i * t_stride]),
			*binormal = reinterpret_cast<TVector3 *>(&desc_new.pData[desc_new.uiBinormalOffset + i * b_stride]);
		
		float dot_1 = normal->Dot(*tangent), dot_2;
		*tangent = (*tangent - *normal * dot_1).Normalize();
		dot_1 = normal->Dot(*tangent);
		dot_2 = tangent->Dot(*binormal);
		*binormal = (*binormal - *normal * dot_1 + *tangent * dot_2).Normalize();
	}

	PARANOIC_CHECK_RES(_pBuffer->Reallocate(desc_new, verts_count, idxs_count, CRDM_TRIANGLES));

	if (do_delete_new)
		delete[] desc_new.pData;

	delete[] desc.pData;

	return S_OK;
}
コード例 #17
0
void pgsAnalysis::Loop()
{

double tHrec, tZ1m, tZ2m, tcosthetaStar, tPhi, tPhi1, tcostheta1, tcostheta2,tHrec_constr,tZ1m_constr, tZ2m_constr;
string ttype;
hists->Branch("Hrec", &tHrec);
hists->Branch("Z1m", &tZ1m);
hists->Branch("Z2m", &tZ2m);
hists->Branch("costhetaStar", &tcosthetaStar);
hists->Branch("Phi", &tPhi);
hists->Branch("Phi1", &tPhi1);
hists->Branch("costheta1", &tcostheta1);
hists->Branch("costheta2", &tcostheta2);
hists->Branch("type", &ttype);

//event type!!
int eeee, xxxx, eexx, xxee;

double Zmass = 91.19;
double vZmass;
if (pairing == 0){
	vZmass = 91.19;
}
else{
	vZmass = 45.;
}
		TVectorT<double> elSum(4);
		TVectorT<double> muSum(4);


	//electrons array
	vector<int> el; int elC = 0;
	//muons array
	vector<int> mu;	int muC = 0;
	//antielectrons array
	vector<int> antiel;	int antielC = 0;
	//antimuons array
	vector<int> antimu;	int antimuC = 0;

	vector<TVector3> leptons;

	TVector3 lep1,lep2,lep3,lep4;
	TVector3 Za, Zb, Zc, Zd, H;


	int lCounter = 0;
	int totaLlCounter = 0;
	int goodEventCounter = 0;
	int histCounter = 0;

	if (fChain == 0) return;
	

	int nentries = n;

// 	cout << " nentries are "<<nentries<<endl;


	Long64_t nbytes = 0, nb = 0;
	for (Long64_t jentry=0; jentry<nentries;jentry++) {
	Long64_t ientry = LoadTree(jentry);
	if (ientry < 0) break;
	nb = fChain->GetEntry(jentry);   nbytes += nb;
	// if (Cut(ientry) < 0) continue;

		el.clear();
		antiel.clear();
		mu.clear();
		antimu.clear();
		lCounter = 0;
		eeee = 0;
		xxxx = 0;
		eexx = 0;
		xxee = 0;

		//particles identified by type, ntrk
		for (int inst = 0; inst < npart; inst++){	// inst from "instance" on the scan tree
			
// 			cout<< " instance "<< inst <<endl;
// 			cout<< pT[inst]<< endl;
	
			//fill el mu vectors
			if ( typ[inst] == 1 && ntrk[inst] == -1){
				el.push_back(inst);
				elC++;
				lCounter++;
				totaLlCounter++;
			}
			if ( typ[inst] == 1 && ntrk[inst] == 1){
				antiel.push_back(inst);
				antielC++;
				lCounter++;
				totaLlCounter++;
			}
			if ( typ[inst] == 2 && ntrk[inst] == -1){
				mu.push_back(inst);
				muC++;
				lCounter++;
				totaLlCounter++;
			}
			if ( typ[inst] == 2 && ntrk[inst] == 1){
				antimu.push_back(inst);
				antimuC++;
				lCounter++;
				totaLlCounter++;
			}
			if ( (typ[inst] == 4 && jmas[inst] > 10. )|| (typ[inst] == 6 && pT[inst] > 10. )){
				lCounter = 0; //dont count the event
			}

		
		}//end instance loop (particles in an event

// 		cout<< "leptons in the event are "<< lCounter<<endl;
// 		if (lCounter == 4) { 

		fillFlag = false;

		// If else if loops reconstructing the particles according to the type 4e,4mu, 2e2mu
		
		if (el.size() == 1 && mu.size() == 1 && antiel.size() == 1 && antimu.size() == 1){ //2e2m
			goodEventCounter++;


			lep1.SetPtEtaPhi( pT[el[0]], eta[el[0]]	, phi[el[0]]);			//set up of lepton four-vectors
			lep2.SetPtEtaPhi( pT[antiel[0]], eta[antiel[0]]	, phi[antiel[0]]);
			lep3.SetPtEtaPhi( pT[mu[0]], eta[mu[0]]	, phi[mu[0]]);
			lep4.SetPtEtaPhi( pT[antimu[0]], eta[antimu[0]]	, phi[antimu[0]]);

			Za = lep1 + lep2;
			Zb = lep3 + lep4;

			mZ1 = sqrt(pow(lep1.Mag()+lep2.Mag(),2)-Za.Mag2());	// reconstruct z masses 
			mZ2 = sqrt(pow(lep3.Mag()+lep4.Mag(),2)-Zb.Mag2());


			//select leading Z
			if(mZ1 > mZ2) { Z1.SetVectM( Za, mZ1); Z2.SetVectM(Zb,mZ2); lep_min1.SetPtEtaPhiE(lep1.Pt(),lep1.Eta(), lep1.Phi(),lep1.Mag()); lep_plus1.SetPtEtaPhiE(lep2.Pt(),lep2.Eta(), lep2.Phi(),lep2.Mag()); lep_min2.SetPtEtaPhiE(lep3.Pt(),lep3.Eta(), lep3.Phi(),lep3.Mag()); lep_plus2.SetPtEtaPhiE(lep4.Pt(),lep4.Eta(), lep4.Phi(),lep4.Mag());eexx++;}	//to set the highest mass the z
			else { Z2.SetVectM( Za, mZ1); Z1.SetVectM(Zb,mZ2); lep_min2.SetPtEtaPhiE(lep1.Pt(),lep1.Eta(), lep1.Phi(),lep1.Mag()); lep_plus2.SetPtEtaPhiE(lep2.Pt(),lep2.Eta(), lep2.Phi(),lep2.Mag()); lep_min1.SetPtEtaPhiE(lep3.Pt(),lep3.Eta(), lep3.Phi(),lep3.Mag()); lep_plus1.SetPtEtaPhiE(lep4.Pt(),lep4.Eta(), lep4.Phi(),lep4.Mag());xxee++;}


			

		fillFlag = true;
		}



		else if (el.size() == 2 && mu.size() == 0  && antiel.size() == 2 && antimu.size() == 0){ //4e
			goodEventCounter++;

			lep1.SetPtEtaPhi( pT[el[0]], eta[el[0]]	, phi[el[0]]);	
			lep2.SetPtEtaPhi( pT[antiel[0]], eta[antiel[0]]	, phi[antiel[0]]);
			lep3.SetPtEtaPhi( pT[el[1]], eta[el[1]]	, phi[el[1]]);	
			lep4.SetPtEtaPhi( pT[antiel[1]], eta[antiel[1]]	, phi[antiel[1]]);

			Za = lep1 + lep2;
			Zb = lep3 + lep4;
			Zc = lep1 + lep4;
			Zd = lep3 + lep2;

			double mZa = sqrt(pow(lep1.Mag()+lep2.Mag(),2)-Za.Mag2());
			double mZb = sqrt(pow(lep3.Mag()+lep4.Mag(),2)-Zb.Mag2());
			double mZc = sqrt(pow(lep1.Mag()+lep4.Mag(),2)-Zc.Mag2());
			double mZd = sqrt(pow(lep2.Mag()+lep3.Mag(),2)-Zd.Mag2());

			double s1a;
			double s1b;
			double s2a;
			double s2b;
			if ( pairing == 0){
			s1a = pow(mZa-vZmass,2) + pow(mZb-Zmass,2);
			s1b = pow(mZa-Zmass,2) + pow(mZb-vZmass,2);
			s2a = pow(mZc-vZmass,2) + pow(mZd-Zmass,2);
			s2b = pow(mZc-Zmass,2) + pow(mZd-vZmass,2);
			}
			else{
			s1a = fabs(mZb-Zmass);
			s1b = fabs(mZa-Zmass);
			s2a = fabs(mZd-Zmass);
			s2b = fabs(mZc-Zmass);
			}

			elSum[0] = s1a;
			elSum[1] = s1b;
			elSum[2] = s2a;
			elSum[3] = s2b;

			int min = TMath::LocMin(4, &elSum[0]);

			if( (min == 0 || min == 1) ){
				if(mZa > mZb) { Z1.SetVectM( Za, mZa); Z2.SetVectM(Zb,mZb); lep_min1.SetPtEtaPhiE(lep1.Pt(),lep1.Eta(), lep1.Phi(),lep1.Mag()); lep_plus1.SetPtEtaPhiE(lep2.Pt(),lep2.Eta(), lep2.Phi(),lep2.Mag()); lep_min2.SetPtEtaPhiE(lep3.Pt(),lep3.Eta(), lep3.Phi(),lep3.Mag()); lep_plus2.SetPtEtaPhiE(lep4.Pt(),lep4.Eta(), lep4.Phi(),lep4.Mag());}	//to set the highest mass the z
				else { Z2.SetVectM( Za, mZa); Z1.SetVectM(Zb,mZb); lep_min2.SetPtEtaPhiE(lep1.Pt(),lep1.Eta(), lep1.Phi(),lep1.Mag()); lep_plus2.SetPtEtaPhiE(lep2.Pt(),lep2.Eta(), lep2.Phi(),lep2.Mag()); lep_min1.SetPtEtaPhiE(lep3.Pt(),lep3.Eta(), lep3.Phi(),lep3.Mag()); lep_plus1.SetPtEtaPhiE(lep4.Pt(),lep4.Eta(), lep4.Phi(),lep4.Mag());}
				
			}
			else if( (min == 2 || min == 3) ){
				if(mZc > mZd) { Z1.SetVectM( Zc, mZc); Z2.SetVectM(Zd,mZd); lep_min1.SetPtEtaPhiE(lep1.Pt(),lep1.Eta(), lep1.Phi(),lep1.Mag()); lep_plus1.SetPtEtaPhiE(lep4.Pt(),lep4.Eta(), lep4.Phi(),lep4.Mag()); lep_min2.SetPtEtaPhiE(lep3.Pt(),lep3.Eta(), lep3.Phi(),lep3.Mag()); lep_plus2.SetPtEtaPhiE(lep2.Pt(),lep2.Eta(), lep2.Phi(),lep2.Mag());}	//to set the highest mass the z
				else { Z2.SetVectM( Zc, mZc); Z1.SetVectM(Zd,mZd); lep_min2.SetPtEtaPhiE(lep1.Pt(),lep1.Eta(), lep1.Phi(),lep1.Mag()); lep_plus2.SetPtEtaPhiE(lep4.Pt(),lep4.Eta(), lep4.Phi(),lep4.Mag()); lep_min1.SetPtEtaPhiE(lep3.Pt(),lep3.Eta(), lep3.Phi(),lep3.Mag()); lep_plus1.SetPtEtaPhiE(lep2.Pt(),lep2.Eta(), lep2.Phi(),lep2.Mag());}


			}
			eeee++;
		fillFlag = true;
		} 


		else if(el.size() == 0 && mu.size() == 2  && antiel.size() == 0 && antimu.size() == 2 )  { //4m
			goodEventCounter++;

			lep1.SetPtEtaPhi( pT[mu[0]], eta[mu[0]]	, phi[mu[0]]);	
			lep2.SetPtEtaPhi( pT[antimu[0]], eta[antimu[0]]	, phi[antimu[0]]);
			lep3.SetPtEtaPhi( pT[mu[1]], eta[mu[1]]	, phi[mu[1]]);	
			lep4.SetPtEtaPhi( pT[antimu[1]], eta[antimu[1]]	, phi[antimu[1]]);

			Za = lep1 + lep2;
			Zb = lep3 + lep4;
			Zc = lep1 + lep4;
			Zd = lep3 + lep2;

			double mZa = sqrt(pow(lep1.Mag()+lep2.Mag(),2)-Za.Mag2());
			double mZb = sqrt(pow(lep3.Mag()+lep4.Mag(),2)-Zb.Mag2());
			double mZc = sqrt(pow(lep1.Mag()+lep4.Mag(),2)-Zc.Mag2());
			double mZd = sqrt(pow(lep2.Mag()+lep3.Mag(),2)-Zd.Mag2());

			double s1a;
			double s1b;
			double s2a;
			double s2b;
			if ( pairing == 0){
			s1a = pow(mZa-vZmass,2) + pow(mZb-Zmass,2);
			s1b = pow(mZa-Zmass,2) + pow(mZb-vZmass,2);
			s2a = pow(mZc-vZmass,2) + pow(mZd-Zmass,2);
			s2b = pow(mZc-Zmass,2) + pow(mZd-vZmass,2);
			}
			else{
			s1a = fabs(mZb-Zmass);
			s1b = fabs(mZa-Zmass);
			s2a = fabs(mZd-Zmass);
			s2b = fabs(mZc-Zmass);
			}


			muSum[0] = s1a;
			muSum[1] = s1b;
			muSum[2] = s2a;
			muSum[3] = s2b;

			int min = TMath::LocMin(4, &muSum[0]);

			if( (min == 0 || min == 1) ){
				if(mZa > mZb) { Z1.SetVectM( Za, mZa); Z2.SetVectM(Zb,mZb); lep_min1.SetPtEtaPhiE(lep1.Pt(),lep1.Eta(), lep1.Phi(),lep1.Mag()); lep_plus1.SetPtEtaPhiE(lep2.Pt(),lep2.Eta(), lep2.Phi(),lep2.Mag()); lep_min2.SetPtEtaPhiE(lep3.Pt(),lep3.Eta(), lep3.Phi(),lep3.Mag()); lep_plus2.SetPtEtaPhiE(lep4.Pt(),lep4.Eta(), lep4.Phi(),lep4.Mag());}	//to set the highest mass the z
				else { Z2.SetVectM( Za, mZa); Z1.SetVectM(Zb,mZb); lep_min2.SetPtEtaPhiE(lep1.Pt(),lep1.Eta(), lep1.Phi(),lep1.Mag()); lep_plus2.SetPtEtaPhiE(lep2.Pt(),lep2.Eta(), lep2.Phi(),lep2.Mag()); lep_min1.SetPtEtaPhiE(lep3.Pt(),lep3.Eta(), lep3.Phi(),lep3.Mag()); lep_plus1.SetPtEtaPhiE(lep4.Pt(),lep4.Eta(), lep4.Phi(),lep4.Mag());}
				
			}
			else if( (min == 2 || min == 3) ){
				if(mZc > mZd) { Z1.SetVectM( Zc, mZc); Z2.SetVectM(Zd,mZd); lep_min1.SetPtEtaPhiE(lep1.Pt(),lep1.Eta(), lep1.Phi(),lep1.Mag()); lep_plus1.SetPtEtaPhiE(lep4.Pt(),lep4.Eta(), lep4.Phi(),lep4.Mag()); lep_min2.SetPtEtaPhiE(lep3.Pt(),lep3.Eta(), lep3.Phi(),lep3.Mag()); lep_plus2.SetPtEtaPhiE(lep2.Pt(),lep2.Eta(), lep2.Phi(),lep2.Mag());}	//to set the highest mass the z
				else { Z2.SetVectM( Zc, mZc); Z1.SetVectM(Zd,mZd); lep_min2.SetPtEtaPhiE(lep1.Pt(),lep1.Eta(), lep1.Phi(),lep1.Mag()); lep_plus2.SetPtEtaPhiE(lep4.Pt(),lep4.Eta(), lep4.Phi(),lep4.Mag()); lep_min1.SetPtEtaPhiE(lep3.Pt(),lep3.Eta(), lep3.Phi(),lep3.Mag()); lep_plus1.SetPtEtaPhiE(lep2.Pt(),lep2.Eta(), lep2.Phi(),lep2.Mag());}


			}
		xxxx++;
		fillFlag = true;
		}


		if ( fillFlag == true && goodEventCounter < 25001) {	//if it fullfills the specs then fill and find angles

			rec_H = Z1 + Z2;
			double Hmass = rec_H.M();
			tHrec = Hmass;
// 			cout<<tHrec<<endl;

			double Z1mass = Z1.M();
			tZ1m = Z1mass;
			double Z2mass = Z2.M();
			tZ2m = Z2mass;
			double ptlepp1 = lep_plus1.Pt();
			double ptlepm1 = lep_min1.Pt();
			double ptlepp2 = lep_plus2.Pt();
			double ptlepm2 = lep_min2.Pt();
			double dR1 = sqrt(pow(fabs(lep_min1.Eta() - lep_plus1.Eta()),2)+pow(fabs(lep_min1.DeltaPhi(lep_plus1)),2));
			double dR2 = sqrt(pow(fabs(lep_min2.Eta() - lep_plus2.Eta()),2)+pow(fabs(lep_min2.DeltaPhi(lep_plus2)),2));

// 			if ( /*Hmass<120 || Hmass>130 || */Z1mass < 49 || Z1mass>107 || Z2mass < 12 || Z2mass> 115 ){continue;}	//constrains		
	
			//filling the simple histogram values
			h_Z1_m -> Fill(Z1.M());
			h_Z1_E -> Fill(Z1.E());
			h_Z1_Pt -> Fill(Z1.Pt());
			h_Z1_eta -> Fill(Z1.Eta());
			h_Z1_phi -> Fill(Z1.Phi());
	
			h_Z2_m -> Fill(Z2.M());
			h_Z2_E -> Fill(Z2.E());
			h_Z2_Pt -> Fill(Z2.Pt());
			h_Z2_eta -> Fill(Z2.Eta());
			h_Z2_phi -> Fill(Z2.Phi());
	
	
			h_rec_H_m	-> Fill(Hmass);
			h_rec_H_E	-> Fill(rec_H.E());
			h_rec_H_Pt	-> Fill(rec_H.Pt());
			h_rec_H_eta	-> Fill(rec_H.Eta());
			h_rec_H_phi	-> Fill(rec_H.Phi());	

			h_lep_plus1_E	-> Fill(lep_plus1.E());
			h_lep_plus1_Pt	-> Fill(ptlepp1);
			h_lep_plus1_eta	-> Fill(lep_plus1.Eta());
			h_lep_plus1_phi	-> Fill(lep_plus1.Phi());

			h_lep_min1_E	-> Fill(lep_min1.E());
			h_lep_min1_Pt	-> Fill(ptlepm1);
			h_lep_min1_eta	-> Fill(lep_min1.Eta());
			h_lep_min1_phi	-> Fill(lep_min1.Phi());

			h_lep_plus2_E	-> Fill(lep_plus2.E());
			h_lep_plus2_Pt	-> Fill(ptlepp2);
			h_lep_plus2_eta	-> Fill(lep_plus2.Eta());
			h_lep_plus2_phi	-> Fill(lep_plus2.Phi());

			h_lep_min2_E	-> Fill(lep_min2.E());
			h_lep_min2_Pt	-> Fill(ptlepm2);
			h_lep_min2_eta	-> Fill(lep_min2.Eta());
			h_lep_min2_phi	-> Fill(lep_min2.Phi());	

		//reconstructing the two lepton pairs Lorentz vectors
		lpair1 = lep_plus1 + lep_min1;
		lpair2 = lep_plus2 + lep_min2;

		//constructing 3-vectors in the lab frame
		lep_plus1_lab 	= lep_plus1.Vect();
		lep_plus2_lab 	= lep_plus2.Vect();	//.Vect() gives 3 vector from 4vector
		lep_min1_lab 	= lep_min1.Vect();	
		lep_min2_lab 	= lep_min2.Vect();
		lpair1_lab 	= lep_plus1_lab.Cross(lep_min1_lab);	
		lpair2_lab 	= lep_plus2_lab.Cross(lep_min2_lab);

// 		cout << " pt of lepton pair1 on rest frame is: "<< lpair1.Perp()<<endl;


	   	//Filling up Histograms with angles defined in the lab frame
		h_angle_lab_pair1 -> Fill(lep_plus1_lab.Angle(lep_min1_lab));
		h_angle_lab_pair2 -> Fill(lep_plus2_lab.Angle(lep_min2_lab));


       		//Filling up histograms with variables from articles
       		h_angle_lab_deleta1	-> Fill(fabs(lep_min1.Eta() - lep_plus1.Eta()));
       		h_angle_lab_delphi1	-> Fill(fabs(lep_min1.DeltaPhi(lep_plus1)));
       		h_angle_lab_deleta2	-> Fill(fabs(lep_min2.Eta() - lep_plus2.Eta()));
       		h_angle_lab_delphi2	-> Fill(fabs(lep_min2.DeltaPhi(lep_plus2)));


	   	//Looking at the Higgs rest frame
	   	TVector3 boost_rH 	= -rec_H.BoostVector(); //NOTE the minus sign! WHY - sign???
	   	TVector3 boost_rZ1	= -Z1.BoostVector();
	   	TVector3 boost_rZ2	= -Z2.BoostVector();	
	   	Higgs_rest	= rec_H;
	   	Z1_rH		= Z1;
	   	Z2_rH		= Z2;
	   	lep_p1_rH	= lep_plus1;	//
	   	lep_m1_rH	= lep_min1;
	   	lep_p2_rH	= lep_plus2;
	   	lep_m2_rH	= lep_min2;
	   	lep_p1_rZ1	= lep_plus1;
	   	lep_m2_rZ2	= lep_min2;
	   	lep_p2_rZ2	= lep_plus2;
	   	lep_m1_rZ1	= lep_min1;

	   	//Boosting vectors to the Higgs rest frame
	   	Higgs_rest.Boost(boost_rH);
	   	Z1_rH.Boost(boost_rH);
	   	Z2_rH.Boost(boost_rH);
	   	lep_p1_rH.Boost(boost_rH);
	   	lep_m1_rH.Boost(boost_rH);
	   	lep_p2_rH.Boost(boost_rH);
	   	lep_m2_rH.Boost(boost_rH);

	   	//Boosting leptons to Z rest frames
	   	lep_p1_rZ1.Boost(boost_rZ1);
	   	lep_m1_rZ1.Boost(boost_rZ1);
	   	lep_p2_rZ2.Boost(boost_rZ2);
	   	lep_m2_rZ2.Boost(boost_rZ2);

	   	//Setting 3Vectors in Higgs rest frame
	   	Z3_1_rH		= Z1_rH.Vect();
	   	Z3_2_rH		= Z2_rH.Vect();
	   	lep3_plus1_rH 	= lep_p1_rH.Vect();
	   	lep3_min1_rH	= lep_m1_rH.Vect();
	   	lep3_plus2_rH 	= lep_p2_rH.Vect();
	   	lep3_min2_rH	= lep_m2_rH.Vect();
		TVector3 Z3_1plane_rH 	= lep3_plus1_rH.Cross(lep3_min1_rH);	//wrong?
	   	TVector3 Z3_2plane_rH 	= lep3_plus2_rH.Cross(lep3_min2_rH);

	   	//Setting 3Vectors in Z1/Z2 rest frame
	   	lep3_plus1_rZ1	= lep_p1_rZ1.Vect();
	   	lep3_plus2_rZ2	= lep_p2_rZ2.Vect();
	   	lep3_min1_rZ1	= lep_m1_rZ1.Vect();
	   	lep3_min2_rZ2	= lep_m2_rZ2.Vect();

	   	//Filling up histogram for the phi angle distribution

		//pairnoume ta monadiaia dianysmata twn kathetwn pediwn, prwta ypologizoume to metro tous, meta eswteriko ginomeno, meta tokso tou costheta tous
		double metro1 = sqrt((pow(Z3_1plane_rH.X(),2))+(pow(Z3_1plane_rH.Y(),2))+(pow(Z3_1plane_rH.Z(),2)));
		double metro2 = sqrt((pow(Z3_2plane_rH.X(),2))+(pow(Z3_2plane_rH.Y(),2))+(pow(Z3_2plane_rH.Z(),2)));
		TVector3 Z3_1plane_rH_un = Z3_1plane_rH.Unit();
		TVector3 Z3_2plane_rH_un = Z3_2plane_rH.Unit();

		TVector3 drtPlane = Z3_1plane_rH_un.Cross(Z3_2plane_rH_un);
		double phi = acos(-Z3_1plane_rH_un.Dot(Z3_2plane_rH_un))*(Z3_1_rH.Dot(skata))/fabs(Z3_1_rH.Dot(skata));

		h_angle_rH_phi	-> Fill( phi );
		tPhi = phi;		



		//****Phi one angle , same procedure as before. Now the plane is the first Z boson vector with beam axis, so they form a plane, phi1 is angle between this plane and the Z1 plane (apo to decay twn 2 leptoniwn)
		TVector3 niScatter_un = (beamAxis.Cross(Z3_1_rH)).Unit();
		TVector3 drtPlane2 = Z3_1plane_rH_un.Cross(niScatter_un);
		double phiOne = acos(Z3_1plane_rH_un.Dot(niScatter_un))*(Z3_1_rH.Dot(skata2))/fabs(Z3_1_rH.Dot(skata2));
		h_angle_rH_phiOne	-> Fill( phiOne );
		tPhi1 = phiOne;


	   	//Filling up histogram for theta* angle: Z1/Z2 with Higgs boost vector
	   	h_angle_rH_thetaZ2	-> Fill(Z3_2_rH.CosTheta());
		
		double cosThetaStar = Z3_1_rH.CosTheta();
		h_angle_rH_thetaZ1	-> Fill(cosThetaStar);
		tcosthetaStar = cosThetaStar;

		//  boosting the z to the other z frame
		TLorentzVector Z_1_rZ2 = Z1;
		Z_1_rZ2.Boost(boost_rZ2);
		TVector3 Z3_1_rZ2 = Z_1_rZ2.Vect();
		TLorentzVector Z_2_rZ1 = Z2;
		Z_2_rZ1.Boost(boost_rZ1);
		TVector3 Z3_2_rZ1 = Z_2_rZ1.Vect();
		double cosTheta1 = cos(lep3_min1_rZ1.Angle(-Z3_2_rZ1));
		double cosTheta2 = cos(lep3_min2_rZ2.Angle(-Z3_1_rZ2));
	   	h_angle_rZ1_lp1Z1	-> Fill(cos(lep3_plus1_rZ1.Angle(-Z3_2_rZ1)));	
	   	h_angle_rZ1_lm1Z1	-> Fill(cosTheta1);	// theta1
	   	h_angle_rZ2_lp2Z2	-> Fill(cos(lep3_plus2_rZ2.Angle(-Z3_1_rZ2)));	
	   	h_angle_rZ2_lm2Z2	-> Fill(cosTheta2);	// theta2
		tcostheta1 = cosTheta1;
		tcostheta2 = cosTheta2;	

       		h_angle_rH_delphi1	-> Fill(fabs(lep_p1_rH.DeltaPhi(lep_m1_rH)));
		h_angle_rH_delphi2	-> Fill(fabs(lep_p2_rH.DeltaPhi(lep_m2_rH)));

		h_mZ1mZ2		-> Fill(Z1.M(),Z2.M());
		h_mVsPtZ1		-> Fill(Z1.M(),Z1.Pt());

		h_delphi1VsPtZ1_lab	-> Fill(Z1.Pt(),fabs(lep_min1.DeltaPhi(lep_plus1)));
		h_delphi2VsPtZ2_lab	-> Fill(Z2.Pt(),fabs(lep_min2.DeltaPhi(lep_plus2)));

		if (eexx ==1){ttype = "eexx";}
		else if(xxee ==1){ttype = "xxee";}
		else if(eeee ==1){ttype = "eeee";}
		else if(xxxx ==1){ttype = "xxxx";}
		hists->Fill();
		histCounter++;
		
		hists->Close();
		}	//end if fill

		////////////// fill out the decay type

		
		
	// filling the TTree


	}//end entries loop (events)

	//some regular reports
	cout<<endl;
	cout<<" good events are "<<goodEventCounter<<endl;
	cout<<" we see % "<< (double) goodEventCounter/n <<endl;

	cout<<endl;
	cout<<" histogram fills are "<<histCounter<<endl;
// 	cout<<" we see % "<< (double) goodEventCounter/n <<endl;




}//end loop void