Exemple #1
0
/**
* Perform a call to nxgetslab, via the NexusClasses wrapped methods for a given
* block-size
* @param data :: The NXDataSet object
* @param blocksize :: The block-size to use
* @param period :: The period number
* @param start :: The index within the file to start reading from (zero based)
* @param hist :: The workspace index to start reading into
* @param spec_num :: The spectrum number that matches the hist variable
* @param local_workspace :: The workspace to fill the data with
*/
void LoadISISNexus2::loadBlock(NXDataSetTyped<int> &data, int64_t blocksize,
                               int64_t period, int64_t start, int64_t &hist,
                               int64_t &spec_num,
                               DataObjects::Workspace2D_sptr &local_workspace) {
  data.load(static_cast<int>(blocksize), static_cast<int>(period),
            static_cast<int>(start)); // TODO this is just wrong
  int *data_start = data();
  int *data_end = data_start + m_loadBlockInfo.numberOfChannels;
  int64_t final(hist + blocksize);
  while (hist < final) {
    m_progress->report("Loading data");
    MantidVec &Y = local_workspace->dataY(hist);
    Y.assign(data_start, data_end);
    data_start += m_detBlockInfo.numberOfChannels;
    data_end += m_detBlockInfo.numberOfChannels;
    MantidVec &E = local_workspace->dataE(hist);
    std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
    // Populate the workspace. Loop starts from 1, hence i-1
    local_workspace->setX(hist, m_tof_data);
    if (m_load_selected_spectra) {
      // local_workspace->getAxis(1)->setValue(hist,
      // static_cast<specid_t>(spec_num));
      auto spec = local_workspace->getSpectrum(hist);
      specid_t specID = m_specInd2specNum_map.at(hist);
      // set detectors corresponding to spectra Number
      spec->setDetectorIDs(m_spec2det_map.getDetectorIDsForSpectrumNo(specID));
      // set correct spectra Number
      spec->setSpectrumNo(specID);
    }

    ++hist;
    ++spec_num;
  }
}
/** Finalizes the calculation of the correlation spectrum
  *
  * This method offers a variable way of using the correlation spectrum
  *calculated previously.
  * The base version converts to Q and creates an appropriate output workspace.
  *
  * @param correctedCorrelatedIntensities :: Intensities of correlation
  *spectrum.
  * @param dValues :: d-spacings at which the spectrum was calculated.
  * @return A workspace containing the correlation spectrum.
  */
DataObjects::Workspace2D_sptr PoldiAutoCorrelationCore::finalizeCalculation(
    const std::vector<double> &correctedCorrelatedIntensities,
    const std::vector<double> &dValues) const {
  /* Finally, the d-Values are converted to q-Values for plotting etc. and
   * inserted into the output workspace. */
  size_t dCount = dValues.size();
  std::vector<double> qValues(dCount);

  PARALLEL_FOR_NO_WSP_CHECK()
  for (int i = 0; i < static_cast<int>(dCount); ++i) {
    qValues[dCount - i - 1] = Conversions::dToQ(dValues[i]);
  }

  m_logger.information() << "  Setting result..." << std::endl;
  DataObjects::Workspace2D_sptr outputWorkspace =
      boost::dynamic_pointer_cast<Mantid::DataObjects::Workspace2D>(
          WorkspaceFactory::Instance().create("Workspace2D", 1, dValues.size(),
                                              dValues.size()));

  outputWorkspace->getAxis(0)->setUnit("MomentumTransfer");

  outputWorkspace->dataY(0) = correctedCorrelatedIntensities;

  outputWorkspace->setX(0, qValues);

  return outputWorkspace;
}
Exemple #3
0
/** Load in a single spectrum taken from a NeXus file
*  @param hist ::     The workspace index
*  @param i ::        The spectrum index
*  @param specNo ::   The spectrum number
*  @param nxload ::   A reference to the MuonNeXusReader object
*  @param lengthIn :: The number of elements in a spectrum
*  @param localWorkspace :: A pointer to the workspace in which the data will be
* stored
*/
void LoadMuonNexus1::loadData(size_t hist, specid_t &i, specid_t specNo, MuonNexusReader &nxload,
                              const int64_t lengthIn,
                              DataObjects::Workspace2D_sptr localWorkspace) {
  // Read in a spectrum
  // Put it into a vector, discarding the 1st entry, which is rubbish
  // But note that the last (overflow) bin is kept
  // For Nexus, not sure if above is the case, hence give all data for now
  MantidVec &Y = localWorkspace->dataY(hist);
  Y.assign(nxload.counts + i * lengthIn,
           nxload.counts + i * lengthIn + lengthIn);

  // Create and fill another vector for the errors, containing sqrt(count)
  MantidVec &E = localWorkspace->dataE(hist);
  typedef double (*uf)(double);
  uf dblSqrt = std::sqrt;
  std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
  // Populate the workspace. Loop starts from 1, hence i-1

  // Create and fill another vector for the X axis  
  float *timeChannels = new float[lengthIn+1]();
  nxload.getTimeChannels(timeChannels, static_cast<const int>(lengthIn+1));
  // Put the read in array into a vector (inside a shared pointer)
  boost::shared_ptr<MantidVec> timeChannelsVec(
    new MantidVec(timeChannels, timeChannels + lengthIn+1));

  localWorkspace->setX(hist, timeChannelsVec);
  localWorkspace->getSpectrum(hist)->setSpectrumNo(specNo);

  // Clean up
  delete[] timeChannels;

}
Exemple #4
0
    /** Read in a single spectrum from the raw file
     *  @param tcbs ::     The vector containing the time bin boundaries
     *  @param hist ::     The workspace index
     *  @param i ::        The spectrum number
     *  @param iraw ::     A reference to the ISISRAW object
     *  @param lengthIn :: The number of elements in a spectrum
     *  @param spectrum :: Pointer to the array into which the spectrum will be read
     *  @param localWorkspace :: A pointer to the workspace in which the data will be stored
     */
    void LoadRaw::loadData(const MantidVecPtr::ptr_type& tcbs, int32_t hist, specid_t& i, ISISRAW& iraw, const int& lengthIn, int* spectrum, DataObjects::Workspace2D_sptr localWorkspace)
    {
      // Read in a spectrum
      memcpy(spectrum, iraw.dat1 + i * lengthIn, lengthIn * sizeof(int));
      // Put it into a vector, discarding the 1st entry, which is rubbish
      // But note that the last (overflow) bin is kept
      MantidVec& Y = localWorkspace->dataY(hist);
      Y.assign(spectrum + 1, spectrum + lengthIn);
      // Create and fill another vector for the errors, containing sqrt(count)
      MantidVec& E = localWorkspace->dataE(hist);
      std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
      // Populate the workspace. Loop starts from 1, hence i-1
      localWorkspace->setX(hist, tcbs);

      localWorkspace->getAxis(1)->setValue(hist, i);
      // NOTE: Raw numbers go straight into the workspace
      //     - no account taken of bin widths/units etc.
    }
Exemple #5
0
 /**
 * Perform a call to nxgetslab, via the NexusClasses wrapped methods for a given blocksize
 * @param data :: The NXDataSet object
 * @param blocksize :: The blocksize to use
 * @param period :: The period number
 * @param start :: The index within the file to start reading from (zero based)
 * @param hist :: The workspace index to start reading into
 * @param spec_num :: The spectrum number that matches the hist variable
 * @param local_workspace :: The workspace to fill the data with
 */
 void LoadISISNexus2::loadBlock(NXDataSetTyped<int> & data, int64_t blocksize, int64_t period, int64_t start,
     int64_t &hist, int64_t& spec_num,
   DataObjects::Workspace2D_sptr local_workspace)
 {
   data.load(static_cast<int>(blocksize), static_cast<int>(period), static_cast<int>(start)); // TODO this is just wrong
   int *data_start = data();
   int *data_end = data_start + m_numberOfChannels;
   int64_t final(hist + blocksize);
   while( hist < final )
   {
     m_progress->report("Loading data");
     MantidVec& Y = local_workspace->dataY(hist);
     Y.assign(data_start, data_end);
     data_start += m_numberOfChannels; data_end += m_numberOfChannels;
     MantidVec& E = local_workspace->dataE(hist);
     std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
     // Populate the workspace. Loop starts from 1, hence i-1
     local_workspace->setX(hist, m_tof_data);
     local_workspace->getAxis(1)->spectraNo(hist)= static_cast<specid_t>(spec_num);
     ++hist;
     ++spec_num;
   }
 }
Exemple #6
0
    /** Executes the algorithm. Reading in the file and creating and populating
     *  the output workspace
     *
     *  @throw Exception::FileError If the RAW file cannot be found/opened
     *  @throw std::invalid_argument If the optional properties are set to invalid values
     */
    void LoadRaw2::exec()
    {
      // Retrieve the filename from the properties
      m_filename = getPropertyValue("Filename");
      LoadRawHelper *helper = new LoadRawHelper;
      FILE* file = helper->openRawFile(m_filename);
      isisRaw->ioRAW(file, true);
      
      std::string title(isisRaw->r_title, 80);
      g_log.information("**** Run title: "+ title + "***");

      // Read in the number of spectra in the RAW file
      m_numberOfSpectra = isisRaw->t_nsp1;
      // Read the number of periods in this file
      m_numberOfPeriods = isisRaw->t_nper;
      // Read the number of time channels (i.e. bins) from the RAW file
      const int channelsPerSpectrum = isisRaw->t_ntc1;
      // Read in the time bin boundaries
      const int lengthIn = channelsPerSpectrum + 1;

      // Call private method to validate the optional parameters, if set
      checkOptionalProperties();

      // Calculate the size of a workspace, given its number of periods & spectra to read
      specid_t total_specs;
      if( m_interval || m_list)
      {
        if (m_interval)
        {
          total_specs = (m_spec_max-m_spec_min+1);
          m_spec_max += 1;
        }
        else
            total_specs = 0;

        if (m_list)
        {
            if (m_interval)
            {
                for(std::vector<specid_t>::iterator it=m_spec_list.begin();it!=m_spec_list.end();)
                    if (*it >= m_spec_min && *it <m_spec_max)
                    {
                        it = m_spec_list.erase(it);
                    }
                    else
                        ++it;

            }
            if (m_spec_list.size() == 0) m_list = false;
            total_specs += static_cast<specid_t>(m_spec_list.size());
        }
      }
      else
      {
        total_specs = m_numberOfSpectra;
        // In this case want all the spectra, but zeroth spectrum is garbage so go from 1 to NSP1
        m_spec_min = 1;
        m_spec_max = m_numberOfSpectra + 1;
      }

      // If there is not enough memory use ManagedRawFileWorkspace2D.
      if ( ConfigService::Instance().getString("ManagedRawFileWorkspace.DoNotUse") != "1" &&
           m_numberOfPeriods == 1 && MemoryManager::Instance().goForManagedWorkspace(total_specs,lengthIn,channelsPerSpectrum) &&
          total_specs == m_numberOfSpectra)
      {
        const std::string cache_option = getPropertyValue("Cache");
        size_t option = find(m_cache_options.begin(),m_cache_options.end(),cache_option) - m_cache_options.begin();
        DataObjects::Workspace2D_sptr localWorkspace =
          DataObjects::Workspace2D_sptr(
          new ManagedRawFileWorkspace2D(m_filename, static_cast<int>(option)));
        progress(0.,"Reading raw file...");
        helper->loadRunParameters(localWorkspace, isisRaw.get());
        runLoadInstrument(localWorkspace );
        runLoadMappingTable(localWorkspace );
        runLoadLog(localWorkspace );
        const int period_number = 1;
        Property* log=createPeriodLog(period_number);
        if(log)
        {
          localWorkspace->mutableRun().addLogData(log);
          localWorkspace->mutableRun().addLogData(createCurrentPeriodLog(period_number));
        }
              localWorkspace->mutableRun().setProtonCharge(isisRaw->rpb.r_gd_prtn_chrg);
        for (int i = 0; i < m_numberOfSpectra; ++i)
          localWorkspace->getAxis(1)->setValue(i, i+1);
        localWorkspace->populateInstrumentParameters();
        setProperty("OutputWorkspace",localWorkspace);
        return;
      }

      float* timeChannels = new float[lengthIn];
      isisRaw->getTimeChannels(timeChannels, lengthIn);
      // Put the read in array into a vector (inside a shared pointer)
      boost::shared_ptr<MantidVec> timeChannelsVec
                          (new MantidVec(timeChannels, timeChannels + lengthIn));

      // Need to extract the user-defined output workspace name
      Property *ws = getProperty("OutputWorkspace");
      std::string localWSName = ws->value();

      Progress pr(this,0.,1.,total_specs * m_numberOfPeriods);

      // Create the 2D workspace for the output
      DataObjects::Workspace2D_sptr localWorkspace = boost::dynamic_pointer_cast<DataObjects::Workspace2D>
               (WorkspaceFactory::Instance().create("Workspace2D",total_specs,lengthIn,lengthIn-1));
      localWorkspace->setTitle(title);
      localWorkspace->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
      // Run parameters
      helper->loadRunParameters(localWorkspace, isisRaw.get());
      delete helper;
      helper = NULL;

      // Loop over the number of periods in the raw file, putting each period in a separate workspace
      for (int period = 0; period < m_numberOfPeriods; ++period) {

        if ( period > 0 )
        {
            localWorkspace =  boost::dynamic_pointer_cast<DataObjects::Workspace2D>
                (WorkspaceFactory::Instance().create(localWorkspace));
        }

        isisRaw->skipData(file,period*(m_numberOfSpectra+1));
        int counter = 0;
        for (int i = 1; i <= m_numberOfSpectra; ++i)
        {
            int histToRead = i + period*(m_numberOfSpectra+1);
            if ((i >= m_spec_min && i < m_spec_max) ||
                (m_list && find(m_spec_list.begin(),m_spec_list.end(),i) != m_spec_list.end()))
            {
                isisRaw->readData(file,histToRead);
                // Copy the data into the workspace vector, discarding the 1st entry, which is rubbish
                // But note that the last (overflow) bin is kept
                MantidVec& Y = localWorkspace->dataY(counter);
                Y.assign(isisRaw->dat1 + 1, isisRaw->dat1 + lengthIn);
                // Fill the vector for the errors, containing sqrt(count)
                MantidVec& E = localWorkspace->dataE(counter);
                std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
                // Set the X vector pointer and spectrum number
                localWorkspace->setX(counter, timeChannelsVec);
                localWorkspace->getAxis(1)->setValue(counter, i);
                // NOTE: Raw numbers go straight into the workspace
                //     - no account taken of bin widths/units etc.
                ++counter;
                pr.report();
            }
            else
            {
                isisRaw->skipData(file,histToRead);
            }
        }

        // Just a sanity check
        assert(counter == total_specs);

        std::string outputWorkspace = "OutputWorkspace";
        if (period == 0)
        {
          // Only run the Child Algorithms once
          runLoadInstrument(localWorkspace );
          runLoadMappingTable(localWorkspace );
          runLoadLog(localWorkspace );
          const int period_number = period + 1;
          Property* log=createPeriodLog(period_number);
          if(log)
          {
            localWorkspace->mutableRun().addLogData(log);
            localWorkspace->mutableRun().addLogData(createCurrentPeriodLog(period_number));
          }
          // Set the total proton charge for this run
          // (not sure how this works for multi_period files)
          localWorkspace->mutableRun().setProtonCharge(isisRaw->rpb.r_gd_prtn_chrg);
        }
        else   // We are working on a higher period of a multiperiod raw file
        {
          // Create a WorkspaceProperty for the new workspace of a higher period
          // The workspace name given in the OutputWorkspace property has _periodNumber appended to it
          //                (for all but the first period, which has no suffix)
          std::stringstream suffix;
          suffix << (period+1);
          outputWorkspace += suffix.str();
          std::string WSName = localWSName + "_" + suffix.str();
          declareProperty(new WorkspaceProperty<DataObjects::Workspace2D>(outputWorkspace,WSName,Direction::Output));
          g_log.information() << "Workspace " << WSName << " created. \n";
                         
          //remove previous period data
          std::stringstream index;
          index << (period);
          std::string prevPeriod="PERIOD "+index.str();
          localWorkspace->mutableRun().removeLogData(prevPeriod);
          localWorkspace->mutableRun().removeLogData("current_period");
          //add current period data
          const int period_number = period + 1;
          Property* log=createPeriodLog(period_number);
          if(log)
          {
            localWorkspace->mutableRun().addLogData(log);
            localWorkspace->mutableRun().addLogData(createCurrentPeriodLog(period_number));
          }
        }

        // check if values stored in logfiles should be used to define parameters of the instrument
        localWorkspace->populateInstrumentParameters();

        // Assign the result to the output workspace property
        setProperty(outputWorkspace,localWorkspace);

      } // loop over periods

      // Clean up
      delete[] timeChannels;
      //delete[] spectrum;
      fclose(file);
    }