/** * Perform a call to nxgetslab, via the NexusClasses wrapped methods for a given * block-size * @param data :: The NXDataSet object * @param blocksize :: The block-size to use * @param period :: The period number * @param start :: The index within the file to start reading from (zero based) * @param hist :: The workspace index to start reading into * @param spec_num :: The spectrum number that matches the hist variable * @param local_workspace :: The workspace to fill the data with */ void LoadISISNexus2::loadBlock(NXDataSetTyped<int> &data, int64_t blocksize, int64_t period, int64_t start, int64_t &hist, int64_t &spec_num, DataObjects::Workspace2D_sptr &local_workspace) { data.load(static_cast<int>(blocksize), static_cast<int>(period), static_cast<int>(start)); // TODO this is just wrong int *data_start = data(); int *data_end = data_start + m_loadBlockInfo.numberOfChannels; int64_t final(hist + blocksize); while (hist < final) { m_progress->report("Loading data"); MantidVec &Y = local_workspace->dataY(hist); Y.assign(data_start, data_end); data_start += m_detBlockInfo.numberOfChannels; data_end += m_detBlockInfo.numberOfChannels; MantidVec &E = local_workspace->dataE(hist); std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt); // Populate the workspace. Loop starts from 1, hence i-1 local_workspace->setX(hist, m_tof_data); if (m_load_selected_spectra) { // local_workspace->getAxis(1)->setValue(hist, // static_cast<specid_t>(spec_num)); auto spec = local_workspace->getSpectrum(hist); specid_t specID = m_specInd2specNum_map.at(hist); // set detectors corresponding to spectra Number spec->setDetectorIDs(m_spec2det_map.getDetectorIDsForSpectrumNo(specID)); // set correct spectra Number spec->setSpectrumNo(specID); } ++hist; ++spec_num; } }
/** Finalizes the calculation of the correlation spectrum * * This method offers a variable way of using the correlation spectrum *calculated previously. * The base version converts to Q and creates an appropriate output workspace. * * @param correctedCorrelatedIntensities :: Intensities of correlation *spectrum. * @param dValues :: d-spacings at which the spectrum was calculated. * @return A workspace containing the correlation spectrum. */ DataObjects::Workspace2D_sptr PoldiAutoCorrelationCore::finalizeCalculation( const std::vector<double> &correctedCorrelatedIntensities, const std::vector<double> &dValues) const { /* Finally, the d-Values are converted to q-Values for plotting etc. and * inserted into the output workspace. */ size_t dCount = dValues.size(); std::vector<double> qValues(dCount); PARALLEL_FOR_NO_WSP_CHECK() for (int i = 0; i < static_cast<int>(dCount); ++i) { qValues[dCount - i - 1] = Conversions::dToQ(dValues[i]); } m_logger.information() << " Setting result..." << std::endl; DataObjects::Workspace2D_sptr outputWorkspace = boost::dynamic_pointer_cast<Mantid::DataObjects::Workspace2D>( WorkspaceFactory::Instance().create("Workspace2D", 1, dValues.size(), dValues.size())); outputWorkspace->getAxis(0)->setUnit("MomentumTransfer"); outputWorkspace->dataY(0) = correctedCorrelatedIntensities; outputWorkspace->setX(0, qValues); return outputWorkspace; }
/** Load in a single spectrum taken from a NeXus file * @param hist :: The workspace index * @param i :: The spectrum index * @param specNo :: The spectrum number * @param nxload :: A reference to the MuonNeXusReader object * @param lengthIn :: The number of elements in a spectrum * @param localWorkspace :: A pointer to the workspace in which the data will be * stored */ void LoadMuonNexus1::loadData(size_t hist, specid_t &i, specid_t specNo, MuonNexusReader &nxload, const int64_t lengthIn, DataObjects::Workspace2D_sptr localWorkspace) { // Read in a spectrum // Put it into a vector, discarding the 1st entry, which is rubbish // But note that the last (overflow) bin is kept // For Nexus, not sure if above is the case, hence give all data for now MantidVec &Y = localWorkspace->dataY(hist); Y.assign(nxload.counts + i * lengthIn, nxload.counts + i * lengthIn + lengthIn); // Create and fill another vector for the errors, containing sqrt(count) MantidVec &E = localWorkspace->dataE(hist); typedef double (*uf)(double); uf dblSqrt = std::sqrt; std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt); // Populate the workspace. Loop starts from 1, hence i-1 // Create and fill another vector for the X axis float *timeChannels = new float[lengthIn+1](); nxload.getTimeChannels(timeChannels, static_cast<const int>(lengthIn+1)); // Put the read in array into a vector (inside a shared pointer) boost::shared_ptr<MantidVec> timeChannelsVec( new MantidVec(timeChannels, timeChannels + lengthIn+1)); localWorkspace->setX(hist, timeChannelsVec); localWorkspace->getSpectrum(hist)->setSpectrumNo(specNo); // Clean up delete[] timeChannels; }
/** Read in a single spectrum from the raw file * @param tcbs :: The vector containing the time bin boundaries * @param hist :: The workspace index * @param i :: The spectrum number * @param iraw :: A reference to the ISISRAW object * @param lengthIn :: The number of elements in a spectrum * @param spectrum :: Pointer to the array into which the spectrum will be read * @param localWorkspace :: A pointer to the workspace in which the data will be stored */ void LoadRaw::loadData(const MantidVecPtr::ptr_type& tcbs, int32_t hist, specid_t& i, ISISRAW& iraw, const int& lengthIn, int* spectrum, DataObjects::Workspace2D_sptr localWorkspace) { // Read in a spectrum memcpy(spectrum, iraw.dat1 + i * lengthIn, lengthIn * sizeof(int)); // Put it into a vector, discarding the 1st entry, which is rubbish // But note that the last (overflow) bin is kept MantidVec& Y = localWorkspace->dataY(hist); Y.assign(spectrum + 1, spectrum + lengthIn); // Create and fill another vector for the errors, containing sqrt(count) MantidVec& E = localWorkspace->dataE(hist); std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt); // Populate the workspace. Loop starts from 1, hence i-1 localWorkspace->setX(hist, tcbs); localWorkspace->getAxis(1)->setValue(hist, i); // NOTE: Raw numbers go straight into the workspace // - no account taken of bin widths/units etc. }
/** * Perform a call to nxgetslab, via the NexusClasses wrapped methods for a given blocksize * @param data :: The NXDataSet object * @param blocksize :: The blocksize to use * @param period :: The period number * @param start :: The index within the file to start reading from (zero based) * @param hist :: The workspace index to start reading into * @param spec_num :: The spectrum number that matches the hist variable * @param local_workspace :: The workspace to fill the data with */ void LoadISISNexus2::loadBlock(NXDataSetTyped<int> & data, int64_t blocksize, int64_t period, int64_t start, int64_t &hist, int64_t& spec_num, DataObjects::Workspace2D_sptr local_workspace) { data.load(static_cast<int>(blocksize), static_cast<int>(period), static_cast<int>(start)); // TODO this is just wrong int *data_start = data(); int *data_end = data_start + m_numberOfChannels; int64_t final(hist + blocksize); while( hist < final ) { m_progress->report("Loading data"); MantidVec& Y = local_workspace->dataY(hist); Y.assign(data_start, data_end); data_start += m_numberOfChannels; data_end += m_numberOfChannels; MantidVec& E = local_workspace->dataE(hist); std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt); // Populate the workspace. Loop starts from 1, hence i-1 local_workspace->setX(hist, m_tof_data); local_workspace->getAxis(1)->spectraNo(hist)= static_cast<specid_t>(spec_num); ++hist; ++spec_num; } }
/** Executes the algorithm. Reading in the file and creating and populating * the output workspace * * @throw Exception::FileError If the RAW file cannot be found/opened * @throw std::invalid_argument If the optional properties are set to invalid values */ void LoadRaw2::exec() { // Retrieve the filename from the properties m_filename = getPropertyValue("Filename"); LoadRawHelper *helper = new LoadRawHelper; FILE* file = helper->openRawFile(m_filename); isisRaw->ioRAW(file, true); std::string title(isisRaw->r_title, 80); g_log.information("**** Run title: "+ title + "***"); // Read in the number of spectra in the RAW file m_numberOfSpectra = isisRaw->t_nsp1; // Read the number of periods in this file m_numberOfPeriods = isisRaw->t_nper; // Read the number of time channels (i.e. bins) from the RAW file const int channelsPerSpectrum = isisRaw->t_ntc1; // Read in the time bin boundaries const int lengthIn = channelsPerSpectrum + 1; // Call private method to validate the optional parameters, if set checkOptionalProperties(); // Calculate the size of a workspace, given its number of periods & spectra to read specid_t total_specs; if( m_interval || m_list) { if (m_interval) { total_specs = (m_spec_max-m_spec_min+1); m_spec_max += 1; } else total_specs = 0; if (m_list) { if (m_interval) { for(std::vector<specid_t>::iterator it=m_spec_list.begin();it!=m_spec_list.end();) if (*it >= m_spec_min && *it <m_spec_max) { it = m_spec_list.erase(it); } else ++it; } if (m_spec_list.size() == 0) m_list = false; total_specs += static_cast<specid_t>(m_spec_list.size()); } } else { total_specs = m_numberOfSpectra; // In this case want all the spectra, but zeroth spectrum is garbage so go from 1 to NSP1 m_spec_min = 1; m_spec_max = m_numberOfSpectra + 1; } // If there is not enough memory use ManagedRawFileWorkspace2D. if ( ConfigService::Instance().getString("ManagedRawFileWorkspace.DoNotUse") != "1" && m_numberOfPeriods == 1 && MemoryManager::Instance().goForManagedWorkspace(total_specs,lengthIn,channelsPerSpectrum) && total_specs == m_numberOfSpectra) { const std::string cache_option = getPropertyValue("Cache"); size_t option = find(m_cache_options.begin(),m_cache_options.end(),cache_option) - m_cache_options.begin(); DataObjects::Workspace2D_sptr localWorkspace = DataObjects::Workspace2D_sptr( new ManagedRawFileWorkspace2D(m_filename, static_cast<int>(option))); progress(0.,"Reading raw file..."); helper->loadRunParameters(localWorkspace, isisRaw.get()); runLoadInstrument(localWorkspace ); runLoadMappingTable(localWorkspace ); runLoadLog(localWorkspace ); const int period_number = 1; Property* log=createPeriodLog(period_number); if(log) { localWorkspace->mutableRun().addLogData(log); localWorkspace->mutableRun().addLogData(createCurrentPeriodLog(period_number)); } localWorkspace->mutableRun().setProtonCharge(isisRaw->rpb.r_gd_prtn_chrg); for (int i = 0; i < m_numberOfSpectra; ++i) localWorkspace->getAxis(1)->setValue(i, i+1); localWorkspace->populateInstrumentParameters(); setProperty("OutputWorkspace",localWorkspace); return; } float* timeChannels = new float[lengthIn]; isisRaw->getTimeChannels(timeChannels, lengthIn); // Put the read in array into a vector (inside a shared pointer) boost::shared_ptr<MantidVec> timeChannelsVec (new MantidVec(timeChannels, timeChannels + lengthIn)); // Need to extract the user-defined output workspace name Property *ws = getProperty("OutputWorkspace"); std::string localWSName = ws->value(); Progress pr(this,0.,1.,total_specs * m_numberOfPeriods); // Create the 2D workspace for the output DataObjects::Workspace2D_sptr localWorkspace = boost::dynamic_pointer_cast<DataObjects::Workspace2D> (WorkspaceFactory::Instance().create("Workspace2D",total_specs,lengthIn,lengthIn-1)); localWorkspace->setTitle(title); localWorkspace->getAxis(0)->unit() = UnitFactory::Instance().create("TOF"); // Run parameters helper->loadRunParameters(localWorkspace, isisRaw.get()); delete helper; helper = NULL; // Loop over the number of periods in the raw file, putting each period in a separate workspace for (int period = 0; period < m_numberOfPeriods; ++period) { if ( period > 0 ) { localWorkspace = boost::dynamic_pointer_cast<DataObjects::Workspace2D> (WorkspaceFactory::Instance().create(localWorkspace)); } isisRaw->skipData(file,period*(m_numberOfSpectra+1)); int counter = 0; for (int i = 1; i <= m_numberOfSpectra; ++i) { int histToRead = i + period*(m_numberOfSpectra+1); if ((i >= m_spec_min && i < m_spec_max) || (m_list && find(m_spec_list.begin(),m_spec_list.end(),i) != m_spec_list.end())) { isisRaw->readData(file,histToRead); // Copy the data into the workspace vector, discarding the 1st entry, which is rubbish // But note that the last (overflow) bin is kept MantidVec& Y = localWorkspace->dataY(counter); Y.assign(isisRaw->dat1 + 1, isisRaw->dat1 + lengthIn); // Fill the vector for the errors, containing sqrt(count) MantidVec& E = localWorkspace->dataE(counter); std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt); // Set the X vector pointer and spectrum number localWorkspace->setX(counter, timeChannelsVec); localWorkspace->getAxis(1)->setValue(counter, i); // NOTE: Raw numbers go straight into the workspace // - no account taken of bin widths/units etc. ++counter; pr.report(); } else { isisRaw->skipData(file,histToRead); } } // Just a sanity check assert(counter == total_specs); std::string outputWorkspace = "OutputWorkspace"; if (period == 0) { // Only run the Child Algorithms once runLoadInstrument(localWorkspace ); runLoadMappingTable(localWorkspace ); runLoadLog(localWorkspace ); const int period_number = period + 1; Property* log=createPeriodLog(period_number); if(log) { localWorkspace->mutableRun().addLogData(log); localWorkspace->mutableRun().addLogData(createCurrentPeriodLog(period_number)); } // Set the total proton charge for this run // (not sure how this works for multi_period files) localWorkspace->mutableRun().setProtonCharge(isisRaw->rpb.r_gd_prtn_chrg); } else // We are working on a higher period of a multiperiod raw file { // Create a WorkspaceProperty for the new workspace of a higher period // The workspace name given in the OutputWorkspace property has _periodNumber appended to it // (for all but the first period, which has no suffix) std::stringstream suffix; suffix << (period+1); outputWorkspace += suffix.str(); std::string WSName = localWSName + "_" + suffix.str(); declareProperty(new WorkspaceProperty<DataObjects::Workspace2D>(outputWorkspace,WSName,Direction::Output)); g_log.information() << "Workspace " << WSName << " created. \n"; //remove previous period data std::stringstream index; index << (period); std::string prevPeriod="PERIOD "+index.str(); localWorkspace->mutableRun().removeLogData(prevPeriod); localWorkspace->mutableRun().removeLogData("current_period"); //add current period data const int period_number = period + 1; Property* log=createPeriodLog(period_number); if(log) { localWorkspace->mutableRun().addLogData(log); localWorkspace->mutableRun().addLogData(createCurrentPeriodLog(period_number)); } } // check if values stored in logfiles should be used to define parameters of the instrument localWorkspace->populateInstrumentParameters(); // Assign the result to the output workspace property setProperty(outputWorkspace,localWorkspace); } // loop over periods // Clean up delete[] timeChannels; //delete[] spectrum; fclose(file); }