コード例 #1
0
ファイル: convnn.cpp プロジェクト: pshirasb/NeuralNet
mat addPadding(mat x, int ksize) {
    int offset = ksize/2;
    x.insert_rows(0, offset);
    x.insert_rows(x.n_rows, offset);
    x.insert_cols(0, offset);
    x.insert_cols(x.n_cols, offset);
    return(x);
}
コード例 #2
0
void SolveX(mat& C,mat& D,mat& G,mat& B,mat& A,mat& X,vec& Z){//Solve vector of unknowns
    A.zeros(0,0);
    C = trans(B);
    A.insert_rows(0,G);
    A.insert_cols(A.n_cols,B);
    C.insert_cols(C.n_cols,D);
    A.insert_rows(A.n_rows,C);
    X = solve( A, Z );
}
コード例 #3
0
ファイル: main.cpp プロジェクト: spankratov/Numerical-Methods
bool inverseMatrix(const mat& A, mat& inv)
{
	unsigned int n = A.n_rows;
	mat LU(n, n);
	vector<unsigned int> Pvec;
	if (LUP(A, LU, Pvec) == false)
		return false;

	for (unsigned int i = 0; i < n; ++i)
	{
		vec b = zeros<vec>(n);
		b(distance(Pvec.begin(), find(Pvec.begin(), Pvec.end(), i))) = 1;
		inv.insert_cols(i, SLAU(LU, b));
	}
	return true;
}
コード例 #4
0
ファイル: dpmix_moves.cpp プロジェクト: cran/growfunctions
// update vector of cluster membership indicators, s(i),....,s(N)
SEXP clusterstep(const cube& B, mat& kappa_star, mat& B1, const uvec& o,
             const field<mat>& C, const mat& D, ucolvec& s, 
             //const field<sp_mat>& C,
             ucolvec& num, unsigned int& M, double& conc, int a, int b,
             const vec& ipr, colvec& Num)
    {
        BEGIN_RCPP
      
        // sample cluster assignments, s(1), ..., s(N)
        // B = (B_1,...,B_K), where B_k is N x T matrix for iGMRF term k
        // Q = (Q_1,...,Q_K), where Q_k is a T x T de-scaled iGMRF precision matrix
        // C = (C_1,...,C_K), where C_k = D_k^-1 * Omega_k, 
        // where Omega_k is the T x T adjacency matrix for iGMRF term, k
        // D is a K x T matrix where row k contains T diagonal elements of Q_k
        // K x M matrix, kappa_star records locations for each iGMRF term
        // o = (o_1,...,o_k) is a vector where each entry denotes the order of term K.
        // e.g. RW(1) -> o = 2, RW(2) -> o = 3, seas(3) -> o = 3
        int N = B.slice(0).n_rows;
        int T = B.slice(0).n_cols;
        int K = C.n_rows;
        double sweights = 0;
        // zro is the zeros.T vector 
        colvec zro(T); zro.zeros();
        uvec o_adjust = o; 
        //o_adjust.zeros();
        // capture quadratic product for rate kernel of posterior gamma
        // posterior for kappa_star(k,i).  
        // save B1 to latter (in another function) compute posterior for kappa_star
        // mat B1(K,N); 
        double a1k; /* posterior shape for kappa_star(k,i) under 1 obs */
        B1.zeros();
        int i, j, k;
	      unsigned int l;
           
        /* 
        mat D_k(T,T), Omega_k(T,T);
        cube Q(T,T,K);
        for(k = 0; k < k; k++)
        {
           D_k.zeros(); D_k.diag()        = D.row(k);
           Omega_k                      = D_k * C(k,0); 
           Q.slice(k)                   = D_k - Omega_k;
        } // end loop K over iGMRF terms 
        */
        
        for(i = 0; i < N; i++)
        {
            // check if _i assigned to singleton cluster
            // if so, remove the cluster associated to _i
            // and decrement the cluster labels for m > s(i)
            if(num(s(i)) == 1) /* remove singleton cluster */
            {
                kappa_star.shed_col(s(i));
                num.shed_row(s(i));
                Num.shed_row(s(i));
                M -= 1; /* decrement cluster count */

                //decrement cluster tracking values by 1 for tossed cluster
                s( find(s > s(i)) )          -= 1;
                
            } /* end cluster accounting adjustment for singleton cluster */
            else /* cluster contains more than one unit */
            {
                num(s(i))                    -= 1;
                /* scale up num to population totals, Num, based on H-T inverse probability estimator */
                Num(s(i))                    -= 1/ipr(i);
            } /* decrement non-singleton cluster count by one */

            // construct normalization constant, q0i, to sample s(i)
            // build loqq0 and exponentiate
            colvec bki(T), bbar_ki(T); /* T x 1, D_k^-1*Omega_k*b_ki = C(k,0)*b_ki */
            mat bbar_i(K,T); bbar_i.zeros();
            double logd_dk = 0; /* set of T 0 mean gaussian densities for term k */
            double logq0ki = 0, logq0i = 0, q0i = 0;
            // accumulate weight, q0i, for s(i) over K iGMRF terms  
            for( k = 0; k < K; k++)
            {
                 logq0ki       = 0; /* reset k-indexed log-like on each k */
                 //a1k           = 0.5*(double(T)) + a;
                 a1k           = 0.5*(double(T)-double(o_adjust(k))) + a;
                 bki           = B.slice(k).row(i).t();
                 bbar_ki       = C(k,0) * bki; /* T x 1 */
                 bbar_i.row(k) = bbar_ki.t();
                 B1(k,i)       = 0.5*dot( D.row(k), pow((bki-bbar_ki),2) ); /* no b */
                 logd_dk       = 0; /* set of T gaussian densities for term k */
                 /* dmvn(zro|m,Q.slice(k),true) */
                 for( j = 0; j < T; j++ )
                 {
                    logd_dk   += R::dnorm(0.0,0.0,double(1/sqrt(D(k,j))),true);
                 }
                 logq0ki      = logd_dk + lgamma(a1k) + a*log(b) -
                                   lgamma(a) - a1k*trunc_log(B1(k,i)+b);
                 logq0i       += logq0ki;
            } /* end loop k over iGMRF terms */
            q0i = trunc_exp(logq0i);

            // construct posterior sampling weights to sample s(i)
            colvec weights(M+1); weights.zeros();
            /* evaluate likelihood under kappa_star(k,i) */
            double lweights_l;
            for(l = 0; l < M; l++) /* cycle through all clusters for s(i) */
            {
                s(i)          = l; /* will compute likelihoods for every cluster */  
                lweights_l = 0; /* hold log densities for K computations */
                for(k = 0; k < K; k++)
                {
                    bki            = B.slice(k).row(i).t();
                    for( j = 0; j < T; j++ )
                    {
                      /* effectively making assignment, s(i) = l */
                      lweights_l   += trunc_log(R::dnorm(bki(j),bbar_i(k,j),
                                    double(1/sqrt(kappa_star(k,l)*D(k,j))),false));
                    } /* end loop j over time index */
                } /* end loop k over iGMRF terms */
                //if(lweights_l < -300){lweights_l = -300;}
                weights(l)          = trunc_exp(lweights_l);
                weights(l)          *= double(Num(s(i)))/(double(N) - 1/ipr(i) + conc);
            } /* end loop l over existing or populated clusters */
            /* M+1 or new component sampled from F_{0} */
            weights(M)              = conc/(double(N) - 1/ipr(i) + conc)*q0i;

            // normalize weights
            sweights = sum(weights);
            if(sweights == 0)
            {
                weights.ones(); weights *= 1/(double(M)+1);
            }
            else
            {
                weights /= sweights;
            }

            // conduct discrete posterior draw for s(j)
            unsigned long MplusOne = M + 1;
            s(i) = rdrawone(weights, MplusOne);

            // if new cluster chosen, generate new location
            if(s(i) == M)
            {
                /* sample posterior of ksi_star[k,m] for 1 (vs. n_m) observation */
                double a_star_k; /* shape for 1 obs */
                double bstar_ki;
                kappa_star.insert_cols(M,1); /* add K vector new location to kappa_star */
                num.insert_rows(M,1);
                Num.insert_rows(M,1);
                for(k = 0; k < K; k++)
                {
                     a_star_k         = 0.5*(double(T) - double(o_adjust(k))) + a; /* shape for 1 obs */
                     bstar_ki         = B1(k,i) + b; /* B1(k,i) is a scalar quadratic product */
                     /*
                     bki              = B.slice(k).row(i).t();
                     bstar_ki         = 0.5*( as_scalar(bki.t()*symmatl(Q.slice(k))*bki) ) + b;
                     */
                     kappa_star(k,M)  = rgamma(1, a_star_k, (1/bstar_ki))[0];
                }
                num(M)   = 1;
                Num(M)   = 1/ipr(i);
                M        = MplusOne;
            }
            else
            {
                num(s(i)) += 1;
                Num(s(i)) += 1/ipr(i);
            }
            
        } /* end loop i for cluster assignment to unit i = 1,...,N */
        END_RCPP
    } /* end function bstep for cluster assignments, s, and computing zb */