void SetupWeights (int N, const Parameter ¶m, const blitz::Array<double, 1> &r, blitz::Array<double, 1> &weight) { Array<double, 1> x(N); weight.resize(N); // Basic Clenshaw Curtis points and weigths x = cos(M_PI * (tensor::i +1) / (N+1)); for (int k=0; k<N; k++) { weight(k) = 1.0; for (int i=1; i<(N+1)/2; i++) { weight(k) -= 2.0/(4*i*i-1) *cos(2.0*M_PI*i*(k+1)/(N+1)); } if (N%2 == 1) { weight(k) -= 1/(N*N+2*N) *cos((N+1)*x(N/2)); } weight(k) = 2.0/(N+1) * weight(k); } // Scaling the weights according to transformations if (param.Range == TransformRangeRadial) { if (param.Type == TransformTypeAlgebraic) { weight *= param.Scaling * 2.0 / ((1+x)*(1+x)); } else if (param.Type == TransformTypeTrigonometric) { double pi_4 = M_PI/4.0; weight *= param.Scaling * pi_4 / sqr(cos(pi_4*(1+x))); } else if (param.Type == TransformTypeLogarithmic) { weight *= param.Scaling * 6.0 / (1.0 - x); } else { cout << "Invalid parameter type " << param.Type << endl; throw std::runtime_error("Invalid parameter type"); } } else if (param.Range == TransformRangeCartesian) { if (param.Type == TransformTypeAlgebraic) { weight *= param.Scaling * 1.0 / pow(1 - x*x, 1.5); } /* Not implemented for Cartesian range else if (param.Type == TransformTypeTrigonometric) { double pi_4 = M_PI/4.0; weight *= } else if (param.Type == TransformTypeLogarithmic) { weight *= } else { cout << "Invalid parameter type " << param.Type << endl; throw std::runtime_error("Invalid parameter type"); } */ } }
int main( int argc, char **argv) { std::string inpf, trif, outf, backf; adobe::dictionary_t params; bool use_lab = false; try { po::options_description desc("Allowed options"); po::variables_map vm; po::positional_options_description p; p.add( "input" , 1); p.add( "trimap", 1); desc.add_options() ("help", "produce help message") // files ("input", po::value<std::string>(), "input file") ("trimap",po::value<std::string>(), "trimap file") ("output,o", po::value<std::string>(), "output file") ("background,bg", po::value<std::string>(), "clean background") ("save_bg", "save estimated background") // colors ("rgb", "use rgb colorspace") // sampling ("kwin", po::value<int>()->default_value( 8), "known window radius") ("uwin", po::value<int>()->default_value( 8), "unknown window radius") ("mins", po::value<int>()->default_value( 16), "min samples") // clusters ("clusters", po::value<int>()->default_value( 5), "max number of clusters") ("ctheresh", po::value<double>()->default_value( 0.001), "cluster thereshold") // optimize ("cvar", po::value<double>()->default_value( 0.04), "camera variance") // gui ("window,w", "show results in a window") ; // end po::store( po::command_line_parser( argc, argv).options( desc).positional( p).run(), vm); po::notify( vm); if( vm.count( "help") || !vm.count("input") || !vm.count("trimap")) usage(); if( (!vm.count("output")) && (!vm.count("window"))) usage(); inpf = vm["input"].as<std::string>(); trif = vm["trimap"].as<std::string>(); if( vm.count("output")) outf = vm["output"].as<std::string>(); use_lab = !vm.count("rgb"); params[adobe::name_t("use_lab")] = adobe::any_regular_t( use_lab); // load images image.reference( read_image( inpf.c_str())); trimap.reference( read_trimap( trif.c_str())); if( (trimap.rows() != image.rows()) || (trimap.cols() != image.cols())) { std::cout << "Image & trimap dimensions don't match\n"; exit( boost::exit_failure); } if( use_lab) convert2lab( image); if( vm.count( "background")) { backf = vm["background"].as<std::string>(); params[adobe::name_t("use_back")] = adobe::any_regular_t( true); bg.reference( read_image( backf.c_str())); if( use_lab) convert2lab( bg); } else { bg.resize( image.rows(), image.cols()); params[adobe::name_t("use_back")] = adobe::any_regular_t( false); } // sampling params[ adobe::name_t( "kwin_size")] = adobe::any_regular_t( vm["kwin"].as<int>()); params[ adobe::name_t( "uwin_size")] = adobe::any_regular_t( vm["uwin"].as<int>()); params[ adobe::name_t( "min_samples")] = adobe::any_regular_t( vm["mins"].as<int>()); // cluster params[ adobe::name_t( "maxk")] = adobe::any_regular_t( vm["clusters"].as<int>()); params[ adobe::name_t( "ctheresh")] = adobe::any_regular_t( vm["ctheresh"].as<double>()); // optimize params[ adobe::name_t( "cvar")] = adobe::any_regular_t( vm["cvar"].as<double>()); fg.resize( image.rows(), image.cols()); alpha.resize( image.rows(), image.cols()); bmatte bm( image, trimap, fg, bg, alpha, params); bm(); if( use_lab) { convert2rgb( image); convert2rgb( fg); convert2rgb( bg); } if( vm.count( "output")) { save_image( outf.c_str(), fg, &alpha); if( vm.count( "save_bg")) { std::string bgf = "bg_" + outf; save_image( bgf.c_str(), bg); } } if( vm.count( "window")) { comp.resize( image.rows(), image.cols()); for( int j=0;j<image.rows();++j) { for( int i=0;i<image.cols();++i) { float t = alpha( j, i); comp( j, i) = (fg( j, i) * t) + ( Imath::Color3f( .5f, .5f, .5f) * (1.0f - t)); } } glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE); glutInitWindowPosition( 50, 50); glutInitWindowSize( image.cols(), image.rows()); glutCreateWindow( "BMatte"); glutKeyboardFunc( key); glutMouseFunc( mouse); glutDisplayFunc( display); gl_init(); glutMainLoop(); } } catch( std::exception& e) { std::cerr << "error: " << e.what() << "\n"; return boost::exit_failure; } catch( ...) { std::cerr << "Exception of unknown type!\n";} return boost::exit_success; }