/** * Only to be used if the KeepUnGrouped property is true, moves the spectra that were not selected * to be in a group to the end of the output spectrum * @param unGroupedSet :: list of WORKSPACE indexes that were included in a group * @param inputWS :: user selected input workspace for the algorithm * @param outputWS :: user selected output workspace for the algorithm * @param outIndex :: the next spectra index available after the grouped spectra */ void GroupDetectors2::moveOthersEvent(const std::set<int64_t> &unGroupedSet, DataObjects::EventWorkspace_const_sptr inputWS, DataObjects::EventWorkspace_sptr outputWS,size_t outIndex) { g_log.debug() << "Starting to copy the ungrouped spectra" << std::endl; double prog4Copy = (1. - 1.*static_cast<double>(m_FracCompl))/static_cast<double>(unGroupedSet.size()); std::set<int64_t>::const_iterator copyFrIt = unGroupedSet.begin(); // go thorugh all the spectra in the input workspace for ( ; copyFrIt != unGroupedSet.end(); ++copyFrIt ) { if( *copyFrIt == USED ) continue; //Marked as not to be used size_t sourceIndex = static_cast<size_t>(*copyFrIt); // The input spectrum we'll copy const EventList & inputSpec = inputWS->getEventList(sourceIndex); // Destination of the copying EventList & outputSpec=outputWS->getEventList(outIndex); // Copy the data outputSpec+=inputSpec; // Spectrum numbers etc. outputSpec.setSpectrumNo(inputSpec.getSpectrumNo()); outputSpec.clearDetectorIDs(); outputSpec.addDetectorIDs( inputSpec.getDetectorIDs() ); // go to the next free index in the output workspace outIndex ++; // make regular progress reports and check for cancelling the algorithm if ( outIndex % INTERVAL == 0 ) { m_FracCompl += INTERVAL*prog4Copy; if ( m_FracCompl > 1.0 ) { m_FracCompl = 1.0; } progress(m_FracCompl); interruption_point(); } } // Refresh the spectraDetectorMap outputWS->doneAddingEventLists(); g_log.debug() << name() << " copied " << unGroupedSet.size()-1 << " ungrouped spectra\n"; }
/** Write out all of the event lists in the given workspace * @param ws :: an EventWorkspace */ int NexusFileIO::writeNexusProcessedDataEvent( const DataObjects::EventWorkspace_const_sptr& ws) { //write data entry NXstatus status=NXmakegroup(fileID,"event_workspace","NXdata"); if(status==NX_ERROR) return(2); NXopengroup(fileID,"event_workspace","NXdata"); for (size_t wi=0; wi < ws->getNumberHistograms(); wi++) { std::ostringstream group_name; group_name << "event_list_" << wi; this->writeEventList( ws->getEventList(wi), group_name.str()); } // Close up the overall group status=NXclosegroup(fileID); return((status==NX_ERROR)?3:0); }
/** * Move the user selected spectra in the input workspace into groups in the output workspace * @param inputWS :: user selected input workspace for the algorithm * @param outputWS :: user selected output workspace for the algorithm * @param prog4Copy :: the amount of algorithm progress to attribute to moving a single spectra * @return number of new grouped spectra */ size_t GroupDetectors2::formGroupsEvent( DataObjects::EventWorkspace_const_sptr inputWS, DataObjects::EventWorkspace_sptr outputWS, const double prog4Copy) { // get "Behaviour" string const std::string behaviour = getProperty("Behaviour"); int bhv = 0; if ( behaviour == "Average" ) bhv = 1; API::MatrixWorkspace_sptr beh = API::WorkspaceFactory::Instance().create( "Workspace2D", static_cast<int>(m_GroupSpecInds.size()), 1, 1); g_log.debug() << name() << ": Preparing to group spectra into " << m_GroupSpecInds.size() << " groups\n"; // where we are copying spectra to, we start copying to the start of the output workspace size_t outIndex = 0; // Only used for averaging behaviour. We may have a 1:1 map where a Divide would be waste as it would be just dividing by 1 bool requireDivide(false); for ( storage_map::const_iterator it = m_GroupSpecInds.begin(); it != m_GroupSpecInds.end() ; ++it ) { // This is the grouped spectrum EventList & outEL = outputWS->getEventList(outIndex); // The spectrum number of the group is the key outEL.setSpectrumNo(it->first); // Start fresh with no detector IDs outEL.clearDetectorIDs(); // the Y values and errors from spectra being grouped are combined in the output spectrum // Keep track of number of detectors required for masking size_t nonMaskedSpectra(0); beh->dataX(outIndex)[0] = 0.0; beh->dataE(outIndex)[0] = 0.0; for( std::vector<size_t>::const_iterator wsIter = it->second.begin(); wsIter != it->second.end(); ++wsIter) { const size_t originalWI = *wsIter; const EventList & fromEL=inputWS->getEventList(originalWI); //Add the event lists with the operator outEL += fromEL; // detectors to add to the output spectrum outEL.addDetectorIDs(fromEL.getDetectorIDs() ); try { Geometry::IDetector_const_sptr det = inputWS->getDetector(originalWI); if( !det->isMasked() ) ++nonMaskedSpectra; } catch(Exception::NotFoundError&) { // If a detector cannot be found, it cannot be masked ++nonMaskedSpectra; } } if( nonMaskedSpectra == 0 ) ++nonMaskedSpectra; // Avoid possible divide by zero if(!requireDivide) requireDivide = (nonMaskedSpectra > 1); beh->dataY(outIndex)[0] = static_cast<double>(nonMaskedSpectra); // make regular progress reports and check for cancelling the algorithm if ( outIndex % INTERVAL == 0 ) { m_FracCompl += INTERVAL*prog4Copy; if ( m_FracCompl > 1.0 ) m_FracCompl = 1.0; progress(m_FracCompl); interruption_point(); } outIndex ++; } // Refresh the spectraDetectorMap outputWS->doneAddingEventLists(); if ( bhv == 1 && requireDivide ) { g_log.debug() << "Running Divide algorithm to perform averaging.\n"; Mantid::API::IAlgorithm_sptr divide = createChildAlgorithm("Divide"); divide->initialize(); divide->setProperty<API::MatrixWorkspace_sptr>("LHSWorkspace", outputWS); divide->setProperty<API::MatrixWorkspace_sptr>("RHSWorkspace", beh); divide->setProperty<API::MatrixWorkspace_sptr>("OutputWorkspace", outputWS); divide->execute(); } g_log.debug() << name() << " created " << outIndex << " new grouped spectra\n"; return outIndex; }
/** Check whether 2 event lists are identical */ bool CompareWorkspaces::compareEventWorkspaces( DataObjects::EventWorkspace_const_sptr ews1, DataObjects::EventWorkspace_const_sptr ews2) { bool checkallspectra = getProperty("CheckAllData"); int numspec2print = getProperty("NumberMismatchedSpectraToPrint"); int wsindex2print = getProperty("DetailedPrintIndex"); // Compare number of spectra if (ews1->getNumberHistograms() != ews2->getNumberHistograms()) { recordMismatch("Mismatched number of histograms."); return false; } if (ews1->getEventType() != ews2->getEventType()) { recordMismatch("Mismatched type of events in the EventWorkspaces."); return false; } // Both will end up sorted anyway ews1->sortAll(PULSETIMETOF_SORT, m_Prog); ews2->sortAll(PULSETIMETOF_SORT, m_Prog); // Determine the tolerance for "tof" attribute and "weight" of events double toleranceWeight = Tolerance; // Standard tolerance int64_t tolerancePulse = 1; double toleranceTOF = 0.05; if ((ews1->getAxis(0)->unit()->label().ascii() != "microsecond") || (ews2->getAxis(0)->unit()->label().ascii() != "microsecond")) { g_log.warning() << "Event workspace has unit as " << ews1->getAxis(0)->unit()->label().ascii() << " and " << ews2->getAxis(0)->unit()->label().ascii() << ". Tolerance of TOF is set to 0.05 still. " << "\n"; toleranceTOF = 0.05; } g_log.notice() << "TOF Tolerance = " << toleranceTOF << "\n"; bool mismatchedEvent = false; int mismatchedEventWI = 0; size_t numUnequalNumEventsSpectra = 0; size_t numUnequalEvents = 0; size_t numUnequalTOFEvents = 0; size_t numUnequalPulseEvents = 0; size_t numUnequalBothEvents = 0; std::vector<int> vec_mismatchedwsindex; PARALLEL_FOR_IF(m_ParallelComparison && ews1->threadSafe() && ews2->threadSafe()) for (int i = 0; i < static_cast<int>(ews1->getNumberHistograms()); ++i) { PARALLEL_START_INTERUPT_REGION m_Prog->report("EventLists"); if (!mismatchedEvent || checkallspectra) // This guard will avoid checking unnecessarily { const EventList &el1 = ews1->getEventList(i); const EventList &el2 = ews2->getEventList(i); bool printdetail = (i == wsindex2print); if (printdetail) { g_log.information() << "Spectrum " << i << " is set to print out in details. " << "\n"; } if (!el1.equals(el2, toleranceTOF, toleranceWeight, tolerancePulse)) { size_t tempNumTof = 0; size_t tempNumPulses = 0; size_t tempNumBoth = 0; int tempNumUnequal = 0; if (el1.getNumberEvents() != el2.getNumberEvents()) { // Number of events are different tempNumUnequal = -1; } else { tempNumUnequal = compareEventsListInDetails( el1, el2, toleranceTOF, toleranceWeight, tolerancePulse, printdetail, tempNumPulses, tempNumTof, tempNumBoth); } mismatchedEvent = true; mismatchedEventWI = i; PARALLEL_CRITICAL(CompareWorkspaces) { if (tempNumUnequal == -1) { // 2 spectra have different number of events ++numUnequalNumEventsSpectra; } else { // 2 spectra have some events different to each other numUnequalEvents += static_cast<size_t>(tempNumUnequal); numUnequalTOFEvents += tempNumTof; numUnequalPulseEvents += tempNumPulses; numUnequalBothEvents += tempNumBoth; } vec_mismatchedwsindex.push_back(i); } // Parallel critical region } // If elist 1 is not equal to elist 2 } PARALLEL_END_INTERUPT_REGION }