void TensorMath::ADD(const Tensor& source_a, const Tensor& source_b, Tensor& target) { #ifdef BUILD_OPENCL ((Tensor&)source_a).MoveToCPU(); ((Tensor&)source_b).MoveToCPU(); target.MoveToCPU(true); #endif if((source_a.samples() != source_b.samples()) || (source_b.samples() != target.samples()) || (source_a.elements() != source_b.elements()) || (source_b.elements() != target.elements())) { FATAL("Dimensions don't match!"); } #pragma omp parallel for default(shared) for(unsigned int element = 0; element < source_a.elements(); element++) { const datum* source_a_ptr = &(source_a.data_ptr_const()[element]); const datum* source_b_ptr = &(source_b.data_ptr_const()[element]); datum* target_ptr = &(target.data_ptr()[element]); *target_ptr = *source_a_ptr + *source_b_ptr; } target.hint_ignore_content_ = false; }
void TensorMath::COL2IM(Tensor& source, const int source_width, const int source_height, const int maps, const int samples, const int kernel_width, const int kernel_height, const int stride_width, const int stride_height, const int pad_width, const int pad_height, const Tensor& target) { #ifdef BUILD_OPENCL if(source.cl_gpu_ || target.cl_gpu_) { ((Tensor&)target).MoveToGPU(); source.MoveToGPU(true); cl_uint error = 0; const int target_width = (2 * pad_width + source_width - kernel_width) / stride_width + 1; const int target_height = (2 * pad_height + source_height - kernel_height) / stride_height + 1; const int target_maps = kernel_width * kernel_height * maps; error |= clSetKernelArg (CLHelper::k_col2im, 0, sizeof (cl_mem), &(((Tensor&)source).cl_data_ptr_)); error |= clSetKernelArg (CLHelper::k_col2im, 1, sizeof (cl_mem), &(target.cl_data_ptr_)); error |= clSetKernelArg (CLHelper::k_col2im, 2, sizeof (cl_int), &source_width); error |= clSetKernelArg (CLHelper::k_col2im, 3, sizeof (cl_int), &source_height); error |= clSetKernelArg (CLHelper::k_col2im, 4, sizeof (cl_int), &maps); error |= clSetKernelArg (CLHelper::k_col2im, 5, sizeof (cl_int), &samples); error |= clSetKernelArg (CLHelper::k_col2im, 6, sizeof (cl_int), &target_width); error |= clSetKernelArg (CLHelper::k_col2im, 7, sizeof (cl_int), &target_height); error |= clSetKernelArg (CLHelper::k_col2im, 8, sizeof (cl_int), &target_maps); error |= clSetKernelArg (CLHelper::k_col2im, 9, sizeof (cl_int), &kernel_width); error |= clSetKernelArg (CLHelper::k_col2im, 10, sizeof (cl_int), &kernel_height); error |= clSetKernelArg (CLHelper::k_col2im, 11, sizeof (cl_int), &stride_width); error |= clSetKernelArg (CLHelper::k_col2im, 12, sizeof (cl_int), &stride_height); error |= clSetKernelArg (CLHelper::k_col2im, 13, sizeof (cl_int), &pad_width); error |= clSetKernelArg (CLHelper::k_col2im, 14, sizeof (cl_int), &pad_height); if (error != CL_SUCCESS) { FATAL("Error setting kernel args: " << (signed int) error); } size_t global_work_size[] = {(size_t)(source_width * source_height), (size_t)maps, (size_t)samples}; error = clEnqueueNDRangeKernel (CLHelper::queue, CLHelper::k_col2im, 3, NULL, global_work_size, NULL, 0, NULL, NULL); if (error != CL_SUCCESS) { FATAL("Error enqueueing kernel: " << (signed int) error); } #ifdef BRUTAL_FINISH error = clFinish (CLHelper::queue); if (error != CL_SUCCESS) { FATAL("Error finishing command queue: " << (signed int) error); } #endif } else { ((Tensor&)target).MoveToCPU(); source.MoveToCPU(true); #endif SETSAMPLE(source, -1, 0.0); const int target_width = (2 * pad_width + source_width - kernel_width) / stride_width + 1; const int target_height = (2 * pad_height + source_height - kernel_height) / stride_height + 1; const int target_maps = kernel_width * kernel_height * maps; const int target_size = samples * target_width * target_height * target_maps; const int actual_target_size = target.samples() * target.width()* target.height() * target.maps(); if(target_size != actual_target_size) FATAL("Target size wrong!"); for(int sample = 0; sample < samples; sample++) { datum* source_ptr = source.data_ptr(0, 0, 0, sample); for(int target_map = 0; target_map < target_maps; target_map++) { const datum* target_ptr = target.data_ptr_const(0, 0, 0, target_map); int kx = target_map % kernel_width; int ky = (target_map / kernel_width) % kernel_height; int imap = target_map / (kernel_width * kernel_height); for(int oy = 0; oy < target_height; oy++) { int iy = oy * stride_height - pad_height + ky; if(iy >= 0 && iy < source_height) { for(int ox = 0; ox < target_width; ox++) { int ix = ox * stride_width - pad_width + kx; if(ix >= 0 && iy < source_width) { source_ptr[(imap * source_height + iy) * source_width + ix] += target_ptr[(sample * target_height + oy) * target_width + ox]; } } } } } } #ifdef BUILD_OPENCL } #endif source.hint_ignore_content_ = false; }