コード例 #1
0
 /**
  * Constructs a synthetic oracle for data generated from a Bayesian network.
  * @param vector_var_order  vector variables for dataset features
  * @param class_variable    finite variable for class
  * @param var_type_order    order of variable types
  */
 explicit syn_oracle_bayes_net(const bayesian_network<Factor>& bn,
                               parameters params = parameters())
   : base(bn.arguments(), vector_var_vector(),
          std::vector<variable::variable_typenames>
          (bn.arguments().size(), variable::FINITE_VARIABLE)),
     params(params), bn(bn),
     current_rec(finite_numbering_ptr_, vector_numbering_ptr_, dvector) {
   rng.seed(static_cast<unsigned>(params.random_seed));
 }
コード例 #2
0
    //! Throws an assertion violation if the DBN is not valid
    void check_valid() const {
      // The arguments at the current and next time step
      domain_type vars_t  = arguments(processes(), current_step);
      domain_type vars_t1 = arguments(processes(), next_step);

      // Check the prior and the transition model
      assert(prior.arguments() == vars_t);
      assert(is_superset(transition.arguments(),vars_t1));
      assert(is_subset(transition.arguments(), set_union(vars_t, vars_t1)));
    }
コード例 #3
0
 /**
  * Adds a new CPD to the transition model.
  * @param factor
  *        A factor that represents the conditional probability distribution.
  *        The arguments of this factor must be either time-t or time-t+1
  *        arguments of one or more timed processes.
  * @param p
  *        The process, for which the CPD is being added.  The argument
  *        factor must contain the t+1-step argument of process p.
  */
 void add_factor(process_type p, const F& factor) {
   assert(factor.arguments().count(p->next()) > 0);
   for (argument_type v : factor.arguments()) {
     int t = boost::any_cast<int>(v.index());
     assert(t == current_step || t == next_step);
   }
   processes_.insert(p);
   transition.add_factor(p->next(), factor);
 }
コード例 #4
0
ファイル: syn_oracle_csi.hpp プロジェクト: vdeepak13/sill
    //! Initialize the oracle
    void init() {
      assert(params.valid());

      // Initialize the random number generator
      rng.seed(static_cast<unsigned>(params.random_seed));
      uniform_prob = boost::uniform_real<double>(0,1);

      // Construct the graph and make CPTs
      if (num_finite() > 2 * params.num_parents) {
        for (size_t j = 2 * params.num_parents; j < num_finite(); ++j) {
          // Choose NUM_PARENTS random parents
          finite_domain parents;
          std::vector<size_t> r(randperm(j, rng));
          for (size_t k = 0; k < params.num_parents; ++k)
            parents.insert(finite_seq[r[k]]);
          parents.insert(finite_seq[j]);
          tablef f(parents.plus(finite_seq[j]));
          // RIGHT HERE NOW: MAKE FACTOR
          bn.add_factor(parents, finite_seq[j]);
        }
      }


    }
コード例 #5
0
    /**
     * Unrolls the dynamic Bayesian network over steps 0, ..., n.
     * The unrolled network contains
     */
    bayesian_network<F> unroll(std::size_t n) const {
      // Initialize the prior
      std::map<argument_type, argument_type> prior_var_map
        = make_process_var_map(processes(), current_step, 0);
      bayesian_network<F> bn;
      for (process_type p : processes()) {
        F factor = prior.factor(p->current());
        factor.subst_args(prior_var_map);
        bn.add_factor(p->at(0), factor);
      }

      // Add the n transition models
      for(std::size_t t = 0; t < n; t++) {
        std::map<argument_type, argument_type> var_map
          = map_union(make_process_var_map(processes(), current_step, t),
                      make_process_var_map(processes(), next_step, t+1));
        for (process_type p : processes()) {
          F cpd = transition[p->next()];
          cpd.subst_args(var_map);
          bn.add_factor(p->at(t+1), cpd);
        }
      }
      return bn;
    }
コード例 #6
0
 /**
  * Returns the ancestors of the t+1-time arguments in the transition model.
  * \param procs The set of processes whose ancestors are being sought
  */
 domain_type ancestors(const std::set<process_type>& procs) const {
   return transition.ancestors(arguments(procs, next_step));
 }
コード例 #7
0
 /**
  * Removes all processes and factors from this DBN.
  */
 void clear() {
   prior.clear();
   transition.clear();
   processes_.clear();
 }
コード例 #8
0
 /**
  * Adds a new factor to the prior distribution.
  * @param factor
  *        A factor that represents the conditional probability distribution.
  *        The arguments of this factor must be time-t arguments of one or
  *        more timed processes.
  * @param v
  *        The head of the conditional probability distribution.
  */
 void add_factor(argument_type head, const F& factor) {
   assert(factor.arguments().count(head) > 0);
   check_index(factor.arguments(), current_step);
   prior.add_factor(head, factor);
 }