コード例 #1
0
ファイル: hoverVehicle.cpp プロジェクト: caomw/Torque3D
void HoverVehicle::updateDustTrail( F32 dt )
{
    // Check to see if we're moving.

    VectorF velocityVector = getVelocity();
    F32 velocity = velocityVector.len();

    if( velocity > 2.0 )
    {
        velocityVector.normalize();
        emitDust( mDustTrailEmitter, mDataBlock->triggerTrailHeight, mDataBlock->dustTrailOffset,
                  ( U32 )( dt * 1000 * ( velocity / mDataBlock->dustTrailFreqMod ) ),
                  velocityVector );
    }
}
コード例 #2
0
bool Trigger::testObject(GameBase* enter)
{
   if (mTriggerPolyhedron.pointList.size() == 0)
      return false;

   mClippedList.clear();

   SphereF sphere;
   sphere.center = (mWorldBox.minExtents + mWorldBox.maxExtents) * 0.5;
   VectorF bv = mWorldBox.maxExtents - sphere.center;
   sphere.radius = bv.len();

   enter->buildPolyList(PLC_Collision, &mClippedList, mWorldBox, sphere);
   return mClippedList.isEmpty() == false;
}
コード例 #3
0
void GFXDrawUtil::drawCylinder( const GFXStateBlockDesc &desc, const Point3F &basePnt, const Point3F &tipPnt, F32 radius, const ColorI &color )
{
   VectorF uvec = tipPnt - basePnt;
   F32 height = uvec.len();
   uvec.normalize();
   MatrixF mat( true );
   MathUtils::getMatrixFromUpVector( uvec, &mat );   
   mat.setPosition(basePnt);

   Point3F scale( radius, radius, height * 2 );
   mat.scale(scale);
   GFXTransformSaver saver;

   mDevice->pushWorldMatrix();
   mDevice->multWorld(mat);

   S32 numPoints = sizeof(circlePoints)/sizeof(Point2F);
   GFXVertexBufferHandle<GFXVertexPC> verts(mDevice, numPoints * 4 + 4, GFXBufferTypeVolatile);
   verts.lock();
   for (S32 i=0; i<numPoints + 1; i++)
   {
      S32 imod = i % numPoints;
      verts[i].point = Point3F(circlePoints[imod].x,circlePoints[imod].y, 0.5f);
      verts[i].color = color;
      verts[i + numPoints + 1].point = Point3F(circlePoints[imod].x,circlePoints[imod].y, 0);
      verts[i + numPoints + 1].color = color;

      verts[2*numPoints + 2 + 2 * i].point = Point3F(circlePoints[imod].x,circlePoints[imod].y, 0.5f);
      verts[2*numPoints + 2 + 2 * i].color = color;
      verts[2*numPoints + 2 + 2 * i + 1].point = Point3F(circlePoints[imod].x,circlePoints[imod].y, 0);
      verts[2*numPoints + 2 + 2 * i + 1].color = color;
   }
   verts.unlock();

   mDevice->setStateBlockByDesc( desc );

   mDevice->setVertexBuffer( verts );
   mDevice->setupGenericShaders( GFXDevice::GSModColorTexture );

   mDevice->drawPrimitive( GFXTriangleFan, 0, numPoints );
   mDevice->drawPrimitive( GFXTriangleFan, numPoints + 1, numPoints );
   mDevice->drawPrimitive( GFXTriangleStrip, 2 * numPoints + 2, 2 * numPoints);

   mDevice->popWorldMatrix();
}
コード例 #4
0
void PxSingleActor::onCollision( GameBase *hitObject, const VectorF &impactForce )
{
   if ( isGhost() )  
      return;

   PROFILE_SCOPE( PxSingleActor_OnCollision );

   // TODO: Why do we not get a hit position?
   Point3F hitPos = getPosition();

   String strHitPos = String::ToString( "%g %g %g", hitPos.x, hitPos.y, hitPos.z );
   String strImpactVec = String::ToString( "%g %g %g", impactForce.x, impactForce.y, impactForce.z );
   String strImpactForce = String::ToString( "%g", impactForce.len() );
      
   Con::executef( mDataBlock, "onCollision", scriptThis(), 
      hitObject ? hitObject->scriptThis() : NULL, 
      strHitPos.c_str(), strImpactVec.c_str(), strImpactForce.c_str() );
}
コード例 #5
0
ファイル: decalRoad.cpp プロジェクト: Adhdcrazzy/Torque3D
void DecalRoad::_captureVerts()
{  
   PROFILE_SCOPE( DecalRoad_captureVerts );

   //Con::warnf( "%s - captureVerts", isServerObject() ? "server" : "client" );

   if ( isServerObject() )
   {
      //Con::errorf( "DecalRoad::_captureVerts - called on the server side!" );
      return;
   }

   if ( mEdges.size() == 0 )
      return;

   //
   // Construct ClippedPolyList objects for each pair
   // of roadEdges.
   // Use them to capture Terrain verts.
   //
   SphereF sphere;
   RoadEdge *edge = NULL;
   RoadEdge *nextEdge = NULL;

   mTriangleCount = 0;
   mVertCount = 0;

   Vector<ClippedPolyList> clipperList;

   for ( U32 i = 0; i < mEdges.size() - 1; i++ )
   {      
      Box3F box;
      edge = &mEdges[i];
      nextEdge = &mEdges[i+1];

      box.minExtents = edge->p1;
      box.maxExtents = edge->p1;
      box.extend( edge->p0 );
      box.extend( edge->p2 );
      box.extend( nextEdge->p0 );
      box.extend( nextEdge->p1 );
      box.extend( nextEdge->p2 );
      box.minExtents.z -= 5.0f;
      box.maxExtents.z += 5.0f;

      sphere.center = ( nextEdge->p1 + edge->p1 ) * 0.5f;
      sphere.radius = 100.0f; // NOTE: no idea how to calculate this

      ClippedPolyList clipper;
      clipper.mNormal.set(0.0f, 0.0f, 0.0f);
      VectorF n;
      PlaneF plane0, plane1;

      // Construct Back Plane
      n = edge->p2 - edge->p0;
      n.normalize();
      n = mCross( n, edge->uvec );      
      plane0.set( edge->p0, n );   
      clipper.mPlaneList.push_back( plane0 );

      // Construct Front Plane
      n = nextEdge->p2 - nextEdge->p0;
      n.normalize();
      n = -mCross( edge->uvec, n );
      plane1.set( nextEdge->p0, -n );
      //clipper.mPlaneList.push_back( plane1 );

      // Test if / where the planes intersect.
      bool discardLeft = false;
      bool discardRight = false;
      Point3F iPos; 
      VectorF iDir;

      if ( plane0.intersect( plane1, iPos, iDir ) )
      {                  
         Point2F iPos2F( iPos.x, iPos.y );
         Point2F cPos2F( edge->p1.x, edge->p1.y );
         Point2F rVec2F( edge->rvec.x, edge->rvec.y );

         Point2F iVec2F = iPos2F - cPos2F;
         F32 iLen = iVec2F.len();
         iVec2F.normalize();

         if ( iLen < edge->width * 0.5f )
         {
            F32 dot = mDot( rVec2F, iVec2F );

            // The clipping planes intersected on the right side,
            // discard the right side clipping plane.
            if ( dot > 0.0f )
               discardRight = true;         
            // The clipping planes intersected on the left side,
            // discard the left side clipping plane.
            else
               discardLeft = true;
         }
      }

      // Left Plane
      if ( !discardLeft )
      {
         n = ( nextEdge->p0 - edge->p0 );
         n.normalize();
         n = mCross( edge->uvec, n );
         clipper.mPlaneList.push_back( PlaneF(edge->p0, n) );
      }
      else
      {
         nextEdge->p0 = edge->p0;         
      }

      // Right Plane
      if ( !discardRight )
      {
         n = ( nextEdge->p2 - edge->p2 );
         n.normalize();            
         n = -mCross( n, edge->uvec );
         clipper.mPlaneList.push_back( PlaneF(edge->p2, -n) );
      }
      else
      {
         nextEdge->p2 = edge->p2;         
      }

      n = nextEdge->p2 - nextEdge->p0;
      n.normalize();
      n = -mCross( edge->uvec, n );
      plane1.set( nextEdge->p0, -n );
      clipper.mPlaneList.push_back( plane1 );

      // We have constructed the clipping planes,
      // now grab/clip the terrain geometry
      getContainer()->buildPolyList( PLC_Decal, box, TerrainObjectType, &clipper );         
      clipper.cullUnusedVerts();
      clipper.triangulate();
      clipper.generateNormals();

      // If we got something, add it to the ClippedPolyList Vector
      if ( !clipper.isEmpty() && !( smDiscardAll && ( discardRight || discardLeft ) ) )
      {
         clipperList.push_back( clipper );       
      
         mVertCount += clipper.mVertexList.size();
         mTriangleCount += clipper.mPolyList.size();
      }
   }

   //
   // Set the roadEdge height to be flush with terrain
   // This is not really necessary but makes the debug spline rendering better.
   //
   for ( U32 i = 0; i < mEdges.size() - 1; i++ )
   {            
      edge = &mEdges[i];      
      
      _getTerrainHeight( edge->p0.x, edge->p0.y, edge->p0.z );

      _getTerrainHeight( edge->p2.x, edge->p2.y, edge->p2.z );
   }

   //
   // Allocate the RoadBatch(s)   
   //

   // If we captured no verts, then we can return here without
   // allocating any RoadBatches or the Vert/Index Buffers.
   // PreprenderImage will not allocate a render instance while
   // mBatches.size() is zero.
   U32 numClippers = clipperList.size();
   if ( numClippers == 0 )
      return;

   mBatches.clear();

   // Allocate the VertexBuffer and PrimitiveBuffer
   mVB.set( GFX, mVertCount, GFXBufferTypeStatic );
   mPB.set( GFX, mTriangleCount * 3, 0, GFXBufferTypeStatic );

   // Lock the VertexBuffer
   GFXVertexPNTBT *vertPtr = mVB.lock();
   if(!vertPtr) return;
   U32 vertIdx = 0;

   //
   // Fill the VertexBuffer and vertex data for the RoadBatches
   // Loop through the ClippedPolyList Vector   
   //
   RoadBatch *batch = NULL;
   F32 texStart = 0.0f;
   F32 texEnd;
   
   for ( U32 i = 0; i < clipperList.size(); i++ )
   {   
      ClippedPolyList *clipper = &clipperList[i];
      RoadEdge &edge = mEdges[i];
      RoadEdge &nextEdge = mEdges[i+1];      

      VectorF segFvec = nextEdge.p1 - edge.p1;
      F32 segLen = segFvec.len();
      segFvec.normalize();

      F32 texLen = segLen / mTextureLength;
      texEnd = texStart + texLen;

      BiQuadToSqr quadToSquare(  Point2F( edge.p0.x, edge.p0.y ), 
                                 Point2F( edge.p2.x, edge.p2.y ), 
                                 Point2F( nextEdge.p2.x, nextEdge.p2.y ), 
                                 Point2F( nextEdge.p0.x, nextEdge.p0.y ) );  

      //
      if ( i % mSegmentsPerBatch == 0 )
      {
         mBatches.increment();
         batch = &mBatches.last();

         batch->bounds.minExtents = clipper->mVertexList[0].point;
         batch->bounds.maxExtents = clipper->mVertexList[0].point;
         batch->startVert = vertIdx;
      }

      // Loop through each ClippedPolyList        
      for ( U32 j = 0; j < clipper->mVertexList.size(); j++ )
      {
         // Add each vert to the VertexBuffer
         Point3F pos = clipper->mVertexList[j].point;
         vertPtr[vertIdx].point = pos;
         vertPtr[vertIdx].normal = clipper->mNormalList[j];                     
                  
         Point2F uv = quadToSquare.transform( Point2F(pos.x,pos.y) );
         vertPtr[vertIdx].texCoord.x = uv.x;
         vertPtr[vertIdx].texCoord.y = -(( texEnd - texStart ) * uv.y + texStart);   

         vertPtr[vertIdx].tangent = mCross( segFvec, clipper->mNormalList[j] );
         vertPtr[vertIdx].binormal = segFvec;

         vertIdx++;

         // Expand the RoadBatch bounds to contain this vertex   
         batch->bounds.extend( pos );
      }    

      batch->endVert = vertIdx - 1;

      texStart = texEnd;
   }   

   // Unlock the VertexBuffer, we are done filling it.
   mVB.unlock();

   // Lock the PrimitiveBuffer
   U16 *idxBuff;
   mPB.lock(&idxBuff);     
   U32 curIdx = 0;
   U16 vertOffset = 0;   
   batch = NULL;
   S32 batchIdx = -1;

   // Fill the PrimitiveBuffer   
   // Loop through each ClippedPolyList in the Vector
   for ( U32 i = 0; i < clipperList.size(); i++ )
   {      
      ClippedPolyList *clipper = &clipperList[i];

      if ( i % mSegmentsPerBatch == 0 )
      {
         batchIdx++;
         batch = &mBatches[batchIdx];
         batch->startIndex = curIdx;         
      }        

      for ( U32 j = 0; j < clipper->mPolyList.size(); j++ )
      {
         // Write indices for each Poly
         ClippedPolyList::Poly *poly = &clipper->mPolyList[j];                  

         AssertFatal( poly->vertexCount == 3, "Got non-triangle poly!" );

         idxBuff[curIdx] = clipper->mIndexList[poly->vertexStart] + vertOffset;         
         curIdx++;
         idxBuff[curIdx] = clipper->mIndexList[poly->vertexStart + 1] + vertOffset;            
         curIdx++;
         idxBuff[curIdx] = clipper->mIndexList[poly->vertexStart + 2] + vertOffset;                
         curIdx++;
      } 

      batch->endIndex = curIdx - 1;

      vertOffset += clipper->mVertexList.size();
   }

   // Unlock the PrimitiveBuffer, we are done filling it.
   mPB.unlock();

   // Generate the object/world bounds
   // Is the union of all batch bounding boxes.

   Box3F box;
   for ( U32 i = 0; i < mBatches.size(); i++ )
   {
      const RoadBatch &batch = mBatches[i];

      if ( i == 0 )      
         box = batch.bounds;               
      else      
         box.intersect( batch.bounds );               
   }

   Point3F pos = getPosition();

   mWorldBox = box;
   resetObjectBox();

   // Make sure we are in the correct bins given our world box.
   if( getSceneManager() != NULL )
      getSceneManager()->notifyObjectDirty( this );
}
コード例 #6
0
ファイル: item.cpp プロジェクト: Bloodknight/GMK
void Item::updatePos(const U32 /*mask*/, const F32 dt)
{
   // Try and move
   Point3F pos;
   mObjToWorld.getColumn(3,&pos);
   delta.posVec = pos;

   bool contact = false;
   bool nonStatic = false;
   bool stickyNotify = false;
   CollisionList collisionList;
   F32 time = dt;

   static Polyhedron sBoxPolyhedron;
   static ExtrudedPolyList sExtrudedPolyList;
   static EarlyOutPolyList sEarlyOutPolyList;
   MatrixF collisionMatrix(true);
   Point3F end = pos + mVelocity * time;
   U32 mask = isServerObject() ? sServerCollisionMask : sClientCollisionMask;

   // Part of our speed problem here is that we don't track contact surfaces, like we do
   //  with the player.  In order to handle the most common and performance impacting
   //  instance of this problem, we'll use a ray cast to detect any contact surfaces below
   //  us.  This won't be perfect, but it only needs to catch a few of these to make a
   //  big difference.  We'll cast from the top center of the bounding box at the tick's
   //  beginning to the bottom center of the box at the end.
   Point3F startCast((mObjBox.minExtents.x + mObjBox.maxExtents.x) * 0.5,
                     (mObjBox.minExtents.y + mObjBox.maxExtents.y) * 0.5,
                     mObjBox.maxExtents.z);
   Point3F endCast((mObjBox.minExtents.x + mObjBox.maxExtents.x) * 0.5,
                   (mObjBox.minExtents.y + mObjBox.maxExtents.y) * 0.5,
                   mObjBox.minExtents.z);
   collisionMatrix.setColumn(3, pos);
   collisionMatrix.mulP(startCast);
   collisionMatrix.setColumn(3, end);
   collisionMatrix.mulP(endCast);
   RayInfo rinfo;
   bool doToughCollision = true;
   disableCollision();
   if (mCollisionObject)
      mCollisionObject->disableCollision();
   if (getContainer()->castRay(startCast, endCast, mask, &rinfo))
   {
      F32 bd = -mDot(mVelocity, rinfo.normal);

      if (bd >= 0.0)
      {
         // Contact!
         if (mDataBlock->sticky && rinfo.object->getTypeMask() & (STATIC_COLLISION_TYPEMASK)) {
            mVelocity.set(0, 0, 0);
            mAtRest = true;
            mAtRestCounter = 0;
            stickyNotify = true;
            mStickyCollisionPos    = rinfo.point;
            mStickyCollisionNormal = rinfo.normal;
            doToughCollision = false;;
         } else {
            // Subtract out velocity into surface and friction
            VectorF fv = mVelocity + rinfo.normal * bd;
            F32 fvl = fv.len();
            if (fvl) {
               F32 ff = bd * mDataBlock->friction;
               if (ff < fvl) {
                  fv *= ff / fvl;
                  fvl = ff;
               }
            }
            bd *= 1 + mDataBlock->elasticity;
            VectorF dv = rinfo.normal * (bd + 0.002);
            mVelocity += dv;
            mVelocity -= fv;

            // Keep track of what we hit
            contact = true;
            U32 typeMask = rinfo.object->getTypeMask();
            if (!(typeMask & StaticObjectType))
               nonStatic = true;
            if (isServerObject() && (typeMask & ShapeBaseObjectType)) {
               ShapeBase* col = static_cast<ShapeBase*>(rinfo.object);
               queueCollision(col,mVelocity - col->getVelocity());
            }
         }
      }
   }
   enableCollision();
   if (mCollisionObject)
      mCollisionObject->enableCollision();

   if (doToughCollision)
   {
      U32 count;
      for (count = 0; count < 3; count++)
      {
         // Build list from convex states here...
         end = pos + mVelocity * time;


         collisionMatrix.setColumn(3, end);
         Box3F wBox = getObjBox();
         collisionMatrix.mul(wBox);
         Box3F testBox = wBox;
         Point3F oldMin = testBox.minExtents;
         Point3F oldMax = testBox.maxExtents;
         testBox.minExtents.setMin(oldMin + (mVelocity * time));
         testBox.maxExtents.setMin(oldMax + (mVelocity * time));

         sEarlyOutPolyList.clear();
         sEarlyOutPolyList.mNormal.set(0,0,0);
         sEarlyOutPolyList.mPlaneList.setSize(6);
         sEarlyOutPolyList.mPlaneList[0].set(wBox.minExtents,VectorF(-1,0,0));
         sEarlyOutPolyList.mPlaneList[1].set(wBox.maxExtents,VectorF(0,1,0));
         sEarlyOutPolyList.mPlaneList[2].set(wBox.maxExtents,VectorF(1,0,0));
         sEarlyOutPolyList.mPlaneList[3].set(wBox.minExtents,VectorF(0,-1,0));
         sEarlyOutPolyList.mPlaneList[4].set(wBox.minExtents,VectorF(0,0,-1));
         sEarlyOutPolyList.mPlaneList[5].set(wBox.maxExtents,VectorF(0,0,1));

         CollisionWorkingList& eorList = mConvex.getWorkingList();
         CollisionWorkingList* eopList = eorList.wLink.mNext;
         while (eopList != &eorList) {
            if ((eopList->mConvex->getObject()->getTypeMask() & mask) != 0)
            {
               Box3F convexBox = eopList->mConvex->getBoundingBox();
               if (testBox.isOverlapped(convexBox))
               {
                  eopList->mConvex->getPolyList(&sEarlyOutPolyList);
                  if (sEarlyOutPolyList.isEmpty() == false)
                     break;
               }
            }
            eopList = eopList->wLink.mNext;
         }
         if (sEarlyOutPolyList.isEmpty())
         {
            pos = end;
            break;
         }

         collisionMatrix.setColumn(3, pos);
         sBoxPolyhedron.buildBox(collisionMatrix, mObjBox, true);

         // Build extruded polyList...
         VectorF vector = end - pos;
         sExtrudedPolyList.extrude(sBoxPolyhedron, vector);
         sExtrudedPolyList.setVelocity(mVelocity);
         sExtrudedPolyList.setCollisionList(&collisionList);

         CollisionWorkingList& rList = mConvex.getWorkingList();
         CollisionWorkingList* pList = rList.wLink.mNext;
         while (pList != &rList) {
            if ((pList->mConvex->getObject()->getTypeMask() & mask) != 0)
            {
               Box3F convexBox = pList->mConvex->getBoundingBox();
               if (testBox.isOverlapped(convexBox))
               {
                  pList->mConvex->getPolyList(&sExtrudedPolyList);
               }
            }
            pList = pList->wLink.mNext;
         }

         if (collisionList.getTime() < 1.0)
         {
            // Set to collision point
            F32 dt = time * collisionList.getTime();
            pos += mVelocity * dt;
            time -= dt;

            // Pick the most resistant surface
            F32 bd = 0;
            const Collision* collision = 0;
            for (int c = 0; c < collisionList.getCount(); c++) {
               const Collision &cp = collisionList[c];
               F32 dot = -mDot(mVelocity,cp.normal);
               if (dot > bd) {
                  bd = dot;
                  collision = &cp;
               }
            }

            if (collision && mDataBlock->sticky && collision->object->getTypeMask() & (STATIC_COLLISION_TYPEMASK)) {
               mVelocity.set(0, 0, 0);
               mAtRest = true;
               mAtRestCounter = 0;
               stickyNotify = true;
               mStickyCollisionPos    = collision->point;
               mStickyCollisionNormal = collision->normal;
               break;
            } else {
               // Subtract out velocity into surface and friction
               if (collision) {
                  VectorF fv = mVelocity + collision->normal * bd;
                  F32 fvl = fv.len();
                  if (fvl) {
                     F32 ff = bd * mDataBlock->friction;
                     if (ff < fvl) {
                        fv *= ff / fvl;
                        fvl = ff;
                     }
                  }
                  bd *= 1 + mDataBlock->elasticity;
                  VectorF dv = collision->normal * (bd + 0.002);
                  mVelocity += dv;
                  mVelocity -= fv;

                  // Keep track of what we hit
                  contact = true;
                  U32 typeMask = collision->object->getTypeMask();
                  if (!(typeMask & StaticObjectType))
                     nonStatic = true;
                  if (isServerObject() && (typeMask & ShapeBaseObjectType)) {
                     ShapeBase* col = static_cast<ShapeBase*>(collision->object);
                     queueCollision(col,mVelocity - col->getVelocity());
                  }
               }
            }
         }
         else
         {
            pos = end;
            break;
         }
      }
      if (count == 3)
      {
         // Couldn't move...
         mVelocity.set(0, 0, 0);
      }
   }

   // If on the client, calculate delta for backstepping
   if (isGhost()) {
      delta.pos     = pos;
      delta.posVec -= pos;
      delta.dt = 1;
   }

   // Update transform
   MatrixF mat = mObjToWorld;
   mat.setColumn(3,pos);
   Parent::setTransform(mat);
   enableCollision();
   if (mCollisionObject)
      mCollisionObject->enableCollision();
   updateContainer();

   if ( mPhysicsRep )
      mPhysicsRep->setTransform( mat );

   //
   if (contact) {
      // Check for rest condition
      if (!nonStatic && mVelocity.len() < sAtRestVelocity) {
         mVelocity.x = mVelocity.y = mVelocity.z = 0;
         mAtRest = true;
         mAtRestCounter = 0;
      }

      // Only update the client if we hit a non-static shape or
      // if this is our final rest pos.
      if (nonStatic || mAtRest)
         setMaskBits(PositionMask);
   }

   // Collision callbacks. These need to be processed whether we hit
   // anything or not.
   if (!isGhost())
   {
      SimObjectPtr<Item> safePtr(this);
      if (stickyNotify)
      {
         notifyCollision();
         if(bool(safePtr))
			 onStickyCollision_callback( getIdString() );
      }
      else
         notifyCollision();

      // water
      if(bool(safePtr))
      {
         if(!mInLiquid && mWaterCoverage != 0.0f)
         {
            mInLiquid = true;
            if ( !isGhost() )
             mDataBlock->onEnterLiquid_callback( this, mWaterCoverage, mLiquidType.c_str() );
         }

         else if(mInLiquid && mWaterCoverage == 0.0f)
         {
            mInLiquid = false;
            if ( !isGhost() )
             mDataBlock->onLeaveLiquid_callback( this, mLiquidType.c_str() );
         }
      }
   }
}
コード例 #7
0
ファイル: item.cpp プロジェクト: Bloodknight/GMK
void Item::unpackUpdate(NetConnection *connection, BitStream *stream)
{
   Parent::unpackUpdate(connection,stream);

   // InitialUpdateMask
   if (stream->readFlag()) {
      mRotate = stream->readFlag();
      mStatic = stream->readFlag();
      if (stream->readFlag())
         mathRead(*stream, &mObjScale);
      else
         mObjScale.set(1, 1, 1);
   }

   // ThrowSrcMask && mCollisionObject
   if (stream->readFlag()) {
      S32 gIndex = stream->readInt(NetConnection::GhostIdBitSize);
      setCollisionTimeout(static_cast<ShapeBase*>(connection->resolveGhost(gIndex)));
   }

   MatrixF mat = mObjToWorld;

   // RotationMask && !mRotate
   if (stream->readFlag()) {
      // Assumes rotation is about the Z axis
      AngAxisF aa;
      aa.axis.set(0.0f, 0.0f, stream->readFlag() ? -1.0f : 1.0f);
      stream->read(&aa.angle);
      aa.setMatrix(&mat);
      Point3F pos;
      mObjToWorld.getColumn(3,&pos);
      mat.setColumn(3,pos);
   }

   // PositionMask
   if (stream->readFlag()) {
      Point3F pos;
      mathRead(*stream, &pos);
      F32 speed = mVelocity.len();
      if ((mAtRest = stream->readFlag()) == true)
         mVelocity.set(0.0f, 0.0f, 0.0f);
      else
         mathRead(*stream, &mVelocity);

      if (stream->readFlag() && isProperlyAdded()) {
         // Determin number of ticks to warp based on the average
         // of the client and server velocities.
         delta.warpOffset = pos - delta.pos;
         F32 as = (speed + mVelocity.len()) * 0.5f * TickSec;
         F32 dt = (as > 0.00001f) ? delta.warpOffset.len() / as: sMaxWarpTicks;
         delta.warpTicks = (S32)((dt > sMinWarpTicks)? getMax(mFloor(dt + 0.5f), 1.0f): 0.0f);

         if (delta.warpTicks)
         {
            // Setup the warp to start on the next tick, only the
            // object's position is warped.
            if (delta.warpTicks > sMaxWarpTicks)
               delta.warpTicks = sMaxWarpTicks;
            delta.warpOffset /= (F32)delta.warpTicks;
         }
         else {
            // Going to skip the warp, server and client are real close.
            // Adjust the frame interpolation to move smoothly to the
            // new position within the current tick.
            Point3F cp = delta.pos + delta.posVec * delta.dt;
            VectorF vec = delta.pos - cp;
            F32 vl = vec.len();
            if (vl) {
               F32 s = delta.posVec.len() / vl;
               delta.posVec = (cp - pos) * s;
            }
            delta.pos = pos;
            mat.setColumn(3,pos);
         }
      }
      else {
         // Set the item to the server position
         delta.warpTicks = 0;
         delta.posVec.set(0,0,0);
         delta.pos = pos;
         delta.dt = 0;
         mat.setColumn(3,pos);
      }
   }
   Parent::setTransform(mat);
}
コード例 #8
0
ファイル: etherform.cpp プロジェクト: fr1tz/terminal-overload
Point3F Etherform::_move( const F32 travelTime, Collision *outCol )
{
   // Try and move to new pos
   F32 totalMotion  = 0.0f;
   
   // TODO: not used?
   //F32 initialSpeed = mVelocity.len();

   Point3F start;
   Point3F initialPosition;
   getTransform().getColumn(3,&start);
   initialPosition = start;

   static CollisionList collisionList;
   static CollisionList physZoneCollisionList;

   collisionList.clear();
   physZoneCollisionList.clear();

   MatrixF collisionMatrix(true);
   collisionMatrix.setColumn(3, start);

   VectorF firstNormal(0.0f, 0.0f, 0.0f);
   F32 time = travelTime;
   U32 count = 0;

   static Polyhedron sBoxPolyhedron;
   static ExtrudedPolyList sExtrudedPolyList;
   static ExtrudedPolyList sPhysZonePolyList;

   for (; count < sMoveRetryCount; count++) {
      F32 speed = mVelocity.len();
      if(!speed)
         break;

      Point3F end = start + mVelocity * time;
      Point3F distance = end - start;

      if (mFabs(distance.x) < mObjBox.len_x() &&
          mFabs(distance.y) < mObjBox.len_y() &&
          mFabs(distance.z) < mObjBox.len_z())
      {
         // We can potentially early out of this.  If there are no polys in the clipped polylist at our
         //  end position, then we can bail, and just set start = end;
         Box3F wBox = mScaledBox;
         wBox.minExtents += end;
         wBox.maxExtents += end;

         static EarlyOutPolyList eaPolyList;
         eaPolyList.clear();
         eaPolyList.mNormal.set(0.0f, 0.0f, 0.0f);
         eaPolyList.mPlaneList.clear();
         eaPolyList.mPlaneList.setSize(6);
         eaPolyList.mPlaneList[0].set(wBox.minExtents,VectorF(-1.0f, 0.0f, 0.0f));
         eaPolyList.mPlaneList[1].set(wBox.maxExtents,VectorF(0.0f, 1.0f, 0.0f));
         eaPolyList.mPlaneList[2].set(wBox.maxExtents,VectorF(1.0f, 0.0f, 0.0f));
         eaPolyList.mPlaneList[3].set(wBox.minExtents,VectorF(0.0f, -1.0f, 0.0f));
         eaPolyList.mPlaneList[4].set(wBox.minExtents,VectorF(0.0f, 0.0f, -1.0f));
         eaPolyList.mPlaneList[5].set(wBox.maxExtents,VectorF(0.0f, 0.0f, 1.0f));

         // Build list from convex states here...
         CollisionWorkingList& rList = mConvex.getWorkingList();
         CollisionWorkingList* pList = rList.wLink.mNext;
         while (pList != &rList) {
            Convex* pConvex = pList->mConvex;
            if (pConvex->getObject()->getTypeMask() & sCollisionMoveMask) {
               Box3F convexBox = pConvex->getBoundingBox();
               if (wBox.isOverlapped(convexBox))
               {
                  // No need to separate out the physical zones here, we want those
                  //  to cause a fallthrough as well...
                  pConvex->getPolyList(&eaPolyList);
               }
            }
            pList = pList->wLink.mNext;
         }

         if (eaPolyList.isEmpty())
         {
            totalMotion += (end - start).len();
            start = end;
            break;
         }
      }

      collisionMatrix.setColumn(3, start);
      sBoxPolyhedron.buildBox(collisionMatrix, mScaledBox, true);

      // Setup the bounding box for the extrudedPolyList
      Box3F plistBox = mScaledBox;
      collisionMatrix.mul(plistBox);
      Point3F oldMin = plistBox.minExtents;
      Point3F oldMax = plistBox.maxExtents;
      plistBox.minExtents.setMin(oldMin + (mVelocity * time) - Point3F(0.1f, 0.1f, 0.1f));
      plistBox.maxExtents.setMax(oldMax + (mVelocity * time) + Point3F(0.1f, 0.1f, 0.1f));

      // Build extruded polyList...
      VectorF vector = end - start;
      sExtrudedPolyList.extrude(sBoxPolyhedron,vector);
      sExtrudedPolyList.setVelocity(mVelocity);
      sExtrudedPolyList.setCollisionList(&collisionList);

      sPhysZonePolyList.extrude(sBoxPolyhedron,vector);
      sPhysZonePolyList.setVelocity(mVelocity);
      sPhysZonePolyList.setCollisionList(&physZoneCollisionList);

      // Build list from convex states here...
      CollisionWorkingList& rList = mConvex.getWorkingList();
      CollisionWorkingList* pList = rList.wLink.mNext;
      while (pList != &rList) {
         Convex* pConvex = pList->mConvex;
         if (pConvex->getObject()->getTypeMask() & sCollisionMoveMask) {
            Box3F convexBox = pConvex->getBoundingBox();
            if (plistBox.isOverlapped(convexBox))
            {
               if (pConvex->getObject()->getTypeMask() & PhysicalZoneObjectType)
                  pConvex->getPolyList(&sPhysZonePolyList);
               else
                  pConvex->getPolyList(&sExtrudedPolyList);
            }
         }
         pList = pList->wLink.mNext;
      }

      // Take into account any physical zones...
      for (U32 j = 0; j < physZoneCollisionList.getCount(); j++) 
      {
         AssertFatal(dynamic_cast<PhysicalZone*>(physZoneCollisionList[j].object), "Bad phys zone!");
         const PhysicalZone* pZone = (PhysicalZone*)physZoneCollisionList[j].object;
         if (pZone->isActive())
            mVelocity *= pZone->getVelocityMod();
      }

      if (collisionList.getCount() != 0 && collisionList.getTime() < 1.0f) 
      {
         // Set to collision point
         F32 velLen = mVelocity.len();

         F32 dt = time * getMin(collisionList.getTime(), 1.0f);
         start += mVelocity * dt;
         time -= dt;

         totalMotion += velLen * dt;

         // Back off...
         if ( velLen > 0.f ) {
            F32 newT = getMin(0.01f / velLen, dt);
            start -= mVelocity * newT;
            totalMotion -= velLen * newT;
         }

         // Pick the surface most parallel to the face that was hit.
         const Collision *collision = &collisionList[0];
         const Collision *cp = collision + 1;
         const Collision *ep = collision + collisionList.getCount();
         for (; cp != ep; cp++)
         {
            if (cp->faceDot > collision->faceDot)
               collision = cp;
         }

         F32 bd = -mDot(mVelocity, collision->normal);

         // Copy this collision out so
         // we can use it to do impacts
         // and query collision.
         *outCol = *collision;

         // Subtract out velocity
         VectorF dv = collision->normal * (bd + sNormalElasticity);
         mVelocity += dv;
         if (count == 0)
         {
            firstNormal = collision->normal;
         }
         else
         {
            if (count == 1)
            {
               // Re-orient velocity along the crease.
               if (mDot(dv,firstNormal) < 0.0f &&
                   mDot(collision->normal,firstNormal) < 0.0f)
               {
                  VectorF nv;
                  mCross(collision->normal,firstNormal,&nv);
                  F32 nvl = nv.len();
                  if (nvl)
                  {
                     if (mDot(nv,mVelocity) < 0.0f)
                        nvl = -nvl;
                     nv *= mVelocity.len() / nvl;
                     mVelocity = nv;
                  }
               }
            }
         }
      }
      else
      {
         totalMotion += (end - start).len();
         start = end;
         break;
      }
   }

   if (count == sMoveRetryCount)
   {
      // Failed to move
      start = initialPosition;
      mVelocity.set(0.0f, 0.0f, 0.0f);
   }

   return start;
}