コード例 #1
0
ファイル: main.cpp プロジェクト: Codermay/libigl
// This function is called every time a keyboard button is pressed
bool key_down(igl::viewer::Viewer& viewer, unsigned char key, int modifier)
{
  using namespace std;
  using namespace Eigen;

  if (key >= '1' && key <= '9')
  {
    double t = double((key - '1')+1) / 9.0;

    VectorXd v = B.col(2).array() - B.col(2).minCoeff();
    v /= v.col(0).maxCoeff();

    vector<int> s;

    for (unsigned i=0; i<v.size();++i)
      if (v(i) < t)
        s.push_back(i);

    MatrixXd V_temp(s.size()*4,3);
    MatrixXi F_temp(s.size()*4,3);

    for (unsigned i=0; i<s.size();++i)
    {
      V_temp.row(i*4+0) = TV.row(TT(s[i],0));
      V_temp.row(i*4+1) = TV.row(TT(s[i],1));
      V_temp.row(i*4+2) = TV.row(TT(s[i],2));
      V_temp.row(i*4+3) = TV.row(TT(s[i],3));
      F_temp.row(i*4+0) << (i*4)+0, (i*4)+1, (i*4)+3;
      F_temp.row(i*4+1) << (i*4)+0, (i*4)+2, (i*4)+1;
      F_temp.row(i*4+2) << (i*4)+3, (i*4)+2, (i*4)+0;
      F_temp.row(i*4+3) << (i*4)+1, (i*4)+2, (i*4)+3;
    }

    viewer.data.clear();
    viewer.data.set_mesh(V_temp,F_temp);
    viewer.data.set_face_based(true);
  }


  return false;
}
コード例 #2
0
void ConsistencyTest::printOBJ(int numberOfPrints, string printToHere, MatrixXd& cB, Simulation& cSim, MatrixXi& cTT){

	double refinement = 9;
	double t = ((refinement - 1)+1) / 9.0;


	VectorXd v = cB.col(2).array() - cB.col(2).minCoeff();
	v /= v.col(0).maxCoeff();

	vector<int> s;
	for (unsigned i=0; i<v.size();++i){
		if (v(i) < t){
			s.push_back(i);
		}
	}

	MatrixXd V_temp(s.size()*4,3);
	MatrixXi F_temp(s.size()*4,3);

	for (unsigned i=0; i<s.size();++i)
	{
		V_temp.row(i*4+0) = cSim.integrator->TV.row(cSim.integrator->TT(s[i],0));
		V_temp.row(i*4+1) = cSim.integrator->TV.row(cSim.integrator->TT(s[i],1));
		V_temp.row(i*4+2) = cSim.integrator->TV.row(cSim.integrator->TT(s[i],2));
		V_temp.row(i*4+3) = cSim.integrator->TV.row(cSim.integrator->TT(s[i],3));
		F_temp.row(i*4+0) << (i*4)+0, (i*4)+1, (i*4)+3;
		F_temp.row(i*4+1) << (i*4)+0, (i*4)+2, (i*4)+1;
		F_temp.row(i*4+2) << (i*4)+3, (i*4)+2, (i*4)+0;
		F_temp.row(i*4+3) << (i*4)+1, (i*4)+2, (i*4)+3;
	}

	cout<<printToHere + to_string(numberOfPrints)<<endl;
	system(("mkdir -p "+printToHere).c_str());
	igl::writeOBJ(printToHere + to_string(numberOfPrints)+".obj", V_temp, F_temp);

	return;
}
コード例 #3
0
// [[Rcpp::export]]
List wasserstein_auto_(NumericVector p_, NumericVector q_, NumericMatrix cost_matrix_,
                  double epsilon, double desired_alpha){
  // compute distance between p and q
  // p corresponds to the weights of a N-sample
  // each q corresponds to the weights of a M-sample
  // Thus cost_matrix must be a N x M cost matrix
  // epsilon is a regularization parameter, equal to 1/lambda in some references
  int N = p_.size();
  int M = q_.size();
  
  Map<VectorXd> p(as<Map<VectorXd> >(p_));
  Map<VectorXd> q(as<Map<VectorXd> >(q_));
  Map<MatrixXd> cost_matrix(as<Map<MatrixXd> >(cost_matrix_));
  // avoid to take exp(k) when k is less than -500,
  // as K then contains zeros, and then the upcoming computations divide by zero
  MatrixXd K = (cost_matrix.array() * (-1./epsilon)); // K =  exp(- M / epsilon)
  for (int i = 0; i < N; i++){
    for (int j = 0; j < M; j++){
      if (K(i,j) < -500){
        K(i,j) = exp(-500);
      } else {
        K(i,j) = exp(K(i,j));
      }
    }
  }
  MatrixXd K_transpose = K.transpose();
  MatrixXd K_tilde = p.array().inverse().matrix().asDiagonal() * K; // diag(1/p) %*% K
  VectorXd u = VectorXd::Constant(N, 1./N);
  //
  VectorXd marginal1, marginal2;
  MatrixXd transportmatrix;
  VectorXd v;
  double alpha = 0;
  double beta = 0;
  int niterations_max = 1000;
  int iteration = 0;
  // for (int iteration = 0; iteration < niterations; iteration ++){
  while ((iteration < niterations_max) and (alpha < desired_alpha)){
    iteration ++;
    u = 1. / (K_tilde * (q.array() / (K_transpose * u).array()).matrix()).array();
    if (iteration % 10 == 1){
      // check if criterion is satisfied
      v = q.array() / (K_transpose * u).array();
      transportmatrix = u.col(0).asDiagonal() * K * v.col(0).asDiagonal();
      marginal1 = transportmatrix.rowwise().sum();
      marginal2 = transportmatrix.colwise().sum();
      alpha = 10;
      for (int i = 0; i < N; i++){
        beta = std::min(p(i) / marginal1(i), q(i) / marginal2(i));
        alpha = std::min(alpha, beta);
      }
      // cerr << "alpha = " << alpha << endl;
    }
  }
  v = q.array() / (K_transpose * u).array();
  // compute the optimal transport matrix between p and the first q
  transportmatrix = u.col(0).asDiagonal() * K * v.col(0).asDiagonal();
  // MatrixXd uXIv = u.array() * ((K.array() * cost_matrix.array()).matrix() * v).array();
  // NumericVector d = wrap(uXIv.colwise().sum());
  return List::create(Named("transportmatrix") = wrap(transportmatrix),
                      Named("u") = wrap(u),
                      Named("v") = wrap(v),
                      Named("iteration") = iteration);
}