Exemplo n.º 1
0
int longToRagged(const SEXP& icd9df, VecVecStr& ragged, VecStr& visitIds,
		const std::string visitId, const std::string icd9Field =
				"icd9", bool aggregate = true) {
#ifdef ICD9_VALGRIND
	CALLGRIND_START_INSTRUMENTATION;
#endif
	SEXP icds = PROTECT(getRListOrDfElement(icd9df, icd9Field.c_str()));
	SEXP vsexp = PROTECT(getRListOrDfElement(icd9df, visitId.c_str()));
	const int approx_cmb_per_visit = 15; // just an estimate. Prob best to overestimate.
	int vlen = Rf_length(icds);
	visitIds.reserve(vlen / approx_cmb_per_visit);
	ragged.reserve(vlen / approx_cmb_per_visit);
	int max_per_pt = 1;
	if (TYPEOF(vsexp) != STRSXP)
	  Rcpp::stop("need string input to longToRagged\n");
#ifdef ICD9_DEBUG
	Rcpp::Rcout << "longToRagged SEXP is STR\n";
#endif

	const char* lastVisitId = "";
	for (int i = 0; i < vlen; ++i) {
	  // always STRING? may get numeric, integer, factor? Can always handle this on R side
		const char* icd = CHAR(STRING_ELT(icds, i));
		const char* vi = CHAR(STRING_ELT(vsexp, i));

		if (strcmp(lastVisitId, vi) != 0
				&& (!aggregate
						|| std::find(visitIds.rbegin(), visitIds.rend(), vi)
								== visitIds.rend())) {
			VecStr vcodes;
			vcodes.reserve(approx_cmb_per_visit); // estimate of number of codes per patient.
			vcodes.push_back(icd); // new vector of ICD codes with this first item
			ragged.push_back(vcodes); // and add that vector to the intermediate structure
			visitIds.push_back(vi);
		} else {
#ifdef ICD9_DEBUG
			if (ragged.size()==0) {
				Rcout << "ragged size is ZERO! aborting\n";
				break;
			}
#endif
			ragged[ragged.size() - 1].push_back(icd); // augment vec for current visit and N/V/E type // EXPENSIVE.
			int len = ragged[ragged.size() - 1].size(); // get new count of cmb for one patient
			if (len > max_per_pt)
				max_per_pt = len;
		}
#ifdef ICD9_DEBUG_TRACE
		Rcout << "ragged size is " << ragged.size() << "\n";
#endif

		lastVisitId = vi;
	} // end loop through all visit-code input data

#ifdef ICD9_VALGRIND
	CALLGRIND_STOP_INSTRUMENTATION;
	//        CALLGRIND_DUMP_STATS;
#endif
	UNPROTECT(2); // do sooner if possible?
	return max_per_pt;
}
Exemplo n.º 2
0
VecStr alignToSeqStrings(const std::vector<READ>& reads, const REF& reference,
                         aligner& alignObj, bool local, bool usingQuality) {
  VecStr output;
  output.push_back(reference.seqBase_.seq_);
  for (const auto read : reads) {
    alignObj.alignCache(reference, read, local);
    output.push_back(alignObj.alignObjectB_.seqBase_.seq_);
  }
  return output;
}
Exemplo n.º 3
0
VecStr findLongestSharedSeqFromReads(const std::vector<T>& reads) {
  VecStr seqs;
  for (const auto& rIter : reads) {
    seqs.push_back(rIter.seqBase_.seq_);
  }
  return seqUtil::findLongestShardedMotif(seqs);
}
Exemplo n.º 4
0
VecStr ParamModelBase::Keys() const
{
    VecStr vs;
    const size_t num_pars = _parameters.size();
    for (size_t i=0; i<num_pars; ++i)
        vs.push_back(Key(i));
    return vs;
}
Exemplo n.º 5
0
const VecStr fastPermuteVectorOneLength(std::string vec) {
  VecStr ans;
  int numOfPermutes = Factorial((int)vec.size());
  ans.reserve(numOfPermutes);
  do {
    ans.push_back(vec);
  } while (std::next_permutation(vec.begin(), vec.end()));
  return ans;
}
Exemplo n.º 6
0
VecStr getStringsContains(const VecStr& vec, const std::string& contains) {
  VecStr ans;
  for (const auto& iter : vec) {
    if (iter.find(contains) != std::string::npos) {
      ans.push_back(iter);
    }
  }
  return ans;
}
Exemplo n.º 7
0
bool areAllOccupiedBySuperstring(Array2D<VecStr> const& occupied,
                                 std::string            str,
                                 Coord const&           coord,
                                 Direction const&       dir)
{
    /**
      * @brief Given the array of squares in the wordsearch that are occupied,
      *        we check to see if the word str is "allowed" to be at the coord
      *        of ld and have direction dir. See wsSolveDoc.h for more information
      *        on what's "allowed" and what's not.
      */

    //Assert that you remain in the bounds; this is a "private" function, and
    //you should never leave the bounds when wsSolve() is called.
    assert((coord.pX + (str.size() - 1) * dir.dX >= 0) &&
           (coord.pX + (str.size() - 1) * dir.dX < occupied.getWidth()) &&
           (coord.pY + (str.size() - 1) * dir.dY >= 0) &&
           (coord.pY + (str.size() - 1) * dir.dY < occupied.getHeight()));

    //The string's length can't be 0.
    assert(str.size() != 0);

    //First check if the square that the first letter of str occupies is occupied
    //by any superstring of str. If not, exit; if so, make a list of them.
    VecStr firstVecStr = occupied(coord.pX, coord.pY);
    if (firstVecStr.size() == 0)
        return false;

    //Executes iff above code didn't return false.
    VecStr possibleSuperstrList;

    for (unsigned i = 0; i != firstVecStr.size(); ++i)
    {
        //The below statement is equivalent to "if str is not a substring of
        //firstVecStr[i].
        if (firstVecStr[i].find(str) == std::string::npos)
            return false;
        else
            possibleSuperstrList.push_back(firstVecStr[i]);
    }

    //If the string is only one letter long, and we didn't return false yet, it means
    //that the string is on a spot occupied by one of its superstrings. Hence, we
    //return true.
    if (str.size() == 1)
        return true;

    //Something important to note is that str can only be a substring of any
    //superstring of str if its first is contained by a superstring of str.
    //Therefore, the set of all possible superstrings of str that overlap with str
    //entirely has already been determined. In the following code, we either find a
    //square which is empty or does not contain a superstring of str (and therefore
    //we return false) or find a square in which some element of possibleSuperstrList
    //is not found on the square (implying that that element is not a superstring of
    //str that overlaps with str entirely; make sure you see why); we therefore
    //remove that element from possibleSuperStrList. In the end, any remaining elements
    //in possibleSuperstrList is definitely a superstring of str that overlaps with
    //str entirely; hence, if it is empty by the end, this function returns false,
    //and if it isn't empty, this function returns true.

    for (unsigned i = 1; i < str.size(); ++i)
    {
        //Vector obtained at the current position in the array.
        VecStr vecStrCurrent = occupied(coord.pX + i * dir.dX, coord.pY + i * dir.dY);

        //List of superstrings of str on the current square.
        VecStr superstrListCurrent;

        //If the vector is empty, the position is unoccupied.
        if (vecStrCurrent.size() == 0)
            return false;

        //See if str is a substring of any strings currently held in vecStrCurrent.
        for (unsigned j = 0; j != vecStrCurrent.size(); ++j)
        {
            //The below statement is equivalent to "if str is not a substring of
            //vecStrCurrent[i].
            if (vecStrCurrent[j].find(str) == std::string::npos)
                return false;
            else
                superstrListCurrent.push_back(vecStrCurrent[j]);
        }

        //Get rid of all the elements of possibleSuperstrList that don't appear in
        //vecSuperStrListCurrent. We do this by creating a new vector containing all
        //elements that DO appear in vecSuperStrListCurrent, and then copy
        //possibleSuperstrList to the new one.
        VecStr newPossibleSuperstrList;
        for (unsigned j = 0; j != possibleSuperstrList.size(); ++j)
        {
            for (unsigned k = 0; k != superstrListCurrent.size(); ++k)
            {
                if (possibleSuperstrList[j] == superstrListCurrent[k])
                {
                    newPossibleSuperstrList.push_back(possibleSuperstrList[j]);
                    break;
                }
            }
        }
        possibleSuperstrList = newPossibleSuperstrList;

        //If it's empty, you're done.
        if (possibleSuperstrList.size() == 0)
            return false;
    }

    //Reached if and only if the above code doesn't execute.
    return true;
}
Exemplo n.º 8
0
void processArgsFile(string filename, VecPlayerType& players, bool& alwaysCheckPayoffs, string& domainString,
                     string& problemString, int& nGames) {
    const bool Verbose = true;
    VecStr args;
    ifstream infile(filename.c_str(), std::ios::in);
    if (!infile) {
        cerr << "Error reading file: " << filename << std::endl;
        exit(1);
    }
    string oneline;
    while (!infile.eof()) {
        getline(infile, oneline);
        if (oneline == "")
            break;
        std::istringstream linestring(oneline);
        string nextArg;
        linestring >> nextArg; // dummy text at the front of a line
        linestring >> nextArg; // actual arg
        args.push_back(nextArg);
    }
    StringToPlayerType playerTypes = GameModerator::getPlayerTypes();
    for (unsigned i = 0; i < args.size(); i++) {
        if (Verbose)
            cout << i << " " << args[i] << "\n";
        switch (i) {
        case 0:
            players[0] = playerTypes[args[0]];
            break;
        case 1:
            players[1] = playerTypes[args[1]];
            break;
        case 2:
            players[2] = playerTypes[args[2]];
            break;
        case 3:
            assignGame(atoi(args[3].c_str()), alwaysCheckPayoffs, domainString, problemString);
            break;
        case 4:
            nGames = atoi(args[4].c_str());
            break;
        case 5:
            GameModerator::manySamples = atoi(args[5].c_str());
            break;
        case 6:
            GameModerator::fewSamples = atoi(args[6].c_str());
            break;
        case 7:
            GameModerator::maxSize = atoi(args[7].c_str());
            break;

        }
    }
    if (Verbose) {
        cout << "PT0: " << GameModerator::typeString(players[0]) << std::endl;
        cout << "PT1: " << GameModerator::typeString(players[1]) << std::endl;
        cout << "PT2: " << GameModerator::typeString(players[2]) << std::endl;
        cout << "Game: " << domainString << " " << problemString << std::endl;
        cout << "nGames: " << nGames << std::endl;
        cout << "maxSamples: " << GameModerator::manySamples << std::endl;
        cout << "minSamples: " << GameModerator::fewSamples << std::endl;
        cout << "infoSet size: " << GameModerator::maxSize << std::endl;
    }
}