int longToRagged(const SEXP& icd9df, VecVecStr& ragged, VecStr& visitIds, const std::string visitId, const std::string icd9Field = "icd9", bool aggregate = true) { #ifdef ICD9_VALGRIND CALLGRIND_START_INSTRUMENTATION; #endif SEXP icds = PROTECT(getRListOrDfElement(icd9df, icd9Field.c_str())); SEXP vsexp = PROTECT(getRListOrDfElement(icd9df, visitId.c_str())); const int approx_cmb_per_visit = 15; // just an estimate. Prob best to overestimate. int vlen = Rf_length(icds); visitIds.reserve(vlen / approx_cmb_per_visit); ragged.reserve(vlen / approx_cmb_per_visit); int max_per_pt = 1; if (TYPEOF(vsexp) != STRSXP) Rcpp::stop("need string input to longToRagged\n"); #ifdef ICD9_DEBUG Rcpp::Rcout << "longToRagged SEXP is STR\n"; #endif const char* lastVisitId = ""; for (int i = 0; i < vlen; ++i) { // always STRING? may get numeric, integer, factor? Can always handle this on R side const char* icd = CHAR(STRING_ELT(icds, i)); const char* vi = CHAR(STRING_ELT(vsexp, i)); if (strcmp(lastVisitId, vi) != 0 && (!aggregate || std::find(visitIds.rbegin(), visitIds.rend(), vi) == visitIds.rend())) { VecStr vcodes; vcodes.reserve(approx_cmb_per_visit); // estimate of number of codes per patient. vcodes.push_back(icd); // new vector of ICD codes with this first item ragged.push_back(vcodes); // and add that vector to the intermediate structure visitIds.push_back(vi); } else { #ifdef ICD9_DEBUG if (ragged.size()==0) { Rcout << "ragged size is ZERO! aborting\n"; break; } #endif ragged[ragged.size() - 1].push_back(icd); // augment vec for current visit and N/V/E type // EXPENSIVE. int len = ragged[ragged.size() - 1].size(); // get new count of cmb for one patient if (len > max_per_pt) max_per_pt = len; } #ifdef ICD9_DEBUG_TRACE Rcout << "ragged size is " << ragged.size() << "\n"; #endif lastVisitId = vi; } // end loop through all visit-code input data #ifdef ICD9_VALGRIND CALLGRIND_STOP_INSTRUMENTATION; // CALLGRIND_DUMP_STATS; #endif UNPROTECT(2); // do sooner if possible? return max_per_pt; }
VecStr alignToSeqStrings(const std::vector<READ>& reads, const REF& reference, aligner& alignObj, bool local, bool usingQuality) { VecStr output; output.push_back(reference.seqBase_.seq_); for (const auto read : reads) { alignObj.alignCache(reference, read, local); output.push_back(alignObj.alignObjectB_.seqBase_.seq_); } return output; }
VecStr findLongestSharedSeqFromReads(const std::vector<T>& reads) { VecStr seqs; for (const auto& rIter : reads) { seqs.push_back(rIter.seqBase_.seq_); } return seqUtil::findLongestShardedMotif(seqs); }
VecStr ParamModelBase::Keys() const { VecStr vs; const size_t num_pars = _parameters.size(); for (size_t i=0; i<num_pars; ++i) vs.push_back(Key(i)); return vs; }
const VecStr fastPermuteVectorOneLength(std::string vec) { VecStr ans; int numOfPermutes = Factorial((int)vec.size()); ans.reserve(numOfPermutes); do { ans.push_back(vec); } while (std::next_permutation(vec.begin(), vec.end())); return ans; }
VecStr getStringsContains(const VecStr& vec, const std::string& contains) { VecStr ans; for (const auto& iter : vec) { if (iter.find(contains) != std::string::npos) { ans.push_back(iter); } } return ans; }
bool areAllOccupiedBySuperstring(Array2D<VecStr> const& occupied, std::string str, Coord const& coord, Direction const& dir) { /** * @brief Given the array of squares in the wordsearch that are occupied, * we check to see if the word str is "allowed" to be at the coord * of ld and have direction dir. See wsSolveDoc.h for more information * on what's "allowed" and what's not. */ //Assert that you remain in the bounds; this is a "private" function, and //you should never leave the bounds when wsSolve() is called. assert((coord.pX + (str.size() - 1) * dir.dX >= 0) && (coord.pX + (str.size() - 1) * dir.dX < occupied.getWidth()) && (coord.pY + (str.size() - 1) * dir.dY >= 0) && (coord.pY + (str.size() - 1) * dir.dY < occupied.getHeight())); //The string's length can't be 0. assert(str.size() != 0); //First check if the square that the first letter of str occupies is occupied //by any superstring of str. If not, exit; if so, make a list of them. VecStr firstVecStr = occupied(coord.pX, coord.pY); if (firstVecStr.size() == 0) return false; //Executes iff above code didn't return false. VecStr possibleSuperstrList; for (unsigned i = 0; i != firstVecStr.size(); ++i) { //The below statement is equivalent to "if str is not a substring of //firstVecStr[i]. if (firstVecStr[i].find(str) == std::string::npos) return false; else possibleSuperstrList.push_back(firstVecStr[i]); } //If the string is only one letter long, and we didn't return false yet, it means //that the string is on a spot occupied by one of its superstrings. Hence, we //return true. if (str.size() == 1) return true; //Something important to note is that str can only be a substring of any //superstring of str if its first is contained by a superstring of str. //Therefore, the set of all possible superstrings of str that overlap with str //entirely has already been determined. In the following code, we either find a //square which is empty or does not contain a superstring of str (and therefore //we return false) or find a square in which some element of possibleSuperstrList //is not found on the square (implying that that element is not a superstring of //str that overlaps with str entirely; make sure you see why); we therefore //remove that element from possibleSuperStrList. In the end, any remaining elements //in possibleSuperstrList is definitely a superstring of str that overlaps with //str entirely; hence, if it is empty by the end, this function returns false, //and if it isn't empty, this function returns true. for (unsigned i = 1; i < str.size(); ++i) { //Vector obtained at the current position in the array. VecStr vecStrCurrent = occupied(coord.pX + i * dir.dX, coord.pY + i * dir.dY); //List of superstrings of str on the current square. VecStr superstrListCurrent; //If the vector is empty, the position is unoccupied. if (vecStrCurrent.size() == 0) return false; //See if str is a substring of any strings currently held in vecStrCurrent. for (unsigned j = 0; j != vecStrCurrent.size(); ++j) { //The below statement is equivalent to "if str is not a substring of //vecStrCurrent[i]. if (vecStrCurrent[j].find(str) == std::string::npos) return false; else superstrListCurrent.push_back(vecStrCurrent[j]); } //Get rid of all the elements of possibleSuperstrList that don't appear in //vecSuperStrListCurrent. We do this by creating a new vector containing all //elements that DO appear in vecSuperStrListCurrent, and then copy //possibleSuperstrList to the new one. VecStr newPossibleSuperstrList; for (unsigned j = 0; j != possibleSuperstrList.size(); ++j) { for (unsigned k = 0; k != superstrListCurrent.size(); ++k) { if (possibleSuperstrList[j] == superstrListCurrent[k]) { newPossibleSuperstrList.push_back(possibleSuperstrList[j]); break; } } } possibleSuperstrList = newPossibleSuperstrList; //If it's empty, you're done. if (possibleSuperstrList.size() == 0) return false; } //Reached if and only if the above code doesn't execute. return true; }
void processArgsFile(string filename, VecPlayerType& players, bool& alwaysCheckPayoffs, string& domainString, string& problemString, int& nGames) { const bool Verbose = true; VecStr args; ifstream infile(filename.c_str(), std::ios::in); if (!infile) { cerr << "Error reading file: " << filename << std::endl; exit(1); } string oneline; while (!infile.eof()) { getline(infile, oneline); if (oneline == "") break; std::istringstream linestring(oneline); string nextArg; linestring >> nextArg; // dummy text at the front of a line linestring >> nextArg; // actual arg args.push_back(nextArg); } StringToPlayerType playerTypes = GameModerator::getPlayerTypes(); for (unsigned i = 0; i < args.size(); i++) { if (Verbose) cout << i << " " << args[i] << "\n"; switch (i) { case 0: players[0] = playerTypes[args[0]]; break; case 1: players[1] = playerTypes[args[1]]; break; case 2: players[2] = playerTypes[args[2]]; break; case 3: assignGame(atoi(args[3].c_str()), alwaysCheckPayoffs, domainString, problemString); break; case 4: nGames = atoi(args[4].c_str()); break; case 5: GameModerator::manySamples = atoi(args[5].c_str()); break; case 6: GameModerator::fewSamples = atoi(args[6].c_str()); break; case 7: GameModerator::maxSize = atoi(args[7].c_str()); break; } } if (Verbose) { cout << "PT0: " << GameModerator::typeString(players[0]) << std::endl; cout << "PT1: " << GameModerator::typeString(players[1]) << std::endl; cout << "PT2: " << GameModerator::typeString(players[2]) << std::endl; cout << "Game: " << domainString << " " << problemString << std::endl; cout << "nGames: " << nGames << std::endl; cout << "maxSamples: " << GameModerator::manySamples << std::endl; cout << "minSamples: " << GameModerator::fewSamples << std::endl; cout << "infoSet size: " << GameModerator::maxSize << std::endl; } }