コード例 #1
0
//used for both spheric and hybrid multilateration
static
bool generate_meas(vec &meas, const bvec &method, const mat &bs_pos, const vec &ms_pos)
{
  unsigned int method_len = length(method);
  unsigned int nb_bs = bs_pos.cols();
  bool column = true;
  if(3 == nb_bs) {
    nb_bs = bs_pos.rows();
    column = false;
  }
  if((nb_bs < method_len) || (3 != length(ms_pos))) {
    return false;
  }
  meas.set_size(method_len);
  vec pos(3);
  vec pos_ref(3);
  pos_ref = column ? bs_pos.get_col(0) : bs_pos.get_row(0);
  for(unsigned int k = 0; k < method_len; ++k) {
    if(bin(1) == method[k]) {  /* hyperbolic */
      pos = column ? bs_pos.get_col(k + 1) : bs_pos.get_row(k + 1);
      meas[k] = get_dist(pos, ms_pos) - get_dist(pos_ref, ms_pos);
    }
    else { /* spherical */
      pos = column ? bs_pos.get_col(k) : bs_pos.get_row(k);
      meas[k] = get_dist(pos, ms_pos);
    }
  }
  return true;
}
コード例 #2
0
//used only for hyperbolic multilateration
static
bool generate_meas(mat &meas, const bvec &method, const mat &bs_pos, const vec &ms_pos)
{
  unsigned int k;
  unsigned int i;
  unsigned int method_len = length(method);
  unsigned int nb_bs = bs_pos.cols();
  bool column = true;
  if(3 == nb_bs) {
    nb_bs = bs_pos.rows();
    column = false;
  }
  if((nb_bs < method_len) || (3 != length(ms_pos))) {
    return false;
  }
  meas.set_size(nb_bs, nb_bs);
  vec pos_i(3);
  vec pos_k(3);
  for(k = 0; k < nb_bs; ++k) {
    pos_k = column ? bs_pos.get_col(k) : bs_pos.get_row(k);
    for(i = 0; i < nb_bs; ++i) {
      pos_i = column ? bs_pos.get_col(i) : bs_pos.get_row(i);
      meas(i, k) = get_dist(pos_i, ms_pos) - get_dist(pos_k, ms_pos);
    }
  }
  return true;
}
コード例 #3
0
ivec GreedyMaxMinDesign::subsample(mat X, int n)
{
    if (n <= 0)
        cerr << "Invalid sample size in GreedyMaxMinDesign::subsample(...)" << endl;
    
    int imax;
    
    ivec isample(n);        // Indices of points in sample
    ivec iremain;           // Indices of remaining points
    vec D;                  // Vector of min distances to sample
    
    iremain = to_ivec(linspace(0,X.rows()-1,X.rows()));
    
    // Start with location of maximum Z
    max(X.get_col(X.cols()-1), imax);
    isample(0) = imax;
    iremain.del(imax);

    // Add points having maximum minimum distance to sample
    // until subsample size is reached 
    for (int i=1; i<n; i++) 
    {
    	vec xnew = X.get_row(isample(i-1));                // Last point added 
        vec Dnew = dist(X.get_rows(iremain), xnew);        // Distances to xnew
                
        // Update minimum distances to sample
        if (D.length() == 0) 
            D = Dnew;
        else
            D = min(D,Dnew);
        
        // Find point with max min distance
        max(D,imax);
        
        // Add it to sample 
    	isample(i) = iremain(imax);
    	
    	// And delete it from remainder 
    	iremain.del(imax);
    	D.del(imax);
    }
    
    return isample;
}
コード例 #4
0
mat ls_solve(const mat &A, const mat &B)
{
	vec ls_solve(const mat &L, const mat &U, const vec &b);
    mat L, U;
    ivec p;
    vec btemp;
  
    lu(A, L, U, p);

    mat X(B.rows(), B.cols());
  
    for (int i=0; i<B.cols(); i++) {
	btemp=B.get_col(i);
	interchange_permutations(btemp, p);
	X.set_col(i, ls_solve(L, U, btemp));
    }

    return X;
}
コード例 #5
0
ファイル: sigfun.cpp プロジェクト: c304728539/itpp-fastica
mat cov(const mat &X, bool is_zero_mean)
{
  int d = X.cols(), n = X.rows();
  mat R(d, d), m2(n, d);
  vec tmp;

  R = 0.0;

  if (!is_zero_mean) {
    // Compute and remove mean
    for (int i = 0; i < d; i++) {
      tmp = X.get_col(i);
      m2.set_col(i, tmp - mean(tmp));
    }

    // Calc corr matrix
    for (int i = 0; i < d; i++) {
      for (int j = 0; j <= i; j++) {
        for (int k = 0; k < n; k++) {
          R(i, j) += m2(k, i) * m2(k, j);
        }
        R(j, i) = R(i, j); // When i=j this is unnecassary work
      }
    }
  }
  else {
    // Calc corr matrix
    for (int i = 0; i < d; i++) {
      for (int j = 0; j <= i; j++) {
        for (int k = 0; k < n; k++) {
          R(i, j) += X(k, i) * X(k, j);
        }
        R(j, i) = R(i, j); // When i=j this is unnecassary work
      }
    }
  }
  R /= n;

  return R;
}