コード例 #1
0
ファイル: atlasConvertLegacy.cpp プロジェクト: gitrider/wxsj2
 virtual float getAltitude(int x, int y)
 {
    return fixedToFloat(mBlock->getHeight(x,y));
 }
コード例 #2
0
bool SceneCullingState::isOccludedByTerrain( SceneObject* object ) const
{
   PROFILE_SCOPE( SceneCullingState_isOccludedByTerrain );

   // Don't try to occlude globally bounded objects.
   if( object->isGlobalBounds() )
      return false;

   const Vector< SceneObject* >& terrains = getSceneManager()->getContainer()->getTerrains();
   const U32 numTerrains = terrains.size();

   for( U32 terrainIdx = 0; terrainIdx < numTerrains; ++ terrainIdx )
   {
      TerrainBlock* terrain = dynamic_cast< TerrainBlock* >( terrains[ terrainIdx ] );
      if( !terrain )
         continue;

      MatrixF terrWorldTransform = terrain->getWorldTransform();

      Point3F localCamPos = getCameraState().getViewPosition();
      terrWorldTransform.mulP(localCamPos);
      F32 height;
      terrain->getHeight( Point2F( localCamPos.x, localCamPos.y ), &height );
      bool aboveTerrain = ( height <= localCamPos.z );

      // Don't occlude if we're below the terrain.  This prevents problems when
      //  looking out from underground bases...
      if( !aboveTerrain )
         continue;

      const Box3F& oBox = object->getObjBox();
      F32 minSide = getMin(oBox.len_x(), oBox.len_y());
      if (minSide > 85.0f)
         continue;

      const Box3F& rBox = object->getWorldBox();
      Point3F ul(rBox.minExtents.x, rBox.minExtents.y, rBox.maxExtents.z);
      Point3F ur(rBox.minExtents.x, rBox.maxExtents.y, rBox.maxExtents.z);
      Point3F ll(rBox.maxExtents.x, rBox.minExtents.y, rBox.maxExtents.z);
      Point3F lr(rBox.maxExtents.x, rBox.maxExtents.y, rBox.maxExtents.z);

      terrWorldTransform.mulP(ul);
      terrWorldTransform.mulP(ur);
      terrWorldTransform.mulP(ll);
      terrWorldTransform.mulP(lr);

      Point3F xBaseL0_s = ul - localCamPos;
      Point3F xBaseL0_e = lr - localCamPos;
      Point3F xBaseL1_s = ur - localCamPos;
      Point3F xBaseL1_e = ll - localCamPos;

      static F32 checkPoints[3] = {0.75, 0.5, 0.25};
      RayInfo rinfo;
      for( U32 i = 0; i < 3; i ++ )
      {
         Point3F start = (xBaseL0_s * checkPoints[i]) + localCamPos;
         Point3F end   = (xBaseL0_e * checkPoints[i]) + localCamPos;

         if (terrain->castRay(start, end, &rinfo))
            continue;

         terrain->getHeight(Point2F(start.x, start.y), &height);
         if ((height <= start.z) == aboveTerrain)
            continue;

         start = (xBaseL1_s * checkPoints[i]) + localCamPos;
         end   = (xBaseL1_e * checkPoints[i]) + localCamPos;

         if (terrain->castRay(start, end, &rinfo))
            continue;

         Point3F test = (start + end) * 0.5;
         if (terrain->castRay(localCamPos, test, &rinfo) == false)
            continue;

         return true;
      }
   }

   return false;
}
コード例 #3
0
void blTerrainProxy::lightVector(LightInfo * light)
{
   // Grab our terrain object
   TerrainBlock* terrain = getObject();
   if (!terrain)
      return;

   // Get the direction to the light (the inverse of the direction
   // the light is pointing)
   Point3F lightDir = -light->getDirection();
   lightDir.normalize();

   // Get the ratio between the light map pixel and world space (used below)   
   F32 lmTerrRatio = (F32)mTerrainBlockSize / (F32) mLightMapSize;
   lmTerrRatio *= terrain->getSquareSize();

   // Get the terrain position
   Point3F terrPos( terrain->getTransform().getPosition() );

   U32 i = 0;
   for (U32 y = 0; y < mLightMapSize; y++)
   {
      for (U32 x = 0; x < mLightMapSize; x++)
      {
         // Get the relative pixel position and scale it
         // by the ratio between lightmap and world space
         Point2F pixelPos(x, y);
         pixelPos *= lmTerrRatio;         
         
         // Start with a default normal of straight up
         Point3F normal(0.0f, 0.0f, 1.0f);
         
         // Try to get the actual normal from the terrain.
         // Note: this won't change the default normal if
         // it can't find a normal.
         terrain->getNormal(pixelPos, &normal);

         // The terrain lightmap only contains shadows.
         F32 shadowed = 0.0f;

         // Get the height at the lightmap pixel's position
         F32 height = 0.0f;
         terrain->getHeight(pixelPos, &height);

         // Calculate the 3D position of the pixel
         Point3F pixelPos3F(pixelPos.x, pixelPos.y, height);

         // Translate that position by the terrain's transform
         terrain->getTransform().mulP(pixelPos3F);

         // Offset slighting along the normal so that we don't
         // raycast into ourself
         pixelPos3F += (normal * 0.1f);

         // Calculate the light's position.
         // If it is a vector light like the sun (no position
         // just direction) then translate along that direction
         // a reasonable distance to get a point sufficiently
         // far away
         Point3F lightPos = light->getPosition();
         if(light->getType() == LightInfo::Vector)
         {
            lightPos = 1000.f * lightDir;            
            lightPos = pixelPos3F + lightPos;
         }

         // Cast a ray from the world space position of the lightmap pixel to the light source.
         // If we hit something then we are in shadow. This allows us to be shadowed by anything
         // that supports a castRay operation.
         RayInfo info;
         if(terrain->getContainer()->castRay(pixelPos3F, lightPos, STATIC_COLLISION_TYPEMASK, &info))
         {
            // Shadow the pixel.
            shadowed = 1.0f;
         }

         // Set the final lightmap color.
         mLightmap[i++] += ColorF::WHITE * mClampF( 1.0f - shadowed, 0.0f, 1.0f );
      }
   }
}