コード例 #1
0
// Turn an reference pointer into an array reference expression
void ReferenceCleanupPass::CleanupArrayStore(StoreStatement* s)
{
  assert(s != NULL) ;
  
  // Check to see if the destination is a reference variable
  Expression* destination = s->get_destination_address() ;

  VariableSymbol* storedVariable = FindVariable(destination) ;

  if (storedVariable == NULL)
  {
    return ;
  }

  if (dynamic_cast<ReferenceType*>(storedVariable->get_type()->get_base_type()))
  {
    // Can I just change the type?  Pointer conversion should take care of it
    //  then, but I'll have to annotate it
    ReferenceType* refType = 
      dynamic_cast<ReferenceType*>(storedVariable->get_type()->get_base_type()) ;
    QualifiedType* internalType = 
      dynamic_cast<QualifiedType*>(refType->get_reference_type()) ;
    assert(internalType != NULL) ;

    DataType* internalType2 = internalType->get_base_type() ;
    QualifiedType* qualType = storedVariable->get_type() ;
    qualType->set_base_type(NULL) ;
    refType->set_parent(NULL) ;
    internalType->set_parent(NULL) ;
    refType->set_reference_type(NULL) ;
    qualType->set_base_type(internalType2) ;
  }
}
コード例 #2
0
ファイル: cprint_style.cpp プロジェクト: jrk/suif2
static String handle_static_variable_symbol(CPrintStyleModule *map,
					    const SuifObject *obj) {
  VariableSymbol *var = to<VariableSymbol>(obj);
  // I'd like to figure out what procedure and BLOCK scope this
  // is in...
  return(String(var->get_name()));
}
コード例 #3
0
void ConstantArrayPropagationPass::CollectInitializations()
{
  if (!initializations.empty())
  {
    initializations.clear() ;
  }

  DefinitionBlock* procDefBlock = procDef->get_definition_block() ;
  assert(procDefBlock != NULL) ;
  Iter<VariableDefinition*> varDefIter = 
    procDefBlock->get_variable_definition_iterator() ;
  while (varDefIter.is_valid())
  {    
    VariableDefinition* varDef = varDefIter.current() ;
    assert(varDef != NULL) ;

    VariableSymbol* varSym = varDef->get_variable_symbol() ;
    ValueBlock* valBlock = varDef->get_initialization() ;
    assert(varSym != NULL) ;
    assert(valBlock != NULL) ;

    if (ValidSymbol(varSym)) 
    {
      initializations[varSym] = valBlock ;
      varSym->append_annote(create_brick_annote(theEnv, "ConstPropArray")) ;
    }

    varDefIter.next() ;
  }
}
コード例 #4
0
void LUTDetectionPass::do_procedure_definition(ProcedureDefinition* p)
{
  procDef = p ;
  assert(procDef != NULL) ;
  OutputInformation("LUT Detection Pass begins") ;

  // LUTs can only exist in New Style Systems or Modules
  if (isLegacy(procDef))
  {    
    OutputInformation("Legacy code - No LUTs supported") ;
    return ;
  }    
  
  // LUTs are defined to be arrays that are not parameter symbols
  SymbolTable* symTab = procDef->get_symbol_table() ;
  for (int i = 0 ; i < symTab->get_symbol_table_object_count() ; ++i)
  {
    SymbolTableObject* currentObject = symTab->get_symbol_table_object(i) ;
    VariableSymbol* currentVar = 
      dynamic_cast<VariableSymbol*>(currentObject) ;
    ParameterSymbol* currentParam =
      dynamic_cast<ParameterSymbol*>(currentObject) ;
    if (currentVar != NULL &&
	dynamic_cast<ArrayType*>(currentVar->get_type()->get_base_type()) != NULL &&
	currentParam == NULL &&
	currentVar->lookup_annote_by_name("ConstPropArray") == NULL)
    {
      // Found one!  Let's mark it!
      currentObject->append_annote(create_brick_annote(theEnv, "LUT")) ;
    }
  }

  OutputInformation("LUT Detection Pass ends") ;
}
コード例 #5
0
void CopyPropagationPass2::Initialize()
{
  // I don't want to delete any of the statements, but I must clear
  //  out the list I was using to contain the statements
  if (!toBeRemoved.empty())
  {
    while (toBeRemoved.begin() != toBeRemoved.end())
    {
      toBeRemoved.pop_front() ;
    }
  }

  assert(procDef != NULL) ;

  InitializeMap() ;

  // Also, collect all of the feedback variables for later
  
  SymbolTable* procSymTable = procDef->get_symbol_table() ;
  assert(procSymTable != NULL) ;

  for (int i = 0 ; i < procSymTable->get_symbol_table_object_count() ; ++i)
  {
    if(dynamic_cast<VariableSymbol*>(procSymTable->get_symbol_table_object(i)) != NULL)
    {
      VariableSymbol* nextSymbol = 
	dynamic_cast<VariableSymbol*>(procSymTable->get_symbol_table_object(i));
      if (nextSymbol->lookup_annote_by_name("FeedbackVariable") != NULL)
      {
	feedbackVariables.push_back(nextSymbol) ;
      }
    }
  }

}
コード例 #6
0
ファイル: Node.cpp プロジェクト: QlowB/Mathy
std::shared_ptr<ExpressionNode> VariableNode::evaluate(Environment* e)
{
    VariableSymbol* vs = 0;
    if ((vs = e->getVariable(name))) {      // double parantheses because
        return vs->getValue()->evaluate(e); // compiler is a smartass otherwise
    }
    else
        return shared_from_this();
}
コード例 #7
0
ファイル: exportPass.cpp プロジェクト: JehandadKhan/roccc-2.0
void ExportPass::ConstructModuleSymbols()
{
  CProcedureType* originalType = dynamic_cast<CProcedureType*>(originalProcedure->get_procedure_symbol()->get_type()) ;
  assert(originalType != NULL) ;

  // The original type takes and returns a struct.  We need to change this
  //  to a list of arguments.

  VoidType* newReturnType = create_void_type(theEnv, IInteger(0), 0) ;
  constructedType = create_c_procedure_type(theEnv,
					    newReturnType,
					    false, // has varargs
					    true, // arguments_known
					    0, // bit alignment
					    LString("ConstructedType")) ;

  StructType* returnType = 
    dynamic_cast<StructType*>(originalType->get_result_type()) ;
  assert(returnType != NULL) ;

  SymbolTable* structSymTab = returnType->get_group_symbol_table() ;
  assert(structSymTab != NULL) ;

  for (int i = 0 ; i < structSymTab->get_symbol_table_object_count() ; ++i)
  {
    VariableSymbol* nextVariable = 
      dynamic_cast<VariableSymbol*>(structSymTab->get_symbol_table_object(i));
    if (nextVariable != NULL)
    {
      // Check to see if this is an output or not
      QualifiedType* cloneType ;
      DataType* cloneBase = 
	dynamic_cast<DataType*>(nextVariable->get_type()->get_base_type()->deep_clone()) ;
      assert(cloneBase != NULL) ;
      cloneType = create_qualified_type(theEnv, cloneBase) ;
 
      if (nextVariable->lookup_annote_by_name("Output") != NULL)
      {
	cloneType->append_annote(create_brick_annote(theEnv, "Output")) ;
	// Why doesn't this stick around?
      }
      constructedType->append_argument(cloneType) ;
    }
  }

  constructedSymbol = create_procedure_symbol(theEnv,
					      constructedType,
					      originalProcedure->get_procedure_symbol()->get_name()) ;
  constructedSymbol->set_definition(NULL) ;

}
コード例 #8
0
// This is a vastly simpler way to setup annotations that doesn't worry
//  or assume that all feedbacks come from a single store variable statement
void SolveFeedbackVariablesPass3::SetupAnnotations()
{
  assert(theEnv != NULL) ;
  // Go through the list of all feedback instances we have discovered.
  list<PossibleFeedbackPair>::iterator feedbackIter = actualFeedbacks.begin();
  while (feedbackIter != actualFeedbacks.end())
  {
    // For every feedback, we need to create a two variables
    //  The first one is a replacement for the original use.
    //  The second one is the variable used for feedback.

    LString replacementName = (*feedbackIter).varSym->get_name() ;
    replacementName = replacementName + "_replacementTmp" ;

    VariableSymbol* replacementVariable = 
      create_variable_symbol(theEnv,
			     (*feedbackIter).varSym->get_type(),
			     TempName(replacementName)) ;
    procDef->get_symbol_table()->append_symbol_table_object(replacementVariable);

    VariableSymbol* feedbackVariable =
	create_variable_symbol(theEnv,
			       (*feedbackIter).varSym->get_type(),
			       TempName(LString("feedbackTmp"))) ;
    procDef->get_symbol_table()->append_symbol_table_object(feedbackVariable) ;
    
    // Replace the use with this new feedback variable
    (*feedbackIter).use->set_source(replacementVariable) ;

    // I am looking for the variable that originally defined me and 
    //  the variable that will replace me.
    Statement* definition = (*feedbackIter).definition ;
    VariableSymbol* definitionVariable = 
      GetDefinedVariable(definition, (*feedbackIter).definitionLocation) ;
    assert(definitionVariable != NULL) ;

    // Finally, annotate the feedback variable
    SetupAnnotations(feedbackVariable,		     
		     definitionVariable,
		     replacementVariable) ;
    
    replacementVariable->append_annote(create_brick_annote(theEnv,
							   "NonInputScalar"));

    ++feedbackIter ;
  }  
}
コード例 #9
0
void ReferenceCleanupPass::CleanupCall(CallStatement* c)
{
  assert(procDef != NULL) ;
  assert(c != NULL) ;

  // We only need to clean up module calls.  If they are built in
  //  functions, like boolsel, we don't want to do this.
  if (IsBuiltIn(c))
  {
    return ;
  }
  
  // Go through the arguments and see if any of them are load variable
  //  expressions to a reference typed variable, and replace those with
  //  symbol address expressions
  for (unsigned int i = 0 ; i < c->get_argument_count() ; ++i)
  {
    Expression* currentArg = c->get_argument(i) ;
    LoadVariableExpression* currentLoadVar = 
      dynamic_cast<LoadVariableExpression*>(currentArg) ;
    if (currentLoadVar != NULL)
    {
      VariableSymbol* currentVar = currentLoadVar->get_source() ;
      DataType* varType = currentVar->get_type()->get_base_type() ;
      ReferenceType* refType = dynamic_cast<ReferenceType*>(varType) ;
      if (refType != NULL)
      {
	QualifiedType* internalType = 
	  dynamic_cast<QualifiedType*>(refType->get_reference_type()) ;
	assert(internalType != NULL) ;
	//	currentVar->set_type(internalType) ;
	SymbolAddressExpression* symAddrExp = 
	  create_symbol_address_expression(theEnv, 
					   internalType->get_base_type(),
					   currentVar) ;
	if (currentLoadVar->lookup_annote_by_name("UndefinedPath") != NULL)
	{
	  symAddrExp->append_annote(create_brick_annote(theEnv, "UndefinedPath")) ;
	}
	currentLoadVar->get_parent()->replace(currentLoadVar, symAddrExp) ;
      }
    }
  }
}
コード例 #10
0
ファイル: name-resolver.cpp プロジェクト: LittleKu/sourcepawn
VarDecl *
NameResolver::HandleVarDecl(NameToken name, TypeSpecifier &spec, Expression *init)
{
  Scope *scope = getOrCreateScope();

  // :TODO: set variadic info
  VarDecl *var = new (pool_) VarDecl(name, init);

  // Note: the parser has already bound |var->init()| at this point, meaning
  // that aside from globals it should be impossible to self-initialize like:
  //    int x = x;
  //
  // :TODO: do check this for globals.
  VariableSymbol *sym = new (pool_) VariableSymbol(var, scope, var->name());
  registerSymbol(sym);
  var->setSymbol(sym);

  // Set this before we evaluate the type, since it determines whether or not
  // a const on a parameter is meaningless.
  if (spec.isByRef()) {
    assert(scope->kind() == Scope::Argument && sym->isArgument());
    sym->storage_flags() |= StorageFlags::byref;
  }

  // See the comment in TypeResolver::visitVarDecl for why we do not want to
  // infer sizes from literals for arguments.
  if (init &&
      !scope->isArgument() &&
      ((init->isArrayLiteral() && init->asArrayLiteral()->isFixedArrayLiteral()) ||
       (init->isStringLiteral())))
  {
    // Wait until the type resolution pass to figure this out. We still have
    // to precompute the base though.
    if (Type *type = resolveBase(spec))
      spec.setResolvedBaseType(type);
    var->te() = TypeExpr(new (pool_) TypeSpecifier(spec));
  } else {
    VarDeclSpecHelper helper(var, nullptr);
    var->te() = resolve(spec, &helper);
  }

  if (var->te().resolved()) {
    sym->setType(var->te().resolved());

    // We need to check this both here and in lazy resolution, which is gross,
    // but I don't see any obvious way to simplify it yet.
    if (spec.isByRef() && sym->type()->passesByReference()) {
      cc_.report(spec.byRefLoc(), rmsg::type_cannot_be_ref)
        << sym->type();
    }
  }

  // Even if we were able to resolve the type, if we have to resolve a constant
  // value, we'll have to add it to the resolver queue.
  if (!var->te().resolved() || sym->canUseInConstExpr())
    tr_.addPending(var);

  return var;
}
コード例 #11
0
ファイル: old-sema.cpp プロジェクト: LittleKu/sourcepawn
void
SemanticAnalysis::visitNameProxy(NameProxy *proxy)
{
  Symbol *sym = proxy->sym();
  VariableSymbol *var = sym->asVariable();

  // If we see that a symbol is a function literal, then we bypass the scope
  // chain operations entirely and hardcode the function literal.
  if (sym->isFunction()) {
    assert(sym->scope()->kind() == Scope::Global);
    hir_ = new (pool_) HFunction(proxy, sym->asFunction());
    return;
  }

  if (value_context_ == kLValue) {
    // Egads! We're being asked to construct an l-value instead of an r-value.
    *outp_ = LValue(var);
    return;
  }

  Scope *in = sym->scope();
  switch (in->kind()) {
    case Scope::Global:
      hir_ = new (pool_) HGlobal(proxy, var);
      return;

    case Scope::Function:
    {
      assert(var->storage() == VariableSymbol::Arg);
      // Since we're in an r-value context, we need to strip the reference type.
      Type *type = var->type();
      if (type->isReference())
        type = type->toReference()->contained();
      hir_ = new (pool_) HLocal(proxy, type, var);
      return;
    }

    default:
      assert(in->kind() == Scope::Block);
      assert(var->storage() == VariableSymbol::Local);
      hir_ = new (pool_) HLocal(proxy, var->type(), var);
      return;
  }
}
コード例 #12
0
bool
VarDeclSpecHelper::receiveConstQualifier(CompileContext &cc, const SourceLocation &constLoc, Type *type)
{
  VariableSymbol *sym = decl_->sym();
  if (sym->isArgument()) {
    if (!!(sym->storage_flags() & StorageFlags::byref)) {
      cc.report(constLoc, rmsg::const_ref_has_no_meaning) << type;
      return true;
    }
    if (!type->passesByReference()) {
      cc.report(constLoc, rmsg::const_has_no_meaning) << type;
      return true;
    }
  } else if (TypeSupportsCompileTimeInterning(type)) {
    sym->storage_flags() |= StorageFlags::constval;
  }

  sym->storage_flags() |= StorageFlags::readonly;
  return true;
}
コード例 #13
0
void CleanupRedundantVotes::ProcessCall(CallStatement* c)
{
  assert(c != NULL) ;
  
  SymbolAddressExpression* symAddress = 
    dynamic_cast<SymbolAddressExpression*>(c->get_callee_address()) ;
  assert(symAddress != NULL) ;
  
  Symbol* sym = symAddress->get_addressed_symbol() ;
  assert(sym != NULL) ;

  if (sym->get_name() == LString("ROCCCTripleVote") || 
      sym->get_name() == LString("ROCCCDoubleVote") )
  {
    LoadVariableExpression* errorVariableExpression = 
      dynamic_cast<LoadVariableExpression*>(c->get_argument(0)) ;
    assert(errorVariableExpression != NULL) ;
    VariableSymbol* currentError = errorVariableExpression->get_source() ;
    assert(currentError != NULL) ;
    if (InList(currentError))
    {
      // Create a new variable
      VariableSymbol* errorDupe = 
	create_variable_symbol(theEnv,
			       currentError->get_type(),
			       TempName(LString("UnrolledRedundantError"))) ;
      errorDupe->append_annote(create_brick_annote(theEnv, "DebugRegister")) ;
      procDef->get_symbol_table()->append_symbol_table_object(errorDupe) ;
      usedVariables.push_back(errorDupe) ;
      errorVariableExpression->set_source(errorDupe) ;
    }
    else
    {
      usedVariables.push_back(currentError) ;
    }
  }

}
コード例 #14
0
void ScalarReplacementPass2::ProcessLoad(LoadExpression* e) 
{
  assert(e != NULL) ;
  Expression* innerExp = e->get_source_address() ;
  ArrayReferenceExpression* innerRef = 
    dynamic_cast<ArrayReferenceExpression*>(innerExp) ;
  if (innerRef == NULL)
  {
    return ;
  }

  // Again, don't process lookup tables
  if (IsLookupTable(GetArrayVariable(innerRef)))
  {
    return ;
  }

  VariableSymbol* replacement = NULL ;
  list<std::pair<Expression*, VariableSymbol*> >::iterator identIter = 
    Identified.begin() ;
  while (identIter != Identified.end())
  {
    if (EquivalentExpressions((*identIter).first, innerRef))
    {
      replacement = (*identIter).second ;
      break ;
    }
    ++identIter ;
  }
  assert(replacement != NULL) ;

  LoadVariableExpression* loadVar = 
    create_load_variable_expression(theEnv, 
				    replacement->get_type()->get_base_type(),
				    replacement) ;
  e->get_parent()->replace(e, loadVar) ;
}
コード例 #15
0
void TransformUnrolledArraysPass::TransformNDIntoNMinusOneD(int N)
{
  // Get all unique N-dimensional arrays
  CollectArrays(N) ;

  // For every array access that has a constant as one of its offsets,
  //  we have to create a new array

  list<VariableSymbol*> arraysToRemove ;
  list<EquivalentReferences*>::iterator refIter = currentReferences.begin() ;
  while (refIter != currentReferences.end())
  {
    VariableSymbol* originalSymbol = GetArrayVariable((*refIter)->original) ;
    // Lookup tables should not be transformed
    if (originalSymbol->lookup_annote_by_name("LUT") == NULL)
    {
      bool replaced = ReplaceNDReference(*refIter) ;
      if (replaced)
      {
	if (!InList(arraysToRemove, originalSymbol))
	{
	  arraysToRemove.push_back(originalSymbol) ;
	}
      }
    }
    ++refIter ;
  }

  // Remove all of the arrays that need to be removed
  list<VariableSymbol*>::iterator arrayIter = arraysToRemove.begin() ;
  while (arrayIter != arraysToRemove.end())
  {
    procDef->get_symbol_table()->remove_symbol_table_object(*arrayIter) ;
    ++arrayIter ;
  }

}
コード例 #16
0
ファイル: Node.cpp プロジェクト: QlowB/Mathy
std::shared_ptr<ExpressionNode> AssignmentNode::evaluate(Environment* e)
{
    std::shared_ptr<ExpressionNode> newValue = b->evaluate(e);

    std::shared_ptr<VariableNode> var =
            std::dynamic_pointer_cast<VariableNode> (a);
    
    if (var.get()->equals(newValue.get()))
        return shared_from_this();


    if (var) {
        const std::string varName = var->getString();
        VariableSymbol* vs = e->getVariable(varName);
        if (vs)
            vs->setValue(newValue);
        else
            e->addSymbol(new VariableSymbol(var->getString(), newValue));
    }
    else {
        throw ArithmeticException("left side of assignment must be a variable");
    }
    return std::make_shared<AssignmentNode> (a, newValue);
}
コード例 #17
0
void One2MultiArrayExpressionPass::do_procedure_definition(ProcedureDefinition* proc_def)
{
    bool kill_all = !(_preserve_one_dim->is_set());
    // access all array type declarations and create corresponding multi array types
    SuifEnv* suif_env = proc_def->get_suif_env();
    TypeBuilder* tb = (TypeBuilder*)suif_env->
        get_object_factory(TypeBuilder::get_class_name());
    (void) tb; // avoid warning
#ifdef CONVERT_TYPES
    for (Iter<ArrayType> at_iter = object_iterator<ArrayType>(proc_def);
        at_iter.is_valid();at_iter.next())
    {
        MultiDimArrayType* multi_type = 
            converter->array_type2multi_array_type(&at_iter.current());
	}
#endif //CONVERT_TYPES

    // collect tops of array access chains into this list
    list<ArrayReferenceExpression*> ref_exprs;
    for (Iter<ArrayReferenceExpression> are_iter =
		object_iterator<ArrayReferenceExpression>(proc_def);
         are_iter.is_valid(); are_iter.next())
    {
        // itself an array and parent is *not* an array
        ArrayReferenceExpression* are = &are_iter.current();
        if((kill_all || is_kind_of<ArrayReferenceExpression>(are->get_base_array_address())) &&
           !is_kind_of<ArrayReferenceExpression>(are->get_parent()))
        {
            //printf("%p \t", are);are->print_to_default();
            ref_exprs.push_back(are);
	    }
    }

    // for top all expressions, convert them to multi-exprs
    for(list<ArrayReferenceExpression*>::iterator ref_iter = ref_exprs.begin();
        ref_iter != ref_exprs.end(); ref_iter++)
    {
        ArrayReferenceExpression* top_array = *ref_iter;
        converter->convert_array_expr2multi_array_expr(top_array);
    }
#ifdef CONVERT_TYPES    
    // replace the types of all array variables
    for (Iter<VariableSymbol> iter = object_iterator<VariableSymbol>(proc_def);
            iter.is_valid();iter.next())
    {
        VariableSymbol* vd = &iter.current();
        DataType *vtype = tb->unqualify_data_type(vd->get_type());
        if (is_kind_of<ArrayType>(vtype)) {
            MultiDimArrayType* multi_type =
                    converter->array_type2multi_array_type(to<ArrayType>(vtype));
            vd->replace(vd->get_type(), tb->get_qualified_type(multi_type));
        }
    }

    // remove the remaining one-dim array types
    converter->remove_all_one_dim_array_types();
#endif //CONVERT_TYPES
    // make sure no traces of single-dim arrays are left
    if(kill_all){
        {for(Iter<ArrayReferenceExpression> iter =
            object_iterator<ArrayReferenceExpression>(proc_def);
            iter.is_valid(); iter.next())
            {
                // ArrayReferenceExpression* are = &iter.current();
                //are->print_to_default(); printf("at %p \t", are);
                suif_assert_message(false, ("ARE not eliminated"));
            }
        }
#ifdef CONVERT_TYPES
        {for(Iter<ArrayType> iter =
            object_iterator<ArrayType>(proc_def);
            iter.is_valid(); iter.next())
        {suif_assert_message(false, ("ArrayType not eliminated"));}}
#endif
    }
}
コード例 #18
0
void ScalarReplacementPass2::CollectArrayReferences()
{
  assert(procDef != NULL) ;
  list<ArrayReferenceExpression*>* allRefs = 
    collect_objects<ArrayReferenceExpression>(procDef->get_body()) ;
  list<ArrayReferenceExpression*>::iterator refIter = allRefs->begin() ;
  while (refIter != allRefs->end())
  {
    // If this is not the topmost array reference, skip it.
    if (dynamic_cast<ArrayReferenceExpression*>((*refIter)->get_parent()) !=
	NULL)
    {
      ++refIter ;
      continue ;
    }
    
    // Also, skip lookup tables
    if (IsLookupTable(GetArrayVariable(*refIter)))
    {
      ++refIter ;
      continue ;
    }

    bool found = false ;
    std::pair<Expression*, VariableSymbol*> toAdd ;
    list<std::pair<Expression*, VariableSymbol*> >::iterator identIter = 
      Identified.begin() ;
    while (identIter != Identified.end())
    {
      if (EquivalentExpressions((*identIter).first, *refIter))
      {
	found = true ;
	toAdd = (*identIter) ;
	break ;
      }
      ++identIter ;
    }

    if (!found)
    {
      VariableSymbol* replacement =
	create_variable_symbol(theEnv, 
			       GetQualifiedTypeOfElement(*refIter),
			       TempName(LString("suifTmp"))) ;	
      replacement->append_annote(create_brick_annote(theEnv, 
						  "ScalarReplacedVariable")) ;
      procDef->get_symbol_table()->append_symbol_table_object(replacement) ;

      toAdd.first = (*refIter) ;
      toAdd.second = replacement ;
      Identified.push_back(toAdd) ;
    }
    if (dynamic_cast<LoadExpression*>((*refIter)->get_parent()) != NULL)
    {
      found = false ;
      identIter = IdentifiedLoads.begin() ;
      while (identIter != IdentifiedLoads.end())
      {
	if (EquivalentExpressions((*identIter).first, *refIter))
	  {
	    found = true ;
	    break ;
	  }
	++identIter ;
      }
      if (!found)
      {
	IdentifiedLoads.push_back(toAdd) ;
      }      
    }
    else if (dynamic_cast<StoreStatement*>((*refIter)->get_parent()) != NULL)
    {
      found = false ;
      identIter = IdentifiedStores.begin() ;
      while (identIter != IdentifiedStores.end())
      {
	if (EquivalentExpressions((*identIter).first, *refIter))
	{
	  found = true ;
	  break ;
	}
	++identIter ;
      }
      if (!found)
      {
	IdentifiedStores.push_back(toAdd) ;
      }
    }
    else 
    {
      assert(0 && "Improperly formatted array reference!") ;
    }  
    ++refIter ;
  }
  delete allRefs ;
}
コード例 #19
0
ファイル: exportPass.cpp プロジェクト: JehandadKhan/roccc-2.0
void ExportPass::ConstructSystemSymbols()
{
  ProcedureSymbol* originalSymbol = originalProcedure->get_procedure_symbol() ;
  assert(originalSymbol != NULL) ;
  CProcedureType* originalType = 
    dynamic_cast<CProcedureType*>(originalSymbol->get_type()) ;
  assert(originalType != NULL) ;

  constructedType = create_c_procedure_type(theEnv,
    dynamic_cast<DataType*>(originalType->get_result_type()->deep_clone()),
					    false, // has variable arguments
					    false, // arguments known
					    0) ; // bit alignment

  // The system has been written in one of two ways, either the old
  //  way where there are no arguments, or the new way where everything
  //  is put into the arguments.
  
  if (originalType->get_argument_count() > 0)
  {
    for (int i = 0 ; i < originalType->get_argument_count() ; ++i)
    {
      QualifiedType* originalArgument = originalType->get_argument(i) ;
      DataType* originalBase = originalArgument->get_base_type() ;
      DataType* constructedBase = CloneDataType(originalBase) ;
      QualifiedType* constructedArgument = 
	create_qualified_type(theEnv, constructedBase) ;
      constructedType->append_argument(constructedArgument) ;

      // Go through the symbol table and find the parameter symbol 
      //  that matches the parameter number, and check to see if it
      //  is an output or not...
      SymbolTable* symTab = originalProcedure->get_symbol_table() ;
      ParameterSymbol* correspondingSymbol = NULL ;
      for (int j = 0 ; j < symTab->get_symbol_table_object_count() ; ++j)
      {
	ParameterSymbol* currentSym = 
	  dynamic_cast<ParameterSymbol*>(symTab->get_symbol_table_object(j)) ;
	if (currentSym != NULL)
	{
	  BrickAnnote* orderAnnote = dynamic_cast<BrickAnnote*>(currentSym->lookup_annote_by_name("ParameterOrder")) ;
	  assert(orderAnnote != NULL) ;
	  IntegerBrick* orderBrick = 
	    dynamic_cast<IntegerBrick*>(orderAnnote->get_brick(0)) ;
	  assert(orderBrick != NULL) ;
	  if (orderBrick->get_value().c_int() == i)
	  {
	    correspondingSymbol = currentSym ;
	    break ;
	  }
	}
      }
      if (correspondingSymbol != NULL)
      {
        if (correspondingSymbol->lookup_annote_by_name("OutputScalar") != NULL ||
	    correspondingSymbol->lookup_annote_by_name("OutputVariable") != NULL ||
	    correspondingSymbol->lookup_annote_by_name("OutputFifo") != NULL)
        {
	  constructedArgument->append_annote(create_brick_annote(theEnv,
								 "Output")) ;
        }
      }
      //      if (dynamic_cast<ReferenceType*>(originalBase) != NULL)
      //{
      //	constructedArgument->append_annote(create_brick_annote(theEnv,
      //						       "Output")) ;
      //      }
    }
  }
  else
  {   
    SymbolTable* symTab = originalProcedure->get_symbol_table() ;
    assert(symTab != NULL) ;
    list<VariableSymbol*> inputScalars ;
    list<VariableSymbol*> inputFifos ; 
    list<VariableSymbol*> outputScalars ;
    list<VariableSymbol*> outputFifos ;

    for (int i = 0 ; i < symTab->get_symbol_table_object_count() ; ++i)
    {
      VariableSymbol* currentVar = 
	dynamic_cast<VariableSymbol*>(symTab->get_symbol_table_object(i)) ;
      if (currentVar != NULL &&
	  currentVar->lookup_annote_by_name("InputScalar") != NULL &&
	  currentVar->lookup_annote_by_name("TemporalFeedback") == NULL &&
	  currentVar->lookup_annote_by_name("NormalFeedback") == NULL &&
	  currentVar->lookup_annote_by_name("DebugRegister") == NULL)
      {
	inputScalars.push_back(currentVar) ;
      }
      if (currentVar != NULL &&
	  currentVar->lookup_annote_by_name("InputFifo") != NULL)
      {
	inputFifos.push_back(currentVar) ;
      }
      if (currentVar != NULL &&
	  currentVar->lookup_annote_by_name("OutputVariable") != NULL &&
	  currentVar->lookup_annote_by_name("Dummy") == NULL &&
	  currentVar->lookup_annote_by_name("FeedbackSource") == NULL)
      {
	outputScalars.push_back(currentVar) ;
      }
      if (currentVar != NULL &&
	  currentVar->lookup_annote_by_name("OutputFifo") != NULL)
      {
	outputFifos.push_back(currentVar) ;
      }
    }
    // Add the types of the input scalars, then the input fifos, 
    //  then the output scalars, and finally the output fifos.
    list<VariableSymbol*>::iterator varIter = inputScalars.begin() ;
    while (varIter != inputScalars.end())
    {
      QualifiedType* originalQual = (*varIter)->get_type() ;
      assert(originalQual != NULL) ;
      DataType* originalBase = originalQual->get_base_type() ;
      assert(originalBase != NULL) ;
      DataType* constructedBase = 
	dynamic_cast<DataType*>(originalBase->deep_clone()) ;
      QualifiedType* constructedQual = 
	create_qualified_type(theEnv, constructedBase) ;
      constructedType->append_argument(constructedQual) ;
      ++varIter ;
    }
    varIter = inputFifos.begin() ;
    while (varIter != inputFifos.end())
    {
      QualifiedType* originalQual = (*varIter)->get_type() ;
      assert(originalQual != NULL) ;
      DataType* originalBase = originalQual->get_base_type() ;
      assert(originalBase != NULL) ;
      // Fifos will have pointer types or reference types.  A 
      //  simple deep clone will not suffice, I need to build up a
      //  new type from the bottom up.
      DataType* constructedBase = CloneDataType(originalBase) ;
      assert(constructedBase != NULL) ;
      QualifiedType* constructedQual = 
	create_qualified_type(theEnv, constructedBase) ;
      assert(constructedBase != NULL) ;
      assert(constructedType != NULL) ;
      constructedType->append_argument(constructedQual) ;
      ++varIter ;
    }
    varIter = outputScalars.begin() ;
    while (varIter != outputScalars.end())
    {
      QualifiedType* originalQual = (*varIter)->get_type() ;
      DataType* originalBase = originalQual->get_base_type() ;
      DataType* constructedBase = CloneDataType(originalBase) ;
      QualifiedType* constructedQual = 
	create_qualified_type(theEnv, constructedBase) ;
      constructedQual->append_annote(create_brick_annote(theEnv, "Output")) ;
      constructedType->append_argument(constructedQual) ;
      ++varIter ;
    }
    varIter = outputFifos.begin() ;
    while (varIter != outputFifos.end())
    {
      QualifiedType* originalQual = (*varIter)->get_type() ;
      assert(originalQual != NULL) ;
      DataType* originalBase = originalQual->get_base_type() ;
      assert(originalBase != NULL) ;
      DataType* constructedBase = CloneDataType(originalBase) ;
      assert(constructedBase != NULL) ;
      QualifiedType* constructedQual = 
	create_qualified_type(theEnv, constructedBase) ;
      assert(constructedQual != NULL) ;
      constructedQual->append_annote(create_brick_annote(theEnv, "Output")) ;
      assert(constructedType != NULL) ;
      constructedType->append_argument(constructedQual) ;
      ++varIter ;
    }
    
  }
  constructedSymbol = create_procedure_symbol(theEnv, constructedType,
					      originalProcedure->get_procedure_symbol()->get_name()) ;
}
コード例 #20
0
void EliminateArrayConvertsPass::do_procedure_definition(ProcedureDefinition* proc_def){
    suif_hash_map<ParameterSymbol*, Type*> params;
    TypeBuilder *tb = (TypeBuilder*)
         get_suif_env()->get_object_factory(TypeBuilder::get_class_name());

    // collect all procedure parameters of pointer type into params list
    for(Iter<ParameterSymbol*> iter = proc_def->get_formal_parameter_iterator();
        iter.is_valid(); iter.next())
    {
        ParameterSymbol* par_sym = iter.current();
        Type* par_type = tb->unqualify_type(par_sym->get_type());

        if(is_kind_of<PointerType>(par_type)){
            // put NULLs into the map at first,
            // they will later be overwritten
            params[par_sym] = NULL;
        }
    }
    if(params.size()==0) return;    // nothing to do
    
    // walk thru all AREs and look for arrays that are in the param list
    {for(Iter<ArrayReferenceExpression> iter =
        object_iterator<ArrayReferenceExpression>(proc_def);
            iter.is_valid(); iter.next())
        {
            ArrayReferenceExpression* are = &iter.current();
            if(is_kind_of<UnaryExpression>(are->get_base_array_address())){
                UnaryExpression* ue = to<UnaryExpression>(are->get_base_array_address());
                if(ue->get_opcode() == k_convert){
                    if(is_kind_of<LoadVariableExpression>(ue->get_source())){
                        LoadVariableExpression* lve = 
                            to<LoadVariableExpression>(ue->get_source());
                        VariableSymbol* array = lve->get_source();
            
                        for(suif_hash_map<ParameterSymbol*, Type*>::iterator iter = params.begin();
                            iter!=params.end();iter++)
                        {
                            ParameterSymbol* par_sym = (*iter).first;
                            if(par_sym == array){
                                // match!
                                Type* array_type;
                                suif_hash_map<ParameterSymbol*, Type*>::iterator iter =
                                    params.find(par_sym);
                                
                                if(iter==params.end() || (*iter).second==NULL){
                                    //array_type = to<PointerType>(ue->get_result_type())->get_reference_type();
                                    array_type = tb->get_qualified_type(ue->get_result_type());
                                    params[par_sym] = array_type;
                                    //printf("%s has type ",par_sym->get_name().c_str());
                                    //array_type->print_to_default();
                                }else{
                                    array_type = params[par_sym].second;
                                    suif_assert(is_kind_of<QualifiedType>(array_type));
                                }

                                array->replace(array->get_type(), array_type);
                                remove_suif_object(ue);
                                remove_suif_object(lve);
                                lve->replace(lve->get_result_type(), tb->unqualify_type(array_type));
                                // put the LoadVar directly under ARE
                                are->set_base_array_address(lve);
                                //are->print_to_default();
                            }
                        }
                    } else {
                        suif_warning(ue->get_source(),
                            ("Expecting a LoadVariableExpression here"));
                    }
                } else {
                    suif_warning(ue, ("Disallow converts in AREs for "
                            "things other than procedure parameters"));
                }
            }
        }
    }
}
コード例 #21
0
// All of the array references expressions in the passed in the struct are
//  equivalent, so we can determine types of the original and use that
//  to create a new expression with which to replace everything.
bool TransformUnrolledArraysPass::ReplaceNDReference(EquivalentReferences* a)
{
  assert(a != NULL) ;
  assert(a->original != NULL) ;

  // Check to see if the reference at this stage is a constant or not
  IntConstant* constantIndex = 
    dynamic_cast<IntConstant*>(a->original->get_index()) ;
  
  if (constantIndex == NULL)
  {
    // There was no replacement made
    return false ;
  }

  Expression* baseAddress = a->original->get_base_array_address() ;
  assert(baseAddress != NULL) ;
  assert(constantIndex != NULL) ;

  // Create a replacement expression for this value.  This will either
  //  be another array reference expression or a single variable.
  Expression* replacementExp = NULL ;
  //  QualifiedType* elementType = GetQualifiedTypeOfElement(a->original) ;
  VariableSymbol* originalSymbol = GetArrayVariable(a->original) ;
  assert(originalSymbol != NULL) ;
  LString replacementName = 
    GetReplacementName(originalSymbol->get_name(), 
		       constantIndex->get_value().c_int()) ;
  int dimensionality = GetDimensionality(a->original) ;
  
  QualifiedType* elementType = originalSymbol->get_type() ;
  while (dynamic_cast<ArrayType*>(elementType->get_base_type()) != NULL)
  {
    elementType = dynamic_cast<ArrayType*>(elementType->get_base_type())->get_element_type() ;
  }
  
  // There is a special case for one dimensional arrays as opposed to all
  //  other dimensional arrays.  It only should happen if we are truly
  //  replacing an array with a one dimensional array.
  if (dimensionality == 1 && 
      dynamic_cast<ArrayReferenceExpression*>(a->original->get_parent())==NULL)
  {

    VariableSymbol* replacementVar = 
      create_variable_symbol(theEnv,
			     GetQualifiedTypeOfElement(a->original),
			     TempName(replacementName)) ;
    procDef->get_symbol_table()->append_symbol_table_object(replacementVar) ;
    
    replacementExp = 
      create_load_variable_expression(theEnv,
				      elementType->get_base_type(),
				      replacementVar) ;
  }
  else
  {
    // Create a new array with one less dimension.  This requires a new
    //  array type.
    ArrayType* varType = 
      dynamic_cast<ArrayType*>(originalSymbol->get_type()->get_base_type()) ;
    assert(varType != NULL) ;
   
    ArrayType* replacementArrayType =
      create_array_type(theEnv,
	varType->get_element_type()->get_base_type()->get_bit_size(),
	0, // bit alignment
	OneLessDimension(originalSymbol->get_type(), dimensionality),
	dynamic_cast<Expression*>(varType->get_lower_bound()->deep_clone()),
	dynamic_cast<Expression*>(varType->get_upper_bound()->deep_clone()),
	TempName(varType->get_name())) ;

    procDef->get_symbol_table()->append_symbol_table_object(replacementArrayType) ;

    VariableSymbol* replacementArraySymbol = 
      create_variable_symbol(theEnv,
			     create_qualified_type(theEnv,
						   replacementArrayType,
						   TempName(LString("qualType"))),
			     TempName(replacementName)) ;

    procDef->get_symbol_table()->append_symbol_table_object(replacementArraySymbol) ;

    // Create a new symbol address expression for this variable symbol
    SymbolAddressExpression* replacementAddrExp =
      create_symbol_address_expression(theEnv,
				       replacementArrayType,
				       replacementArraySymbol) ;

    // Now, replace the symbol address expression in the base
    //  array address with this symbol.
    ReplaceSymbol(a->original, replacementAddrExp) ;
    
    // And replace this reference with the base array address.
    replacementExp = a->original->get_base_array_address() ;
    a->original->set_base_array_address(NULL) ;
    replacementExp->set_parent(NULL) ;
  }

  // Replace all of the equivalent expressions with the newly generated
  //  replacement expression.
  assert(replacementExp != NULL) ;
  a->original->get_parent()->replace(a->original, replacementExp) ;
   
  //  ReplaceChildExpression(a->original->get_parent(),
  //			 a->original,
  //			 replacementExp) ;

  list<ArrayReferenceExpression*>::iterator equivIter = 
    a->allEquivalent.begin() ;
  while (equivIter != a->allEquivalent.end()) 
  {
    (*equivIter)->get_parent()->replace((*equivIter),
					dynamic_cast<Expression*>(replacementExp->deep_clone())) ;
    //    ReplaceChildExpression((*equivIter)->get_parent(),
    //			   (*equivIter),
    //			   dynamic_cast<Expression*>(replacementExp->deep_clone())) ;
    ++equivIter ;
  }

  return true ;
}
コード例 #22
0
Statement *for_statement_walker::dismantle_for_statement(ForStatement *the_for){
    StatementList *replacement = create_statement_list(the_for->get_suif_env());
    VariableSymbol*  index = the_for->get_index();
    DataType *type = unqualify_data_type(index->get_type());
    Expression *lower = the_for->get_lower_bound();
    Expression *upper = the_for->get_upper_bound();
    Expression *step = the_for->get_step();
    LString compare_op = the_for->get_comparison_opcode();
    Statement* body =  the_for->get_body();
    Statement* pre_pad = the_for->get_pre_pad();
//    Statement* post_pad = the_for->get_post_pad();
    CodeLabelSymbol* break_lab = the_for->get_break_label();
    CodeLabelSymbol* continue_lab = the_for->get_continue_label();
    the_for->set_index(0);
    remove_suif_object(lower);
    remove_suif_object(upper);
    remove_suif_object(step);
    remove_suif_object(body);
    remove_suif_object(pre_pad);
//    the_for->set_post_pad(0);
//    remove_suif_object(post_pad);
    the_for->set_break_label(0);
    the_for->set_continue_label(0);

    // I am guessing what pre-pad and post-pad do

    if(pre_pad != 0)replacement->append_statement(pre_pad);

    // initialize the index. Is this right? should we ever initialize to upper, for -ve steps?
    // Is index guaranteed not to be changed? Should we be creating a temporary?

    replacement->append_statement(create_store_variable_statement(body->get_suif_env(),index,lower));

    replacement->append_statement(create_label_location_statement(body->get_suif_env(), continue_lab));

    if (body != 0)
	replacement->append_statement(body);

    // increment the counter

    Expression *index_expr = 
      create_load_variable_expression(body->get_suif_env(),
				      unqualify_data_type(index->get_type()),
				      index);
    Expression *increment = 
      create_binary_expression(body->get_suif_env(),type,k_add,
			       index_expr,step);

    replacement->append_statement(create_store_variable_statement(body->get_suif_env(),index,increment));

    // and loop if not out of range

    Expression *compare =  
      create_binary_expression(body->get_suif_env(),type,
			       compare_op,
			       deep_suif_clone<Expression>(index_expr),
			       deep_suif_clone<Expression>(step));
    replacement->append_statement(create_branch_statement(body->get_suif_env(),compare,continue_lab));

    // end of loop

    replacement->append_statement(create_label_location_statement(body->get_suif_env(),break_lab));
//    if(post_pad != 0)replacement->append_statement(post_pad);
    the_for->get_parent()->replace(the_for,replacement);
    return replacement;
}
コード例 #23
0
void TransformSystemsToModules::Transform()
{
  assert(procDef != NULL) ;

  // Collect all the input scalars and output scalars
  list<VariableSymbol*> ports ;
  
  SymbolTable* procSymTab = procDef->get_symbol_table() ;
  bool foundInputs = false ;
  bool foundOutputs = false ;
 
  for (int i = 0 ; i < procSymTab->get_symbol_table_object_count() ; ++i)
  {
    SymbolTableObject* nextObject = procSymTab->get_symbol_table_object(i) ;

    if (nextObject->lookup_annote_by_name("InputScalar") != NULL)
    {
      VariableSymbol* toConvert = 
	dynamic_cast<VariableSymbol*>(nextObject) ;
      assert(toConvert != NULL) ;
      LString inputName = toConvert->get_name() ;
      inputName = inputName + "_in" ;
      toConvert->set_name(inputName) ;
      ports.push_back(toConvert) ;
      foundInputs = true ;
    }
    if (nextObject->lookup_annote_by_name("OutputVariable") != NULL)
    {
      VariableSymbol* toConvert = 
	dynamic_cast<VariableSymbol*>(nextObject) ;
      assert(toConvert != NULL) ;
      LString outputName = toConvert->get_name() ;
      outputName = outputName + "_out" ;
      toConvert->set_name(outputName) ;
      ports.push_back(toConvert) ;
      foundOutputs = true ;
    }
  }
  assert(foundInputs && 
	 "Could not identify inputs.  Were they removed via optimizations?") ;
  assert(foundOutputs && 
	 "Could not identify outputs.  Were they removed via optimizations?") ;

  // Determine the bit size and add everything to a new symbol table
  int bitSize = 0 ;
  GroupSymbolTable* structTable = 
    create_group_symbol_table(theEnv,
			      procDef->get_symbol_table()) ;

  std::map<VariableSymbol*, FieldSymbol*> replacementFields ;

  bool portsRemoved = false ;
  // If this was actually a new style module, we should make sure to
  //  put these in the correct order.
  if (isModule(procDef))
  {
    // Go through the original symbol table and remove any parameter 
    //  symbols that originally existed
    SymbolTable* originalSymTab = procDef->get_symbol_table() ;
    Iter<SymbolTableObject*> originalIter = 
      originalSymTab->get_symbol_table_object_iterator() ;
    while (originalIter.is_valid())
    {
      SymbolTableObject* currentObj = originalIter.current() ;
      originalIter.next() ;
      if (dynamic_cast<ParameterSymbol*>(currentObj) != NULL)
      {
	originalSymTab->remove_symbol_table_object(currentObj) ;
      }
    }
    portsRemoved = true ;

    // Sort the variable symbols in parameter order.  This is just an 
    //  insertion sort, so it could be done faster.
    list<VariableSymbol*> sortedPorts ;
    for (int i = 0 ; i < ports.size() ; ++i)
    {
      list<VariableSymbol*>::iterator portIter = ports.begin() ;
      while (portIter != ports.end())
      {
	BrickAnnote* orderAnnote = 
	  dynamic_cast<BrickAnnote*>((*portIter)->
				     lookup_annote_by_name("ParameterOrder")) ;
	if (orderAnnote == NULL)
	{
	  ++portIter ;
	  continue ;
	}
	IntegerBrick* orderBrick = 
	  dynamic_cast<IntegerBrick*>(orderAnnote->get_brick(0)) ;
	assert(orderBrick != NULL) ;
	if (orderBrick->get_value().c_int() == i)
	{
	  sortedPorts.push_back(*portIter) ;
	  break ;
	}
	++portIter ;
      }
    }
    if (sortedPorts.size() != ports.size())
    {
      OutputWarning("Warning! Analysis detected some input scalars not in"
		    " the parameter list") ;
    }
    // Replace ports with sortedPorts
    ports = sortedPorts ;
  }

  list<VariableSymbol*>::iterator portIter = ports.begin() ;  
  while (portIter != ports.end()) 
  {
    bitSize += 
      (*portIter)->get_type()->get_base_type()->get_bit_size().c_int() ;

    LString dupeName = (*portIter)->get_name() ;

    // Create offset expression:
    IntConstant* offset = 
      create_int_constant(theEnv,
			  create_data_type(theEnv,
					   IInteger(32),
					   0),
			  IInteger(bitSize)) ;


    QualifiedType* dupeType = (*portIter)->get_type() ;
    // Deal with the case where reference types were passed in
    ReferenceType* refType = 
      dynamic_cast<ReferenceType*>(dupeType->get_base_type()) ;
    while (refType != NULL)
    {
      dupeType = dynamic_cast<QualifiedType*>(refType->get_reference_type()) ;
      assert(dupeType != NULL) ;
      refType = dynamic_cast<ReferenceType*>(dupeType->get_base_type()) ;
    }

    // Create a new variable symbol clone
    FieldSymbol* dupe = 
      create_field_symbol(theEnv,
			  dupeType,
			  offset,
			  dupeName) ;
        
    structTable->append_symbol_table_object(dupe) ;

    // Make the connection with the duplicated symbol
    replacementFields[(*portIter)] = dupe ;

    // Remove the original variable symbol from the procedure definition
    //  symbol table.
    if (!portsRemoved)
    {
      procDef->get_symbol_table()->remove_symbol_table_object(*portIter) ;
    }
    
    ++portIter ;
  }
  assert(bitSize != 0);

  StructType* moduleStruct = 
    create_struct_type(theEnv,
		       IInteger(bitSize),
		       0, // bit_alignment
		       TempName(procDef->get_procedure_symbol()->get_name()),
		       0, // is_complete
		       structTable) ;

  
  Iter<FileBlock*> fBlocks = 
    theEnv->get_file_set_block()->get_file_block_iterator() ;
  
  assert(fBlocks.is_valid()) ;
  (fBlocks.current())->get_symbol_table()->append_symbol_table_object(moduleStruct) ;
  
  // This is commented out because it is in the file state block
  //procDef->get_symbol_table()->append_symbol_table_object(moduleStruct) ;

  QualifiedType* qualifiedModuleStruct =
    create_qualified_type(theEnv,
			  moduleStruct,
			  TempName(LString("qualifiedModuleStruct"))) ;
  
  procDef->get_symbol_table()->append_symbol_table_object(qualifiedModuleStruct) ;

  // Create an instance of this type and add it to the symbol table.
  ParameterSymbol* structInstance = 
    create_parameter_symbol(theEnv,
			   qualifiedModuleStruct,
			   TempName(LString("structInstance"))) ;

  procDef->get_symbol_table()->append_symbol_table_object(structInstance) ;

  // Now, set up the procedure symbol to take the struct and return the 
  //  struct.
  assert(procDef != NULL) ;
  ProcedureSymbol* procSym = procDef->get_procedure_symbol() ;
  assert(procSym != NULL) ;
  ProcedureType* procType = procSym->get_type() ;
  assert(procType != NULL) ;
  CProcedureType* cProcType = dynamic_cast<CProcedureType*>(procType) ;
  assert(cProcType != NULL) ;

  // Instead of appending the struct argument, we need to replace all of the 
  //  arguments with the struct.

  while (cProcType->get_argument_count() > 0)
  {
    cProcType->remove_argument(0) ;
  }

  cProcType->set_result_type(moduleStruct) ;
  cProcType->append_argument(qualifiedModuleStruct) ;

  // Now go through all load variable expressions and replace them all with
  //  field symbol values if appropriate
  
  list<LoadVariableExpression*>* allLoads = 
    collect_objects<LoadVariableExpression>(procDef->get_body()) ;

  list<LoadVariableExpression*>::iterator loadIter = allLoads->begin() ;
  while (loadIter != allLoads->end())
  {
    VariableSymbol* currentVariable = (*loadIter)->get_source() ;
    if (replacementFields.find(currentVariable) != replacementFields.end())
    {
      (*loadIter)->set_source(replacementFields[currentVariable]) ;
    }
    ++loadIter ;
  }
  delete allLoads ;

  // Also replace all of the definitions with the field symbol
  list<StoreVariableStatement*>* allStoreVars = 
    collect_objects<StoreVariableStatement>(procDef->get_body()) ;
  list<StoreVariableStatement*>::iterator storeVarIter = allStoreVars->begin();
  while (storeVarIter != allStoreVars->end())
  {
    VariableSymbol* currentDest = (*storeVarIter)->get_destination() ;
    if (replacementFields.find(currentDest) != replacementFields.end())
    {
      (*storeVarIter)->set_destination(replacementFields[currentDest]) ;
    }
    ++storeVarIter ;
  }
  delete allStoreVars ;

  list<SymbolAddressExpression*>* allSymAddr = 
    collect_objects<SymbolAddressExpression>(procDef->get_body()) ;
  list<SymbolAddressExpression*>::iterator symAddrIter = allSymAddr->begin() ;
  while (symAddrIter != allSymAddr->end())
  {
    VariableSymbol* currentVar = 
      dynamic_cast<VariableSymbol*>((*symAddrIter)->get_addressed_symbol()) ;
    if (currentVar != NULL &&
	replacementFields.find(currentVar) != replacementFields.end())
    {
      (*symAddrIter)->set_addressed_symbol(replacementFields[currentVar]) ;
    }
    ++symAddrIter ;
  }
  delete allSymAddr ;
  // One final for bool selects
  list<CallStatement*>* allCalls = 
    collect_objects<CallStatement>(procDef->get_body()) ;
  list<CallStatement*>::iterator callIter = allCalls->begin() ;
  while(callIter != allCalls->end())
  {
    VariableSymbol* currentVar = (*callIter)->get_destination() ;
    if (currentVar != NULL &&
	replacementFields.find(currentVar) != replacementFields.end())
    {
      (*callIter)->set_destination(replacementFields[currentVar]) ;
    }
    ++callIter ;
  }
  delete allCalls ;
}
コード例 #24
0
void TransformSystemsToModules::HandleFeedback() 
{
  assert(procDef != NULL) ;

  list<VariableSymbol*> toReplace ;

  // This function needs to find all variables that are both input and 
  //  output scalars (they used to be feedbacks, but now there is no loop)

  SymbolTable* procSymTab = procDef->get_symbol_table() ;
  for (int i = 0 ; i < procSymTab->get_symbol_table_object_count() ; ++i)
  {
    SymbolTableObject* nextObject = procSymTab->get_symbol_table_object(i) ;
    if (nextObject->lookup_annote_by_name("InputScalar") != NULL &&
	nextObject->lookup_annote_by_name("OutputVariable") != NULL)
    {
      VariableSymbol* var = dynamic_cast<VariableSymbol*>(nextObject) ;
      assert(var != NULL) ;
      toReplace.push_back(var) ;
    }
  }

  // Now, go through all of the different values that need to be replaced and
  //  find all of the uses and definitions and replace them...

  list<VariableSymbol*>::iterator replaceIter = toReplace.begin() ;
  while (replaceIter != toReplace.end())
  {
    LString inputName = (*replaceIter)->get_name() ;
    inputName = inputName + LString("_in") ;

    LString outputName = (*replaceIter)->get_name() ;
    outputName = outputName + LString("_out") ;

    // Create two variables, one for input and one for output
    VariableSymbol* inputReplacement = 
      create_variable_symbol(theEnv,
			     (*replaceIter)->get_type(),
			     inputName) ;
    VariableSymbol* outputReplacement = 
      create_variable_symbol(theEnv,
			     (*replaceIter)->get_type(),
			     outputName) ;
    procDef->get_symbol_table()->append_symbol_table_object(inputReplacement) ;
    procDef->get_symbol_table()->append_symbol_table_object(outputReplacement);

    inputReplacement->append_annote(create_brick_annote(theEnv,
							"InputScalar")) ;
    outputReplacement->append_annote(create_brick_annote(theEnv,
							 "OutputVariable")) ;

    // Find all uses before the first definition and replace them with the
    //  input variable.
    ReplaceUses((*replaceIter), inputReplacement) ;

    // Find the last definition and replace it with the output variable.
    ReplaceDefinition((*replaceIter), outputReplacement)  ;

    // Remove the annotes that started the whole thing
    delete (*replaceIter)->remove_annote_by_name("InputScalar") ;
    delete (*replaceIter)->remove_annote_by_name("OutputVariable") ;

    ++replaceIter ;
  }

}
コード例 #25
0
void
TypeResolver::visitVarDecl(VarDecl *node)
{
  VariableSymbol *sym = node->sym();

  assert(!sym->type());

  Type* type;
  if (TypeSpecifier *spec = node->te().spec()) {
    // We always infer sizes for postdims in variable scope. In argument
    // scope, we don't want something like:
    //
    //    f(x[] = {}), or
    //
    // To infer as int[0]. However, this should be illegal:
    //
    //    f(int x[] = {})
    //
    // So we simply never infer dimensions for arguments.
    //
    // Note: we should not be able to recurse from inside this block. If it
    // could, we'd have to mark spec as resolving earlier.
    Vector<int> literal_dims;
    if (Expression *init = node->initialization()) {
      if (spec->hasPostDims() && !sym->isArgument()) {
        // Compute the dimensions of initializers in case the declaration type
        // requires inference.
        if (ArrayLiteral *lit = init->asArrayLiteral()) {
          literal_dims = fixedArrayLiteralDimensions(spec, lit);
        } else if (StringLiteral *lit = init->asStringLiteral()) {
          literal_dims.append(lit->arrayLength());
        }
      }
    }

    VarDeclSpecHelper helper(node, &literal_dims);
    type = resolveType(node->te(), &helper);
  } else {
    type = node->te().resolved();
  }

  if (!assignTypeToSymbol(sym, type))
    return;

  if (sym->isConstExpr() || !sym->canUseInConstExpr())
    return;

  // If we're currently trying to resolve this variable's constant
  // expression, report an error.
  if (sym->isResolvingConstExpr()) {
    cc_.report(node->loc(), rmsg::recursive_constexpr)
      << sym->name();

    // Pawn requires that const variables have constexprs, so we just set a
    // default one to quell as many other errors as we can. In the future we
    // may want to lax this restriction.
    sym->setConstExpr(DefaultValueForPlainType(sym->type()));
    return;
  }

  // We got a constexpr with no initialization. Just assume it's 0, but
  // report an error as SP1 does.
  if (!node->initialization()) {
    cc_.report(node->loc(), rmsg::constant_var_needs_constexpr)
      << sym->name();
    sym->setConstExpr(DefaultValueForPlainType(sym->type()));
    return;
  }

  sym->setResolvingConstExpr();

  // In Pawn, a const var *must* be a constexpr. We only care about this for
  // ints/floats since constexprs aren't really relevant yet otherwise.
  BoxedValue box;
  ConstantEvaluator ceval(cc_, this, ConstantEvaluator::Required);
  switch (ceval.Evaluate(node->initialization(), &box)) {
    case ConstantEvaluator::Ok:
      break;
    case ConstantEvaluator::NotConstant:
      cc_.report(node->loc(), rmsg::constant_var_needs_constexpr)
        << sym->name();
      // FALLTHROUGH.
    case ConstantEvaluator::TypeError:
      // Error has already been reported.
      box = DefaultValueForPlainType(sym->type());
      break;
    default:
      assert(false);
  }

  // :TODO: type check box

  sym->setConstExpr(box);
}