コード例 #1
0
// Turn an reference pointer into an array reference expression
void ReferenceCleanupPass::CleanupArrayStore(StoreStatement* s)
{
  assert(s != NULL) ;
  
  // Check to see if the destination is a reference variable
  Expression* destination = s->get_destination_address() ;

  VariableSymbol* storedVariable = FindVariable(destination) ;

  if (storedVariable == NULL)
  {
    return ;
  }

  if (dynamic_cast<ReferenceType*>(storedVariable->get_type()->get_base_type()))
  {
    // Can I just change the type?  Pointer conversion should take care of it
    //  then, but I'll have to annotate it
    ReferenceType* refType = 
      dynamic_cast<ReferenceType*>(storedVariable->get_type()->get_base_type()) ;
    QualifiedType* internalType = 
      dynamic_cast<QualifiedType*>(refType->get_reference_type()) ;
    assert(internalType != NULL) ;

    DataType* internalType2 = internalType->get_base_type() ;
    QualifiedType* qualType = storedVariable->get_type() ;
    qualType->set_base_type(NULL) ;
    refType->set_parent(NULL) ;
    internalType->set_parent(NULL) ;
    refType->set_reference_type(NULL) ;
    qualType->set_base_type(internalType2) ;
  }
}
コード例 #2
0
void LUTDetectionPass::do_procedure_definition(ProcedureDefinition* p)
{
  procDef = p ;
  assert(procDef != NULL) ;
  OutputInformation("LUT Detection Pass begins") ;

  // LUTs can only exist in New Style Systems or Modules
  if (isLegacy(procDef))
  {    
    OutputInformation("Legacy code - No LUTs supported") ;
    return ;
  }    
  
  // LUTs are defined to be arrays that are not parameter symbols
  SymbolTable* symTab = procDef->get_symbol_table() ;
  for (int i = 0 ; i < symTab->get_symbol_table_object_count() ; ++i)
  {
    SymbolTableObject* currentObject = symTab->get_symbol_table_object(i) ;
    VariableSymbol* currentVar = 
      dynamic_cast<VariableSymbol*>(currentObject) ;
    ParameterSymbol* currentParam =
      dynamic_cast<ParameterSymbol*>(currentObject) ;
    if (currentVar != NULL &&
	dynamic_cast<ArrayType*>(currentVar->get_type()->get_base_type()) != NULL &&
	currentParam == NULL &&
	currentVar->lookup_annote_by_name("ConstPropArray") == NULL)
    {
      // Found one!  Let's mark it!
      currentObject->append_annote(create_brick_annote(theEnv, "LUT")) ;
    }
  }

  OutputInformation("LUT Detection Pass ends") ;
}
コード例 #3
0
ファイル: exportPass.cpp プロジェクト: JehandadKhan/roccc-2.0
void ExportPass::ConstructModuleSymbols()
{
  CProcedureType* originalType = dynamic_cast<CProcedureType*>(originalProcedure->get_procedure_symbol()->get_type()) ;
  assert(originalType != NULL) ;

  // The original type takes and returns a struct.  We need to change this
  //  to a list of arguments.

  VoidType* newReturnType = create_void_type(theEnv, IInteger(0), 0) ;
  constructedType = create_c_procedure_type(theEnv,
					    newReturnType,
					    false, // has varargs
					    true, // arguments_known
					    0, // bit alignment
					    LString("ConstructedType")) ;

  StructType* returnType = 
    dynamic_cast<StructType*>(originalType->get_result_type()) ;
  assert(returnType != NULL) ;

  SymbolTable* structSymTab = returnType->get_group_symbol_table() ;
  assert(structSymTab != NULL) ;

  for (int i = 0 ; i < structSymTab->get_symbol_table_object_count() ; ++i)
  {
    VariableSymbol* nextVariable = 
      dynamic_cast<VariableSymbol*>(structSymTab->get_symbol_table_object(i));
    if (nextVariable != NULL)
    {
      // Check to see if this is an output or not
      QualifiedType* cloneType ;
      DataType* cloneBase = 
	dynamic_cast<DataType*>(nextVariable->get_type()->get_base_type()->deep_clone()) ;
      assert(cloneBase != NULL) ;
      cloneType = create_qualified_type(theEnv, cloneBase) ;
 
      if (nextVariable->lookup_annote_by_name("Output") != NULL)
      {
	cloneType->append_annote(create_brick_annote(theEnv, "Output")) ;
	// Why doesn't this stick around?
      }
      constructedType->append_argument(cloneType) ;
    }
  }

  constructedSymbol = create_procedure_symbol(theEnv,
					      constructedType,
					      originalProcedure->get_procedure_symbol()->get_name()) ;
  constructedSymbol->set_definition(NULL) ;

}
コード例 #4
0
void ReferenceCleanupPass::CleanupCall(CallStatement* c)
{
  assert(procDef != NULL) ;
  assert(c != NULL) ;

  // We only need to clean up module calls.  If they are built in
  //  functions, like boolsel, we don't want to do this.
  if (IsBuiltIn(c))
  {
    return ;
  }
  
  // Go through the arguments and see if any of them are load variable
  //  expressions to a reference typed variable, and replace those with
  //  symbol address expressions
  for (unsigned int i = 0 ; i < c->get_argument_count() ; ++i)
  {
    Expression* currentArg = c->get_argument(i) ;
    LoadVariableExpression* currentLoadVar = 
      dynamic_cast<LoadVariableExpression*>(currentArg) ;
    if (currentLoadVar != NULL)
    {
      VariableSymbol* currentVar = currentLoadVar->get_source() ;
      DataType* varType = currentVar->get_type()->get_base_type() ;
      ReferenceType* refType = dynamic_cast<ReferenceType*>(varType) ;
      if (refType != NULL)
      {
	QualifiedType* internalType = 
	  dynamic_cast<QualifiedType*>(refType->get_reference_type()) ;
	assert(internalType != NULL) ;
	//	currentVar->set_type(internalType) ;
	SymbolAddressExpression* symAddrExp = 
	  create_symbol_address_expression(theEnv, 
					   internalType->get_base_type(),
					   currentVar) ;
	if (currentLoadVar->lookup_annote_by_name("UndefinedPath") != NULL)
	{
	  symAddrExp->append_annote(create_brick_annote(theEnv, "UndefinedPath")) ;
	}
	currentLoadVar->get_parent()->replace(currentLoadVar, symAddrExp) ;
      }
    }
  }
}
コード例 #5
0
void CleanupRedundantVotes::ProcessCall(CallStatement* c)
{
  assert(c != NULL) ;
  
  SymbolAddressExpression* symAddress = 
    dynamic_cast<SymbolAddressExpression*>(c->get_callee_address()) ;
  assert(symAddress != NULL) ;
  
  Symbol* sym = symAddress->get_addressed_symbol() ;
  assert(sym != NULL) ;

  if (sym->get_name() == LString("ROCCCTripleVote") || 
      sym->get_name() == LString("ROCCCDoubleVote") )
  {
    LoadVariableExpression* errorVariableExpression = 
      dynamic_cast<LoadVariableExpression*>(c->get_argument(0)) ;
    assert(errorVariableExpression != NULL) ;
    VariableSymbol* currentError = errorVariableExpression->get_source() ;
    assert(currentError != NULL) ;
    if (InList(currentError))
    {
      // Create a new variable
      VariableSymbol* errorDupe = 
	create_variable_symbol(theEnv,
			       currentError->get_type(),
			       TempName(LString("UnrolledRedundantError"))) ;
      errorDupe->append_annote(create_brick_annote(theEnv, "DebugRegister")) ;
      procDef->get_symbol_table()->append_symbol_table_object(errorDupe) ;
      usedVariables.push_back(errorDupe) ;
      errorVariableExpression->set_source(errorDupe) ;
    }
    else
    {
      usedVariables.push_back(currentError) ;
    }
  }

}
コード例 #6
0
void ScalarReplacementPass2::ProcessLoad(LoadExpression* e) 
{
  assert(e != NULL) ;
  Expression* innerExp = e->get_source_address() ;
  ArrayReferenceExpression* innerRef = 
    dynamic_cast<ArrayReferenceExpression*>(innerExp) ;
  if (innerRef == NULL)
  {
    return ;
  }

  // Again, don't process lookup tables
  if (IsLookupTable(GetArrayVariable(innerRef)))
  {
    return ;
  }

  VariableSymbol* replacement = NULL ;
  list<std::pair<Expression*, VariableSymbol*> >::iterator identIter = 
    Identified.begin() ;
  while (identIter != Identified.end())
  {
    if (EquivalentExpressions((*identIter).first, innerRef))
    {
      replacement = (*identIter).second ;
      break ;
    }
    ++identIter ;
  }
  assert(replacement != NULL) ;

  LoadVariableExpression* loadVar = 
    create_load_variable_expression(theEnv, 
				    replacement->get_type()->get_base_type(),
				    replacement) ;
  e->get_parent()->replace(e, loadVar) ;
}
コード例 #7
0
// All of the array references expressions in the passed in the struct are
//  equivalent, so we can determine types of the original and use that
//  to create a new expression with which to replace everything.
bool TransformUnrolledArraysPass::ReplaceNDReference(EquivalentReferences* a)
{
  assert(a != NULL) ;
  assert(a->original != NULL) ;

  // Check to see if the reference at this stage is a constant or not
  IntConstant* constantIndex = 
    dynamic_cast<IntConstant*>(a->original->get_index()) ;
  
  if (constantIndex == NULL)
  {
    // There was no replacement made
    return false ;
  }

  Expression* baseAddress = a->original->get_base_array_address() ;
  assert(baseAddress != NULL) ;
  assert(constantIndex != NULL) ;

  // Create a replacement expression for this value.  This will either
  //  be another array reference expression or a single variable.
  Expression* replacementExp = NULL ;
  //  QualifiedType* elementType = GetQualifiedTypeOfElement(a->original) ;
  VariableSymbol* originalSymbol = GetArrayVariable(a->original) ;
  assert(originalSymbol != NULL) ;
  LString replacementName = 
    GetReplacementName(originalSymbol->get_name(), 
		       constantIndex->get_value().c_int()) ;
  int dimensionality = GetDimensionality(a->original) ;
  
  QualifiedType* elementType = originalSymbol->get_type() ;
  while (dynamic_cast<ArrayType*>(elementType->get_base_type()) != NULL)
  {
    elementType = dynamic_cast<ArrayType*>(elementType->get_base_type())->get_element_type() ;
  }
  
  // There is a special case for one dimensional arrays as opposed to all
  //  other dimensional arrays.  It only should happen if we are truly
  //  replacing an array with a one dimensional array.
  if (dimensionality == 1 && 
      dynamic_cast<ArrayReferenceExpression*>(a->original->get_parent())==NULL)
  {

    VariableSymbol* replacementVar = 
      create_variable_symbol(theEnv,
			     GetQualifiedTypeOfElement(a->original),
			     TempName(replacementName)) ;
    procDef->get_symbol_table()->append_symbol_table_object(replacementVar) ;
    
    replacementExp = 
      create_load_variable_expression(theEnv,
				      elementType->get_base_type(),
				      replacementVar) ;
  }
  else
  {
    // Create a new array with one less dimension.  This requires a new
    //  array type.
    ArrayType* varType = 
      dynamic_cast<ArrayType*>(originalSymbol->get_type()->get_base_type()) ;
    assert(varType != NULL) ;
   
    ArrayType* replacementArrayType =
      create_array_type(theEnv,
	varType->get_element_type()->get_base_type()->get_bit_size(),
	0, // bit alignment
	OneLessDimension(originalSymbol->get_type(), dimensionality),
	dynamic_cast<Expression*>(varType->get_lower_bound()->deep_clone()),
	dynamic_cast<Expression*>(varType->get_upper_bound()->deep_clone()),
	TempName(varType->get_name())) ;

    procDef->get_symbol_table()->append_symbol_table_object(replacementArrayType) ;

    VariableSymbol* replacementArraySymbol = 
      create_variable_symbol(theEnv,
			     create_qualified_type(theEnv,
						   replacementArrayType,
						   TempName(LString("qualType"))),
			     TempName(replacementName)) ;

    procDef->get_symbol_table()->append_symbol_table_object(replacementArraySymbol) ;

    // Create a new symbol address expression for this variable symbol
    SymbolAddressExpression* replacementAddrExp =
      create_symbol_address_expression(theEnv,
				       replacementArrayType,
				       replacementArraySymbol) ;

    // Now, replace the symbol address expression in the base
    //  array address with this symbol.
    ReplaceSymbol(a->original, replacementAddrExp) ;
    
    // And replace this reference with the base array address.
    replacementExp = a->original->get_base_array_address() ;
    a->original->set_base_array_address(NULL) ;
    replacementExp->set_parent(NULL) ;
  }

  // Replace all of the equivalent expressions with the newly generated
  //  replacement expression.
  assert(replacementExp != NULL) ;
  a->original->get_parent()->replace(a->original, replacementExp) ;
   
  //  ReplaceChildExpression(a->original->get_parent(),
  //			 a->original,
  //			 replacementExp) ;

  list<ArrayReferenceExpression*>::iterator equivIter = 
    a->allEquivalent.begin() ;
  while (equivIter != a->allEquivalent.end()) 
  {
    (*equivIter)->get_parent()->replace((*equivIter),
					dynamic_cast<Expression*>(replacementExp->deep_clone())) ;
    //    ReplaceChildExpression((*equivIter)->get_parent(),
    //			   (*equivIter),
    //			   dynamic_cast<Expression*>(replacementExp->deep_clone())) ;
    ++equivIter ;
  }

  return true ;
}
コード例 #8
0
Statement *for_statement_walker::dismantle_for_statement(ForStatement *the_for){
    StatementList *replacement = create_statement_list(the_for->get_suif_env());
    VariableSymbol*  index = the_for->get_index();
    DataType *type = unqualify_data_type(index->get_type());
    Expression *lower = the_for->get_lower_bound();
    Expression *upper = the_for->get_upper_bound();
    Expression *step = the_for->get_step();
    LString compare_op = the_for->get_comparison_opcode();
    Statement* body =  the_for->get_body();
    Statement* pre_pad = the_for->get_pre_pad();
//    Statement* post_pad = the_for->get_post_pad();
    CodeLabelSymbol* break_lab = the_for->get_break_label();
    CodeLabelSymbol* continue_lab = the_for->get_continue_label();
    the_for->set_index(0);
    remove_suif_object(lower);
    remove_suif_object(upper);
    remove_suif_object(step);
    remove_suif_object(body);
    remove_suif_object(pre_pad);
//    the_for->set_post_pad(0);
//    remove_suif_object(post_pad);
    the_for->set_break_label(0);
    the_for->set_continue_label(0);

    // I am guessing what pre-pad and post-pad do

    if(pre_pad != 0)replacement->append_statement(pre_pad);

    // initialize the index. Is this right? should we ever initialize to upper, for -ve steps?
    // Is index guaranteed not to be changed? Should we be creating a temporary?

    replacement->append_statement(create_store_variable_statement(body->get_suif_env(),index,lower));

    replacement->append_statement(create_label_location_statement(body->get_suif_env(), continue_lab));

    if (body != 0)
	replacement->append_statement(body);

    // increment the counter

    Expression *index_expr = 
      create_load_variable_expression(body->get_suif_env(),
				      unqualify_data_type(index->get_type()),
				      index);
    Expression *increment = 
      create_binary_expression(body->get_suif_env(),type,k_add,
			       index_expr,step);

    replacement->append_statement(create_store_variable_statement(body->get_suif_env(),index,increment));

    // and loop if not out of range

    Expression *compare =  
      create_binary_expression(body->get_suif_env(),type,
			       compare_op,
			       deep_suif_clone<Expression>(index_expr),
			       deep_suif_clone<Expression>(step));
    replacement->append_statement(create_branch_statement(body->get_suif_env(),compare,continue_lab));

    // end of loop

    replacement->append_statement(create_label_location_statement(body->get_suif_env(),break_lab));
//    if(post_pad != 0)replacement->append_statement(post_pad);
    the_for->get_parent()->replace(the_for,replacement);
    return replacement;
}
コード例 #9
0
void EliminateArrayConvertsPass::do_procedure_definition(ProcedureDefinition* proc_def){
    suif_hash_map<ParameterSymbol*, Type*> params;
    TypeBuilder *tb = (TypeBuilder*)
         get_suif_env()->get_object_factory(TypeBuilder::get_class_name());

    // collect all procedure parameters of pointer type into params list
    for(Iter<ParameterSymbol*> iter = proc_def->get_formal_parameter_iterator();
        iter.is_valid(); iter.next())
    {
        ParameterSymbol* par_sym = iter.current();
        Type* par_type = tb->unqualify_type(par_sym->get_type());

        if(is_kind_of<PointerType>(par_type)){
            // put NULLs into the map at first,
            // they will later be overwritten
            params[par_sym] = NULL;
        }
    }
    if(params.size()==0) return;    // nothing to do
    
    // walk thru all AREs and look for arrays that are in the param list
    {for(Iter<ArrayReferenceExpression> iter =
        object_iterator<ArrayReferenceExpression>(proc_def);
            iter.is_valid(); iter.next())
        {
            ArrayReferenceExpression* are = &iter.current();
            if(is_kind_of<UnaryExpression>(are->get_base_array_address())){
                UnaryExpression* ue = to<UnaryExpression>(are->get_base_array_address());
                if(ue->get_opcode() == k_convert){
                    if(is_kind_of<LoadVariableExpression>(ue->get_source())){
                        LoadVariableExpression* lve = 
                            to<LoadVariableExpression>(ue->get_source());
                        VariableSymbol* array = lve->get_source();
            
                        for(suif_hash_map<ParameterSymbol*, Type*>::iterator iter = params.begin();
                            iter!=params.end();iter++)
                        {
                            ParameterSymbol* par_sym = (*iter).first;
                            if(par_sym == array){
                                // match!
                                Type* array_type;
                                suif_hash_map<ParameterSymbol*, Type*>::iterator iter =
                                    params.find(par_sym);
                                
                                if(iter==params.end() || (*iter).second==NULL){
                                    //array_type = to<PointerType>(ue->get_result_type())->get_reference_type();
                                    array_type = tb->get_qualified_type(ue->get_result_type());
                                    params[par_sym] = array_type;
                                    //printf("%s has type ",par_sym->get_name().c_str());
                                    //array_type->print_to_default();
                                }else{
                                    array_type = params[par_sym].second;
                                    suif_assert(is_kind_of<QualifiedType>(array_type));
                                }

                                array->replace(array->get_type(), array_type);
                                remove_suif_object(ue);
                                remove_suif_object(lve);
                                lve->replace(lve->get_result_type(), tb->unqualify_type(array_type));
                                // put the LoadVar directly under ARE
                                are->set_base_array_address(lve);
                                //are->print_to_default();
                            }
                        }
                    } else {
                        suif_warning(ue->get_source(),
                            ("Expecting a LoadVariableExpression here"));
                    }
                } else {
                    suif_warning(ue, ("Disallow converts in AREs for "
                            "things other than procedure parameters"));
                }
            }
        }
    }
}
コード例 #10
0
void One2MultiArrayExpressionPass::do_procedure_definition(ProcedureDefinition* proc_def)
{
    bool kill_all = !(_preserve_one_dim->is_set());
    // access all array type declarations and create corresponding multi array types
    SuifEnv* suif_env = proc_def->get_suif_env();
    TypeBuilder* tb = (TypeBuilder*)suif_env->
        get_object_factory(TypeBuilder::get_class_name());
    (void) tb; // avoid warning
#ifdef CONVERT_TYPES
    for (Iter<ArrayType> at_iter = object_iterator<ArrayType>(proc_def);
        at_iter.is_valid();at_iter.next())
    {
        MultiDimArrayType* multi_type = 
            converter->array_type2multi_array_type(&at_iter.current());
	}
#endif //CONVERT_TYPES

    // collect tops of array access chains into this list
    list<ArrayReferenceExpression*> ref_exprs;
    for (Iter<ArrayReferenceExpression> are_iter =
		object_iterator<ArrayReferenceExpression>(proc_def);
         are_iter.is_valid(); are_iter.next())
    {
        // itself an array and parent is *not* an array
        ArrayReferenceExpression* are = &are_iter.current();
        if((kill_all || is_kind_of<ArrayReferenceExpression>(are->get_base_array_address())) &&
           !is_kind_of<ArrayReferenceExpression>(are->get_parent()))
        {
            //printf("%p \t", are);are->print_to_default();
            ref_exprs.push_back(are);
	    }
    }

    // for top all expressions, convert them to multi-exprs
    for(list<ArrayReferenceExpression*>::iterator ref_iter = ref_exprs.begin();
        ref_iter != ref_exprs.end(); ref_iter++)
    {
        ArrayReferenceExpression* top_array = *ref_iter;
        converter->convert_array_expr2multi_array_expr(top_array);
    }
#ifdef CONVERT_TYPES    
    // replace the types of all array variables
    for (Iter<VariableSymbol> iter = object_iterator<VariableSymbol>(proc_def);
            iter.is_valid();iter.next())
    {
        VariableSymbol* vd = &iter.current();
        DataType *vtype = tb->unqualify_data_type(vd->get_type());
        if (is_kind_of<ArrayType>(vtype)) {
            MultiDimArrayType* multi_type =
                    converter->array_type2multi_array_type(to<ArrayType>(vtype));
            vd->replace(vd->get_type(), tb->get_qualified_type(multi_type));
        }
    }

    // remove the remaining one-dim array types
    converter->remove_all_one_dim_array_types();
#endif //CONVERT_TYPES
    // make sure no traces of single-dim arrays are left
    if(kill_all){
        {for(Iter<ArrayReferenceExpression> iter =
            object_iterator<ArrayReferenceExpression>(proc_def);
            iter.is_valid(); iter.next())
            {
                // ArrayReferenceExpression* are = &iter.current();
                //are->print_to_default(); printf("at %p \t", are);
                suif_assert_message(false, ("ARE not eliminated"));
            }
        }
#ifdef CONVERT_TYPES
        {for(Iter<ArrayType> iter =
            object_iterator<ArrayType>(proc_def);
            iter.is_valid(); iter.next())
        {suif_assert_message(false, ("ArrayType not eliminated"));}}
#endif
    }
}