コード例 #1
0
ファイル: lifting_line.cpp プロジェクト: booya-at/paraBEM
void LiftingLine::solve_for_best_gamma(double cL)
{
    int matsize = this->segments.size() + 1;
    Eigen::MatrixXd matrix;
    Eigen::VectorXd rhs;
    Eigen::VectorXd result;
    matrix.resize(matsize, matsize);
    matrix.setZero();
    rhs.resize(matsize);
    rhs.setZero();
    result.resize(matsize);
    result.setZero();
    //   adding the main min-function
    for (int i = 0; i < (matsize - 1); i++)
    {
        for (int j = 0; j < (matsize - 1); j++)
        {
            matrix(i, j) += this->segments[i].b() * this->segments[j].ind_influence(this->segments[i]);
            matrix(i, j) += this->segments[j].b() * this->segments[i].ind_influence(this->segments[j]);
        }
    //     adding lagrange multiplicator
        matrix(i, matsize - 1) += this->segments[i].lift_factor;
    }
    for (int i = 0; i < (matsize -1); i++)
    {
        matrix(matsize - 1, i) += this->segments[i].lift_factor;
    }
    rhs(matsize - 1) += cL;
    
    result = matrix.fullPivHouseholderQr().solve(rhs);
    for (int i = 0; i < matsize - 1; i++)
    {
        this->segments[i].best_gamma = result[i];
    }
}
 segment_info(unsigned int nc) {
     E.resize(6, nc);
     E_tilde.resize(6, nc);
     G.resize(nc);
     M.resize(nc, nc);
     EZ.resize(nc);
     E.setZero();
     E_tilde.setZero();
     M.setZero();
     G.setZero();
     EZ.setZero();
 };
 segment_info(unsigned int nc):
     D(0),nullspaceAccComp(0),constAccComp(0),biasAccComp(0),totalBias(0),u(0)
 {
     E.resize(6, nc);
     E_tilde.resize(6, nc);
     G.resize(nc);
     M.resize(nc, nc);
     EZ.resize(nc);
     E.setZero();
     E_tilde.setZero();
     M.setZero();
     G.setZero();
     EZ.setZero();
 };
コード例 #4
0
ファイル: Spline.cpp プロジェクト: personalrobotics/aikido
//==============================================================================
void Spline::evaluateDerivative(
    double _t, int _derivative, Eigen::VectorXd& _tangentVector) const
{
  if (mSegments.empty())
    throw std::logic_error("Unable to evaluate empty trajectory.");
  if (_derivative < 1)
    throw std::logic_error("Derivative must be positive.");

  const auto targetSegmentInfo = getSegmentForTime(_t);
  const auto& targetSegment = mSegments[targetSegmentInfo.first];
  const auto evaluationTime = _t - targetSegmentInfo.second;

  // Return zero for higher-order derivatives.
  if (_derivative < targetSegment.mCoefficients.cols())
  {
    // TODO: We should transform this into the body frame using the adjoint
    // transformation.
    _tangentVector = evaluatePolynomial(
        targetSegment.mCoefficients, evaluationTime, _derivative);
  }
  else
  {
    _tangentVector.resize(mStateSpace->getDimension());
    _tangentVector.setZero();
  }
}
コード例 #5
0
ファイル: krons.cpp プロジェクト: floswald/ArmaUtils
Eigen::VectorXd KronProdSPMat2(
    Eigen::SparseMatrix<double, Eigen::RowMajor> a0,
    Eigen::SparseMatrix<double, Eigen::RowMajor> a1,
    Eigen::VectorXd y) {

    signal(SIGSEGV, handler);   // install our handler
    Eigen::VectorXd retvec;
    retvec.setZero( a0.rows() * a1.rows()  );

    //loop rows a0
    for (int row_idx0=0; row_idx0<a0.outerSize(); ++row_idx0) {
        int row_offset1 = row_idx0;
        row_offset1    *= a1.rows();

        // loop rows a1
        for (int row_idx1=0; row_idx1<a1.outerSize(); ++row_idx1) {

            // loop cols a0 (non-zero elements only)
            for (Eigen::SparseMatrix<double,RowMajor>::InnerIterator it0(a0,row_idx0); it0; ++it0) {
                int col_offset1 = it0.index();
                col_offset1    *= a1.innerSize();
                double factor1 = it0.value();

                for (Eigen::SparseMatrix<double,RowMajor>::InnerIterator it1(a1,row_idx1); it1; ++it1) {
                    retvec( row_offset1 + row_idx1 ) += factor1 * it1.value() * y( col_offset1 + it1.index() );
                }
            }
        }
    }
    return retvec;
}
コード例 #6
0
	void log_gradient_and_output(size_t variable_idx, const Eigen::VectorXd& inputs, const Eigen::VectorXd& parameters, Eigen::VectorXd& outputs, Eigen::VectorXd& gradient_vector)
	{
		// TODO: Check concept for InputIterator

		//double N = std::distance(first_input, last_input);
		//double scaling_factor = 1. / view.size();
		gradient_vector.setZero();

		// DEBUG
		//std::cout << gradient_ << std::endl;

		//for (unsigned int i = 0; i < view.size(); i++) {
		forward_propagation(parameters, inputs, outputs, true);

		// DEBUG: Look for NaN
		/*for (size_t idx = 0; idx < static_cast<size_t>(outputs.size()); idx++) {
		if (std::isnan(outputs[idx]))
		std::cout << "NaN: Output[" << idx << "] from forward propagation" << std::endl;
		}*/

		// TODO: Check that outputs isn't overwritten by back propagation!
		// back_propagation_output(size_t variable_idx, const Eigen::VectorXd& parameters, const Eigen::MatrixBase<T>& inputs, Eigen::VectorXd& outputs, Eigen::VectorXd& gradient, double scaling_factor)
		back_propagation_log_output(variable_idx, parameters, inputs, inputs_to_output_activation_, gradient_vector, 1.);
		//}

		// DEBUG
		//std::cout << gradient_ << std::endl;
	}
コード例 #7
0
ファイル: krons.cpp プロジェクト: floswald/ArmaUtils
Eigen::VectorXd KronProdSPMat4(
    Eigen::SparseMatrix<double, Eigen::RowMajor> a0,
    Eigen::SparseMatrix<double, Eigen::RowMajor> a1,
    Eigen::SparseMatrix<double, Eigen::RowMajor> a2,
    Eigen::SparseMatrix<double, Eigen::RowMajor> a3,
    Eigen::VectorXd y) {

    signal(SIGSEGV, handler);   // install our handler
    Eigen::VectorXd retvec;
    retvec.setZero( a0.rows() * a1.rows() * a2.rows() * a3.rows()  );

    //loop rows a0
    for (int row_idx0=0; row_idx0<a0.outerSize(); ++row_idx0) {
        int row_offset1 = row_idx0;
        row_offset1    *= a1.rows();

        // loop rows a1
        for (int row_idx1=0; row_idx1<a1.outerSize(); ++row_idx1) {
            int row_offset2 = row_offset1 + row_idx1;
            row_offset2    *= a2.rows();

            // loop rows a2
            for (int row_idx2=0; row_idx2<a2.outerSize(); ++row_idx2) {
                int row_offset3 = row_offset2 + row_idx2;
                row_offset3    *= a3.rows();

                // loop rows a3
                for (int row_idx3=0; row_idx3<a3.outerSize(); ++row_idx3) {

                    // loop cols a0 (non-zero elements only)
                    for (Eigen::SparseMatrix<double,RowMajor>::InnerIterator it0(a0,row_idx0); it0; ++it0) {
                        int col_offset1 = it0.index();
                        col_offset1    *= a1.innerSize();
                        double factor1 = it0.value();

                        // loop cols a1
                        for (Eigen::SparseMatrix<double,RowMajor>::InnerIterator it1(a1,row_idx1); it1; ++it1) {
                            int col_offset2 = col_offset1 + it1.index();
                            col_offset2    *= a2.innerSize();
                            double factor2  = factor1 * it1.value();

                            //loop cols a2
                            for (Eigen::SparseMatrix<double,RowMajor>::InnerIterator it2(a2,row_idx2); it2; ++it2) {
                                int col_offset3 = col_offset2 + it2.index();
                                col_offset3    *= a3.innerSize();
                                double factor3  = factor2 * it2.value();

                                for (Eigen::SparseMatrix<double,RowMajor>::InnerIterator it3(a3,row_idx3); it3; ++it3) {
                                    retvec( row_offset3 + row_idx3 ) += factor3 * it3.value() * y( col_offset3 + it3.index() );
                                }
                            }
                        }
                    }
                }
            }
        }
    }
    return retvec;
}
コード例 #8
0
ファイル: SubSystem.cpp プロジェクト: 3DPrinterGuy/FreeCAD
void SubSystem::getParams(Eigen::VectorXd &xOut)
{
    if (xOut.size() != psize)
        xOut.setZero(psize);

    for (int i=0; i < psize; i++)
        xOut[i] = pvals[i];
}
コード例 #9
0
template <typename PointSource, typename PointTarget> void
pcl::registration::TransformationEstimationLM<PointSource, PointTarget>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    Eigen::Matrix4f &transformation_matrix)
{

  // <cloud_src,cloud_src> is the source dataset
  if (cloud_src.points.size () != cloud_tgt.points.size ())
  {
    PCL_ERROR ("[pcl::registration::TransformationEstimationLM::estimateRigidTransformation] ");
    PCL_ERROR ("Number or points in source (%zu) differs than target (%zu)!\n", 
               cloud_src.points.size (), cloud_tgt.points.size ());
    return;
  }
  if (cloud_src.points.size () < 4)     // need at least 4 samples
  {
    PCL_ERROR ("[pcl::registration::TransformationEstimationLM::estimateRigidTransformation] ");
    PCL_ERROR ("Need at least 4 points to estimate a transform! Source and target have %zu points!\n", 
               cloud_src.points.size ());
    return;
  }

  // If no warp function has been set, use the default (WarpPointRigid6D)
  if (!warp_point_)
    warp_point_.reset (new WarpPointRigid6D<PointSource, PointTarget>);

  int n_unknowns = warp_point_->getDimension ();
  Eigen::VectorXd x (n_unknowns);
  x.setZero ();
  
  // Set temporary pointers
  tmp_src_ = &cloud_src;
  tmp_tgt_ = &cloud_tgt;

  OptimizationFunctor functor (static_cast<int> (cloud_src.points.size ()), this);
  Eigen::NumericalDiff<OptimizationFunctor> num_diff (functor);
  Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, double> lm (num_diff);
  int info = lm.minimize (x);

  // Compute the norm of the residuals
  PCL_DEBUG ("[pcl::registration::TransformationEstimationLM::estimateRigidTransformation]");
  PCL_DEBUG ("LM solver finished with exit code %i, having a residual norm of %g. \n", info, lm.fvec.norm ());
  PCL_DEBUG ("Final solution: [%f", x[0]);
  for (int i = 1; i < n_unknowns; ++i) 
    PCL_DEBUG (" %f", x[i]);
  PCL_DEBUG ("]\n");

  // Return the correct transformation
  Eigen::VectorXf params = x.cast<float> ();
  warp_point_->setParam (params);
  transformation_matrix = warp_point_->getTransform ();

  tmp_src_ = NULL;
  tmp_tgt_ = NULL;
}
コード例 #10
0
ファイル: SubSystem.cpp プロジェクト: 3DPrinterGuy/FreeCAD
void SubSystem::getParams(VEC_pD &params, Eigen::VectorXd &xOut)
{
    if (xOut.size() != int(params.size()))
        xOut.setZero(params.size());

    for (int j=0; j < int(params.size()); j++) {
        MAP_pD_pD::const_iterator
          pmapfind = pmap.find(params[j]);
        if (pmapfind != pmap.end())
            xOut[j] = *(pmapfind->second);
    }
}
コード例 #11
0
void buildProblem(std::vector<T>& coefficients, Eigen::VectorXd& b, int n)
{
  b.setZero();
  Eigen::ArrayXd boundary = Eigen::ArrayXd::LinSpaced(n, 0,M_PI).sin().pow(2);
  for(int j=0; j<n; ++j)
  {
    for(int i=0; i<n; ++i)
    {
      int id = i+j*n;
      insertCoefficient(id, i-1,j, -1, coefficients, b, boundary);
      insertCoefficient(id, i+1,j, -1, coefficients, b, boundary);
      insertCoefficient(id, i,j-1, -1, coefficients, b, boundary);
      insertCoefficient(id, i,j+1, -1, coefficients, b, boundary);
      insertCoefficient(id, i,j,    4, coefficients, b, boundary);
    }
  }
}
コード例 #12
0
ファイル: SubSystem.cpp プロジェクト: 3DPrinterGuy/FreeCAD
void SubSystem::calcGrad(VEC_pD &params, Eigen::VectorXd &grad)
{
    assert(grad.size() == int(params.size()));

    grad.setZero();
    for (int j=0; j < int(params.size()); j++) {
        MAP_pD_pD::const_iterator
          pmapfind = pmap.find(params[j]);
        if (pmapfind != pmap.end()) {
            // assert(p2c.find(pmapfind->second) != p2c.end());
            std::vector<Constraint *> constrs=p2c[pmapfind->second];
            for (std::vector<Constraint *>::const_iterator constr = constrs.begin();
                 constr != constrs.end(); ++constr)
                grad[j] += (*constr)->error() * (*constr)->grad(pmapfind->second);
        }
    }
}
コード例 #13
0
	void gradient(View& view, const Eigen::VectorXd& parameters, Eigen::VectorXd& gradient_vector)
	{
		// TODO: Check concept for InputIterator

		//double N = std::distance(first_input, last_input);
		double scaling_factor = 1. / view.size();
		gradient_vector.setZero();

		// DEBUG
		//std::cout << gradient_ << std::endl;

		for (unsigned int i = 0; i < view.size(); i++) {
			forward_propagation(parameters, view.first(i), outputs());
			back_propagation_error(parameters, view.first(i), outputs(), view.second(i), gradient_vector, scaling_factor);
		}

		// DEBUG
		//std::cout << gradient_ << std::endl;
	}
コード例 #14
0
ファイル: SimuEuro.hpp プロジェクト: ericwbzhang/QuantLib_2.0
 SimuEuro(const option & o, long path, const std::vector<double> & RN){
     opt=o;
     N= path;
     asset_price.resize(N);
     asset_price.setZero();
     option_value= asset_price;
     
     for (long i=0; i< N; i++) {
         asset_price(i)=opt.S* exp((opt.r- opt.q)*opt.T-.5*opt.sigma*opt.sigma*opt.T+ opt.sigma* sqrt(opt.T)* RN[i]);
         
         if(opt.Call) option_value(i)= fmax(asset_price(i)- opt.K,0.0);
         else option_value(i)= fmax(-asset_price(i)+opt.K, 0.0);
     }
     
     mean= option_value.sum()/ option_value.size() * exp(-opt.T*opt.r);
     stdiv= option_value.squaredNorm()/ option_value.size()* exp(-opt.r*opt.T *2);
     stdiv= stdiv- pow(mean,2.0);
     stdiv= sqrt(stdiv/ N);
 };
コード例 #15
0
// Computes the difference vector of all design variables between the linearization point at marginalization and the current guess, on the tangent space (i.e. log(x_bar - x))
Eigen::VectorXd MarginalizationPriorErrorTerm::getDifferenceSinceMarginalization()
{
  Eigen::VectorXd diff = Eigen::VectorXd(_dimensionDesignVariables);
  diff.setZero();
  int index = 0;
  std::vector<Eigen::MatrixXd>::iterator it_marg = _designVariableValuesAtMarginalization.begin();
  std::vector<aslam::backend::DesignVariable*>::iterator it_current = _designVariables.begin();
  for(;it_current != _designVariables.end(); ++it_current, ++it_marg)
  {
	  // retrieve current value (xbar) and value at marginalization(xHat)
      Eigen::MatrixXd xHat = *it_marg;
      //get minimal difference in tangent space
      Eigen::VectorXd diffVector;
      (*it_current)->minimalDifference(xHat, diffVector);
      //int base = index;
      int dim = diffVector.rows();
      diff.segment(index, dim) = diffVector;
      index += dim;
  }
  return diff;
}
コード例 #16
0
ファイル: KernelBand.hpp プロジェクト: acuoci/edcSMOKE
	void KernelBand<NLSSystemObject>::CalculatesNormOfJacobianRows(Eigen::VectorXd& row_norms)
	{
		row_norms.setZero();

		for (int group = 1; group <= ngroups_; group++)
		{
			for (int j = group - 1; j < static_cast<int>(this->ne_); j += width_)
			{
				double* col_j = BAND_COL(J_, j);
				int i1 = std::max(0, j - J_->nUpper());
				int i2 = std::min(j + J_->nLower(), static_cast<int>(this->ne_ - 1));

				for (int i = i1; i <= i2; i++)
				{
					const double J = BAND_COL_ELEM(col_j, i, j);
					row_norms(i) += J*J;
				}
			}
		}

		for (unsigned int i = 0; i < this->ne_; i++)
			row_norms(i) = std::sqrt(row_norms(i));
	}
コード例 #17
0
ファイル: SimuEuro.hpp プロジェクト: ericwbzhang/QuantLib_2.0
    SimuEuro(const option &o, long path, unsigned int seed=  int(time(0))) {
        opt=o;
        N= path;
        asset_price.resize(N);
        asset_price.setZero();
        option_value= asset_price;
        
        boost::mt19937 eng(seed);
        boost::normal_distribution<double> normal(0.0, 1.0);
        boost::variate_generator<boost::mt19937&, boost::normal_distribution<double>> rng(eng, normal);
        
        for (long i=0; i< N; i++) {
            asset_price(i)=opt.S* exp((opt.r- opt.q)*opt.T-.5*opt.sigma*opt.sigma*opt.T+ opt.sigma* sqrt(opt.T)* rng());
            
            if(opt.Call) option_value(i)= fmax(asset_price(i)- opt.K,0.0);
            else option_value(i)= fmax(-asset_price(i)+opt.K, 0.0);
        }
        
        mean= option_value.sum()/ option_value.size() * exp(-opt.T*opt.r);
        stdiv= option_value.squaredNorm()/ option_value.size()* exp(-opt.r*opt.T *2);
        stdiv= stdiv- pow(mean,2.0);
        stdiv= sqrt(stdiv/ N);

    };
IGL_INLINE double igl::polyvector_field_poisson_reconstruction(
  const Eigen::PlainObjectBase<DerivedV> &Vcut,
  const Eigen::PlainObjectBase<DerivedF> &Fcut,
  const Eigen::PlainObjectBase<DerivedS> &sol3D_combed,
  Eigen::PlainObjectBase<DerivedSF> &scalars,
  Eigen::PlainObjectBase<DerivedS> &sol3D_recon,
  Eigen::PlainObjectBase<DerivedE> &max_error )
  {
    Eigen::SparseMatrix<typename DerivedV::Scalar> gradMatrix;
    igl::grad(Vcut, Fcut, gradMatrix);

    Eigen::VectorXd FAreas;
    igl::doublearea(Vcut, Fcut, FAreas);
    FAreas = FAreas.array() * .5;

    int nf = FAreas.rows();
    Eigen::SparseMatrix<typename DerivedV::Scalar> M,M1;
    Eigen::VectorXi II = igl::colon<int>(0, nf-1);

    igl::sparse(II, II, FAreas, M1);
    igl::repdiag(M1, 3, M) ;

    int half_degree = sol3D_combed.cols()/3;

    sol3D_recon.setZero(sol3D_combed.rows(),sol3D_combed.cols());

    int numF = Fcut.rows();
    scalars.setZero(Vcut.rows(),half_degree);

    Eigen::SparseMatrix<typename DerivedV::Scalar> Q = gradMatrix.transpose()* M *gradMatrix;

    //fix one point at Ik=fix, value at fixed xk=0
    int fix = 0;
    Eigen::VectorXi Ik(1);Ik<<fix;
    Eigen::VectorXd xk(1);xk<<0;

    //unknown indices
    Eigen::VectorXi Iu(Vcut.rows()-1,1);
    Iu<<igl::colon<int>(0, fix-1),  igl::colon<int>(fix+1,Vcut.rows()-1);

    Eigen::SparseMatrix<typename DerivedV::Scalar> Quu, Quk;
    igl::slice(Q, Iu, Iu, Quu);
    igl::slice(Q, Iu, Ik, Quk);
    Eigen::SimplicialLDLT<Eigen::SparseMatrix<typename DerivedV::Scalar> > solver;
    solver.compute(Quu);


    Eigen::VectorXd vec; vec.setZero(3*numF,1);
    for (int i =0; i<half_degree; ++i)
    {
      vec<<sol3D_combed.col(i*3+0),sol3D_combed.col(i*3+1),sol3D_combed.col(i*3+2);
      Eigen::VectorXd b = gradMatrix.transpose()* M * vec;
      Eigen::VectorXd bu = igl::slice(b, Iu);

      Eigen::VectorXd rhs = bu-Quk*xk;
      Eigen::MatrixXd yu = solver.solve(rhs);

      Eigen::VectorXi index = i*Eigen::VectorXi::Ones(Iu.rows(),1);
      igl::slice_into(yu, Iu, index, scalars);scalars(Ik[0],i)=xk[0];
    }

    //    evaluate gradient of found scalar function
    for (int i =0; i<half_degree; ++i)
    {
      Eigen::VectorXd vec_poisson = gradMatrix*scalars.col(i);
      sol3D_recon.col(i*3+0) = vec_poisson.segment(0*numF, numF);
      sol3D_recon.col(i*3+1) = vec_poisson.segment(1*numF, numF);
      sol3D_recon.col(i*3+2) = vec_poisson.segment(2*numF, numF);
    }

    max_error.setZero(numF,1);
    for (int i =0; i<half_degree; ++i)
    {
      Eigen::VectorXd diff = (sol3D_recon.block(0, i*3, numF, 3)-sol3D_combed.block(0, i*3, numF, 3)).rowwise().norm();
      diff = diff.array() / sol3D_combed.block(0, i*3, numF, 3).rowwise().norm().array();
      max_error = max_error.cwiseMax(diff.cast<typename DerivedE::Scalar>());
    }

    return max_error.mean();
  }
コード例 #19
0
ファイル: HingedToolManip.cpp プロジェクト: liqiang1980/VTFS
void init(){

    //find the path of config files
    std::string selfpath = get_selfpath();
    //select using normal control mode or psudogravity control mode
    right_rmt = NormalMode;
    //initialize FT sensor ptr
    ft_gama = new gamaFT;
    ft.setZero(6);
    tool_vec_g.setZero();
    axis_end_vec.setZero();
    
    //show toolname
    tn = hingedtool;
    StopFlag = false;
    //initialize the axis vec
    local_hinged_axis_vec.setZero();
    local_hinged_axis_vec(0) = -0.9472;
    local_hinged_axis_vec(1) = 0.0494;
    local_hinged_axis_vec(2) = -0.3166;
    
    des_tm.setZero();
    des_vec.setZero();
    
    //declare the cb function

    boost::function<void(boost::shared_ptr<std::string>)> button_sdh_moveto(sdh_moveto_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdhaxisvec_moveto(sdhaxisvec_moveto_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdhmaintainF(sdhmaintainF_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdhslideX(sdhslideX_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdhslideY(sdhslideY_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdhfoldtool(sdhfoldtool_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_gamaftcalib(gamaftcalib_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdh_grav_comp_ctrl(sdh_grav_comp_ctrl_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdh_normal_ctrl(sdh_normal_ctrl_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_brake(brake_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_nobrake(nobrake_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_closeprog(closeprog_cb);

    //specify controller configure file in order to load it(right kuka + shadow hand)
    std::string config_filename = selfpath + "/etc/right_arm_param.xml";
    std::cout<<"right arm config file name is: "<<config_filename<<std::endl;
    //load controller parameters
    right_pm = new ParameterManager(config_filename);
    //initialize ptr to right kuka com okc
    com_okc_right = new ComOkc(kuka_right,OKC_HOST,OKC_PORT);

    //connect kuka right
    com_okc_right->connect();

    //initialize the kuka robot and let it stay in the init pose
    kuka_right_arm = new KukaLwr(kuka_right,*com_okc_right,tn);

    //initialize the robot state
    right_rs = new RobotState(kuka_right_arm);

    //get the initialize state of kuka right
    kuka_right_arm->get_joint_position_act();
    kuka_right_arm->update_robot_state();
    right_rs->updated(kuka_right_arm);
    right_ac_vec.push_back(new ProActController(*right_pm));
    right_task_vec.push_back(new KukaSelfCtrlTask(RP_NOCONTROL));
    right_task_vec.back()->mt = JOINTS;
    right_task_vec.back()->mft = GLOBAL;

    Eigen::Vector3d p,o;
    p.setZero();
    o.setZero();
    //get start point position in cartesian space
    p(0) = initP_x = right_rs->robot_position["eef"](0);
    p(1) = initP_y= right_rs->robot_position["eef"](1);
    p(2) = initP_z= right_rs->robot_position["eef"](2);

    o = tm2axisangle(right_rs->robot_orien["eef"]);
    initO_x = o(0);
    initO_y = o(1);
    initO_z = o(2);
    right_task_vec.back()->set_desired_p_eigen(p);
    right_task_vec.back()->set_desired_o_ax(o);

    kuka_right_arm->setAxisStiffnessDamping(right_ac_vec.back()->pm.stiff_ctrlpara.axis_stiffness, \
                                           right_ac_vec.back()->pm.stiff_ctrlpara.axis_damping);

    com_rsb = new ComRSB();
    rdtschunkjs = SchunkJS;
    com_rsb->add_msg(rdtschunkjs);
    gama_f_filter = new TemporalSmoothingFilter<Eigen::Vector3d>(10,Average,Eigen::Vector3d(0,0,0));
    gama_t_filter = new TemporalSmoothingFilter<Eigen::Vector3d>(10,Average,Eigen::Vector3d(0,0,0));

    //register cb function
    com_rsb->register_external("/foo/sdhmoveto",button_sdh_moveto);
    com_rsb->register_external("/foo/sdhaxisvecmoveto",button_sdhaxisvec_moveto);
    com_rsb->register_external("/foo/sdhmaintainF",button_sdhmaintainF);
    com_rsb->register_external("/foo/sdhslideX",button_sdhslideX);
    com_rsb->register_external("/foo/sdhslideY",button_sdhslideY);
    com_rsb->register_external("/foo/sdhfoldtool",button_sdhfoldtool);
    com_rsb->register_external("/foo/gamaftcalib",button_gamaftcalib);
    com_rsb->register_external("/foo/sdh_grav_comp_ctrl",button_sdh_grav_comp_ctrl);
    com_rsb->register_external("/foo/sdh_normal_ctrl",button_sdh_normal_ctrl);
    com_rsb->register_external("/foo/closeprog",button_closeprog);

#ifdef HAVE_ROS
    std::string left_kuka_arm_name="la";
    std::string right_kuka_arm_name="ra";
    std::string left_schunk_hand_name ="lh";
    js_la.name.push_back(left_kuka_arm_name+"_arm_0_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_1_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_2_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_3_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_4_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_5_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_6_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_0_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_1_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_2_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_3_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_4_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_5_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_6_joint");
    
    //for schunk
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_knuckle_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_finger_22_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_finger_23_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_thumb_2_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_thumb_3_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_finger_12_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_finger_13_joint");

    js_la.position.resize(7);
    js_la.velocity.resize(7);
    js_la.effort.resize(7);

    js_ra.position.resize(7);
    js_ra.velocity.resize(7);
    js_ra.effort.resize(7);
    
    js_schunk.position.resize(7);
    js_schunk.velocity.resize(7);
    js_schunk.effort.resize(7);

    js_la.header.frame_id="frame_la";
    js_ra.header.frame_id="frame_ra";
    js_ra.header.frame_id="frame_lh";

    gamma_force_marker_pub = nh->advertise<visualization_msgs::Marker>("gamma_force_marker", 2);
    hingedtool_axis_marker_pub = nh->advertise<visualization_msgs::Marker>("hingedtool_axis_marker", 2);

    jsPub_la = nh->advertise<sensor_msgs::JointState> ("/la/joint_states", 2);
    jsPub_ra = nh->advertise<sensor_msgs::JointState> ("/ra/joint_states", 2);
    jsPub_schunk = nh->advertise<sensor_msgs::JointState> ("/lh/joint_states", 2);
    ros::spinOnce();

    br = new tf::TransformBroadcaster();

    std::cout<<"ros init finished"<<std::endl;
#endif
}
コード例 #20
0
TEST(PinholeCamera, functions)
{
  const size_t NUM_POINTS = 100;

  // instantiate all possible versions of test cameras
  std::vector<std::shared_ptr<okvis::cameras::CameraBase> > cameras;
  cameras.push_back(
      okvis::cameras::PinholeCamera<okvis::cameras::NoDistortion>::createTestObject());
  cameras.push_back(
      okvis::cameras::PinholeCamera<
          okvis::cameras::RadialTangentialDistortion>::createTestObject());
  cameras.push_back(
      okvis::cameras::PinholeCamera<okvis::cameras::EquidistantDistortion>::createTestObject());
  cameras.push_back(
      okvis::cameras::PinholeCamera<okvis::cameras::RadialTangentialDistortion8>::createTestObject());

  for (size_t c = 0; c < cameras.size(); ++c) {
    //std::cout << "Testing " << cameras.at(c)->type() << std::endl;
    // try quite a lot of points:
    for (size_t i = 0; i < NUM_POINTS; ++i) {
      // create a random point in the field of view:
      Eigen::Vector2d imagePoint = cameras.at(c)->createRandomImagePoint();

      // backProject
      Eigen::Vector3d ray;
      EXPECT_TRUE(cameras.at(c)->backProject(imagePoint, &ray));

      // randomise distance
      ray.normalize();
      ray *= (0.2 + 8 * (Eigen::Vector2d::Random()[0] + 1.0));

      // project
      Eigen::Vector2d imagePoint2;
      Eigen::Matrix<double, 2, 3> J;
      Eigen::Matrix2Xd J_intrinsics;
      EXPECT_TRUE(
          cameras.at(c)->project(ray, &imagePoint2, &J, &J_intrinsics)
              == okvis::cameras::CameraBase::ProjectionStatus::Successful);

      // check they are the same
      EXPECT_TRUE((imagePoint2 - imagePoint).norm() < 0.01);

      // check point Jacobian vs. NumDiff
      const double dp = 1.0e-7;
      Eigen::Matrix<double, 2, 3> J_numDiff;
      for (size_t d = 0; d < 3; ++d) {
        Eigen::Vector3d point_p = ray
            + Eigen::Vector3d(d == 0 ? dp : 0, d == 1 ? dp : 0,
                              d == 2 ? dp : 0);
        Eigen::Vector3d point_m = ray
            - Eigen::Vector3d(d == 0 ? dp : 0, d == 1 ? dp : 0,
                              d == 2 ? dp : 0);
        Eigen::Vector2d imagePoint_p;
        Eigen::Vector2d imagePoint_m;
        cameras.at(c)->project(point_p, &imagePoint_p);
        cameras.at(c)->project(point_m, &imagePoint_m);
        J_numDiff.col(d) = (imagePoint_p - imagePoint_m) / (2 * dp);
      }
      EXPECT_TRUE((J_numDiff - J).norm() < 0.0001);

      // check intrinsics Jacobian
      const int numIntrinsics = cameras.at(c)->noIntrinsicsParameters();
      Eigen::VectorXd intrinsics;
      cameras.at(c)->getIntrinsics(intrinsics);
      Eigen::Matrix2Xd J_numDiff_intrinsics;
      J_numDiff_intrinsics.resize(2,numIntrinsics);
      for (int d = 0; d < numIntrinsics; ++d) {
        Eigen::VectorXd di;
        di.resize(numIntrinsics);
        di.setZero();
        di[d] = dp;
        Eigen::Vector2d imagePoint_p;
        Eigen::Vector2d imagePoint_m;
        Eigen::VectorXd intrinsics_p = intrinsics+di;
        Eigen::VectorXd intrinsics_m = intrinsics-di;
        cameras.at(c)->projectWithExternalParameters(ray, intrinsics_p, &imagePoint_p);
        cameras.at(c)->projectWithExternalParameters(ray, intrinsics_m, &imagePoint_m);
        J_numDiff_intrinsics.col(d) = (imagePoint_p - imagePoint_m) / (2 * dp);
      }
      /*std::cout<<J_numDiff_intrinsics<<std::endl;
      std::cout<<"----------------"<<std::endl;
      std::cout<<J_intrinsics<<std::endl;
      std::cout<<"================"<<std::endl;*/
      EXPECT_TRUE((J_numDiff_intrinsics - J_intrinsics).norm() < 0.0001);

    }
  }
}
コード例 #21
0
ファイル: KernelBand.hpp プロジェクト: acuoci/edcSMOKE
	void KernelBand<NLSSystemObject>::QuasiNewton(const Eigen::VectorXd& dxi, const Eigen::VectorXd& dfi)
	{
		const double tstart = OpenSMOKE::OpenSMOKEGetCpuTime();

		{
			// The auxiliary vector named x_plus is used here
			Eigen::VectorXd* normSquared = &x_plus_;
			
			normSquared->setZero();
			for (int group = 1; group <= ngroups_; group++)
			{
				for (int j = group - 1; j < static_cast<int>(this->ne_); j += width_)
				{
					int i1 = std::max(0, j - J_->nUpper());
					int i2 = std::min(j + J_->nLower(), static_cast<int>(this->ne_ - 1));

					for (int i = i1; i <= i2; i++)
						(*normSquared)(i) += dxi(j)*dxi(j);
				}
			}

			// The auxiliary vector named x_plus is used here
			Eigen::VectorXd* sum_vector = &f_plus_;

			(*sum_vector) = dfi;

			for (int group = 1; group <= ngroups_; group++)
			{
				for (int j = group - 1; j < static_cast<int>(this->ne_); j += width_)
				{
					double* col_j = BAND_COL(J_, j);
					int i1 = std::max(0, j - J_->nUpper());
					int i2 = std::min(j + J_->nLower(), static_cast<int>(this->ne_ - 1));

					for (int i = i1; i <= i2; i++)
						(*sum_vector)(i) -= BAND_COL_ELEM(col_j, i, j)*dxi(j);
				}
			}

			for (int group = 1; group <= ngroups_; group++)
			{
				for (int j = group - 1; j < static_cast<int>(this->ne_); j += width_)
				{
					double* col_j = BAND_COL(J_, j);
					int i1 = std::max(0, j - J_->nUpper());
					int i2 = std::min(j + J_->nLower(), static_cast<int>(this->ne_ - 1));
				}
			}

			const double eps = 1.e-10;
			for (int j = 0; j < static_cast<int>(this->ne_); j++)
				(*sum_vector)(j) /= ((*normSquared)(j) + eps);

			for (int group = 1; group <= ngroups_; group++)
			{
				for (int j = group - 1; j < static_cast<int>(this->ne_); j += width_)
				{
					double* col_j = BAND_COL(J_, j);
					int i1 = std::max(0, j - J_->nUpper());
					int i2 = std::min(j + J_->nLower(), static_cast<int>(this->ne_ - 1));

					for (int i = i1; i <= i2; i++)
						BAND_COL_ELEM(col_j, i, j) += (*sum_vector)(i)*dxi(j);
				}
			}
		}

		const double tend = OpenSMOKE::OpenSMOKEGetCpuTime();

		numberOfJacobianQuasiAssembling_++;
		cpuTimeSingleJacobianQuasiAssembling_ = tend - tstart;
		cpuTimeJacobianQuasiAssembling_ += cpuTimeSingleJacobianQuasiAssembling_;
	}
コード例 #22
0
ファイル: example.cpp プロジェクト: kevinsunsh/libigl
void display()
{
  using namespace Eigen;
  using namespace igl;
  using namespace std;

  if(!trackball_on && tot_num_samples < 10000)
  {
    if(S.size() == 0)
    {
      S.resize(V.rows());
      S.setZero();
    }
    VectorXd Si;
    const int num_samples = 20;
    ambient_occlusion(ei,V,N,num_samples,Si);
    S *= (double)tot_num_samples;
    S += Si*(double)num_samples;
    tot_num_samples += num_samples;
    S /= (double)tot_num_samples;
  }

  // Convert to 1-intensity
  C.conservativeResize(S.rows(),3);
  if(ao_on)
  {
    C<<S,S,S;
    C.array() = (1.0-ao_factor*C.array());
  }else
  {
    C.setConstant(1.0);
  }
  if(ao_normalize)
  {
    C.col(0) *= ((double)C.rows())/C.col(0).sum();
    C.col(1) *= ((double)C.rows())/C.col(1).sum();
    C.col(2) *= ((double)C.rows())/C.col(2).sum();
  }
  C.col(0) *= color(0);
  C.col(1) *= color(1);
  C.col(2) *= color(2);

  glClearColor(back[0],back[1],back[2],0);
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  // All smooth points
  glEnable( GL_POINT_SMOOTH );

  glDisable(GL_LIGHTING);
  if(lights_on)
  {
    lights();
  }
  push_scene();
  glEnable(GL_DEPTH_TEST);
  glDepthFunc(GL_LEQUAL);
  glEnable(GL_NORMALIZE);
  glEnable(GL_COLOR_MATERIAL);
  glColorMaterial(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE);
  push_object();

  // Draw the model
  // Set material properties
  glEnable(GL_COLOR_MATERIAL);
  draw_mesh(V,F,N,C);

  pop_object();

  // Draw a nice floor
  glPushMatrix();
  const double floor_offset =
    -2./bbd*(V.col(1).maxCoeff()-mid(1));
  glTranslated(0,floor_offset,0);
  const float GREY[4] = {0.5,0.5,0.6,1.0};
  const float DARK_GREY[4] = {0.2,0.2,0.3,1.0};
  draw_floor(GREY,DARK_GREY);
  glPopMatrix();

  pop_scene();

  report_gl_error();

  TwDraw();
  glutSwapBuffers();
  glutPostRedisplay();
}
コード例 #23
0
ファイル: rational_fitter.cpp プロジェクト: belcour/alta
/**
 * Take as input the full constraint matrix CI for a dimension ny, and
 * the associated ci vector with the 2-norm of each row scaled by delta.
 * Apply the quadratic program and test against all the constraints.
 * Return true if all constraints match, false otherwise.
 */
int rational_fitter_parsec_multi::solve_wrapper( const gesvdm2_args_t *args, subproblem_t *pb, int M, int ny,
						 double *CIptr, double *ciptr )
{
    const vertical_segment *d    = (const vertical_segment*)(args->dataptr);
    rational_function      *rf   = (rational_function*)(pb->rfptr);
    rational_function_1d   *rf1d = rf->get(ny);
    const int np = pb->np;
    const int nq = pb->nq;
    const int N  = np + nq;

    // Compute the solution
    Eigen::MatrixXd CE(N, 0);
    Eigen::VectorXd ce(0);
    Eigen::MatrixXd G (N, N); G.setIdentity();
    Eigen::VectorXd g (N); g.setZero();
    Eigen::VectorXd x (0.0, N);

    Eigen::MatrixXd CI = Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic,Eigen::RowMajor>::Map(CIptr, N, M);
    Eigen::Map<Eigen::VectorXd> ci(ciptr, M);

    // Select the size of the result vector to
    // be equal to the dimension of p + q
    double cost = QuadProgPP::solve_quadprog(G, g, CE, ce, CI, ci, x);
    bool solves_qp = !(cost == std::numeric_limits<double>::infinity());

    if(solves_qp) {
	std::cout << "<<INFO>> got solution for pb with np=" << pb->np << ", nq=" << pb->nq << std::endl;

	// Recopy the vector d
	vec p(np), q(nq);
	double norm = 0.0;

	for(int i=0; (i<N) & solves_qp; ++i) {
	    const double v = x[i];

	    solves_qp = solves_qp && !isnan(v)
		&& (v != std::numeric_limits<double>::infinity());

	    norm += v*v;
	    if(i < np) {
		p[i] = v;
	    }
	    else {
		q[i - np] = v;
	    }
	}

	if (solves_qp) {
	    std::cout << "<<INFO>> got solution to second step for pb with np=" << pb->np << ", nq=" << pb->nq << std::endl;

	    // Rq: doesn't need protection in // since it should be working on independant vectors
	    rf1d->update(p, q);
	    solves_qp = (test_all_constraint( d, rf1d, ny ) == 1);
	}
    }
    else {
	std::cerr << "<<DEBUG>> Didn't get solution to the pb with np=" << pb->np << ", nq=" << pb->nq << std::endl;
    }

    return solves_qp;
}
コード例 #24
0
int main()
{
	//initialisation
	Eigen::ArrayXXd R = Eigen::ArrayXXd::Zero(FEATURE_SIZE, NO_OF_POSTAGS); //matrix R, dimension: Nf x Nw
	std::default_random_engine generator;
	std::normal_distribution<double> distr(0.0, 0.1);
	//initialise the matrix R with small, random, non-zero numbers
	for (int i = 0; i < R.rows(); i++) {
		for (int j = 0; j < R.cols(); j++) {
			double d = distr(generator);
			//avoid having 0's as the weight, try to get all the coefficients initialised with small numbers
			while (d == 0.0) {
				d = distr(generator);
			}
			R(i, j) = d;
		}
	}
		//initialise the matrix Q, of size feature_size x (no_of_postags * no_of_distance) 
	Eigen::ArrayXXd Q = Eigen::ArrayXXd::Zero(FEATURE_SIZE, NO_OF_POSTAGS);
	for (int i = 0; i < Q.rows(); i++) {
		for (int j = 0; j < Q.cols(); j++) {
			double d = distr(generator);
			//avoid having 0's as the weight, try to get all the coefficients initialised with small numbers
			while (d == 0.0) {
				d = distr(generator);
			}
			Q(i, j) = d;
		}
	}
	//create an array of Ci (where each Ci is a matrix of Nf x Nf that governs the interaction between the ith feature and vn)
	std::vector<Eigen::ArrayXXd> Ci;
	for (int i = 0; i < 5; i++) {
		Eigen::ArrayXXd Ci_temp = Eigen::ArrayXXd::Zero(FEATURE_SIZE, FEATURE_SIZE);
		std::default_random_engine generator;
		std::normal_distribution<double> distr(0.0, 0.1);
		for (int j = 0; j < Ci_temp.rows(); j++) {
			for (int k = 0; k < Ci_temp.cols(); k++) {
				double d = distr(generator);
				//avoid having 0's as the weight, try to get all the coefficients initialised with small numbers
				while (d == 0.0) {
					d = distr(generator);
				}
				Ci_temp(j, k) = d;
			}
		}
		Ci.push_back(Ci_temp);
	}
	//initialise vi. We use a context of 5 (the postag of the head itself, the postag before the modifier, the postag after the modifier, the postag before the head, and the postag after the head)
	//initialise vn. Both vi and vn are column vectors with all 0's and a single 1, which indicates the POS-tag we desire to get
	//FOR NOW, we ignore the term br^transpose * R^transpose*vn, but find out what it is
	//initialise the bias term bv
	Eigen::ArrayXd bv;
	//print the array of biases into an external file
	std::ofstream final_postag_bias("final_postag_bias.txt"); 
	if (!final_postag_bias.is_open()) {
		std::cout << "fail to create final postag bias file" << std::endl;
	} 
	/*std::map<std::string, int> big_pos_tag_map = get_postag_bias(bv, "distance_count.txt", "fine_pos_tags.txt");
	std::cout << "size of big pos tag map = " << big_pos_tag_map.size() << std::endl;
	for (std::map<std::string, int>::iterator it = big_pos_tag_map.begin(); it != big_pos_tag_map.end(); it++) {
		final_postag_bias << "Pos tag " << it->first << " has bias value " << bv(it->second) << std::endl;
	} */

	/* create a pair between each "target pos tag" with a bias value (tested and correct)*/
	//Eigen::ArrayXd word_bias_pair = Eigen::ArrayXd::Zero(NO_OF_POSTAGS_WITHOUT_DUMMY * NO_OF_DISTANCE);
	int i_3 = -1;
	std::ifstream fine_pos_tags("fine_pos_tags.txt");
	std::string temp_string;
	/*
	while (getline(fine_pos_tags, temp_string)) {
		for (int i = -MAX_DISTANCE; i <= MAX_DISTANCE; i++) {
			if (i != 0) {
				if (i == -49 || i == -45 || i == -40 || i == -35 || i == -30 || i == -25 || i == -20 || i == -15 || i == -10 || i == -5 || i == -4 || i == -3 || i == -2 || i == -1 || i == 1 || i == 2 || i == 3 || i == 4 || i == 5 || i == 6 || i == 11 || i == 16 || i == 21 || i == 26 || i == 31 || i == 36|| i == 41 || i == 46) {
					i_3++;
					std::stringstream sstm;
					sstm << temp_string << i;
					if (big_pos_tag_map.find(sstm.str()) == big_pos_tag_map.end()) {
						std::cout << "ERROR" << std::endl;
					} else {
						int pos_tag_idx = big_pos_tag_map[sstm.str()];
						//word_bias_pair(i_3) = bv(pos_tag_idx);
					}
				}
			}
		}
	} */
	/* end */
	//main training part
	std::map<std::string, int> mapping = postag_mapping("fine_pos_tags.txt");
	fine_pos_tags.close();
	//print out both the small and big mapping
	//std::ofstream big_pos_tag_mapping("big_pos_tag_map.txt");
	std::ofstream small_pos_tag_mapping("small_pos_tag_map.txt");
	/*
	for (std::map<std::string, int>::iterator it = big_pos_tag_map.begin(); it != big_pos_tag_map.end(); it++) {
		big_pos_tag_mapping << it->first << " " << it->second << std::endl;
	} */
	for (std::map<std::string, int>::iterator it = mapping.begin(); it != mapping.end(); it++) {
		small_pos_tag_mapping << it->first << " " << it->second << std::endl;
	}
	small_pos_tag_mapping.close();

	//create the pairs
	std::ifstream pairs ("real_pairs_medium.txt");
	//initialise the gradient matrix
	std::vector<Eigen::MatrixXd> dCi;
	for (int i = 0; i < 5; i++) {
		Eigen::MatrixXd temp = Eigen::MatrixXd::Zero(FEATURE_SIZE, FEATURE_SIZE);
		dCi.push_back(temp);
	}
	Eigen::MatrixXd dR = Eigen::MatrixXd::Zero(FEATURE_SIZE, NO_OF_POSTAGS);
	Eigen::MatrixXd dQ = Eigen::MatrixXd::Zero(FEATURE_SIZE, NO_OF_POSTAGS);
	std::ofstream parameters ("parameters_each_epoch_small_trial_1_check_R.txt");
	if (!parameters.is_open()) {
		std::cout << "Error: output file not opening" << std::endl;
	}
	
	//initialise all the temporary variables outside the loop to save time on memory allocation on the heap (expensive)
	//all these temporary variables are reset to zero using .setZero() method at the end of each loop
	Eigen::MatrixXd tempC = Eigen::MatrixXd::Zero(FEATURE_SIZE, FEATURE_SIZE);
	Eigen::MatrixXd temp_R_Model = Eigen::MatrixXd::Zero(FEATURE_SIZE, NO_OF_POSTAGS);
	Eigen::MatrixXd temp_R_Data = Eigen::MatrixXd::Zero(FEATURE_SIZE, NO_OF_POSTAGS);
	Eigen::MatrixXd temp_Q = Eigen::MatrixXd::Zero(FEATURE_SIZE, NO_OF_POSTAGS);
	Eigen::MatrixXd temp_Q_Model = Eigen::MatrixXd::Zero(FEATURE_SIZE, NO_OF_POSTAGS);
	Eigen::MatrixXd temp_Q_Data = Eigen::MatrixXd::Zero(FEATURE_SIZE, NO_OF_POSTAGS);
	Eigen::VectorXd temp_Qw = Eigen::VectorXd::Zero(FEATURE_SIZE); 
	//Eigen::VectorXd dbias = Eigen::VectorXd::Zero(NO_OF_POSTAGS_WITHOUT_DUMMY * NO_OF_DISTANCE);
	//Eigen::VectorXd temp_dbias = Eigen::VectorXd::Zero(NO_OF_POSTAGS_WITHOUT_DUMMY * NO_OF_DISTANCE);
	Eigen::VectorXd tempCr = Eigen::VectorXd::Zero(FEATURE_SIZE);
	Eigen::ArrayXd temp_e = Eigen::ArrayXd::Zero(NO_OF_POSTAGS);
	/*
	Eigen::MatrixXd temp_matrix = Eigen::MatrixXd::Zero(NO_OF_POSTAGS, FEATURE_SIZE);
	Eigen::MatrixXd temp_matrix_2 = Eigen::MatrixXd::Zero(NO_OF_POSTAGS, FEATURE_SIZE); */
	//calculate the normalising constant for the first time
	std::ofstream gradient_check_R("gradient_check_R_big.txt");
	Eigen::MatrixXd curr_dR = Eigen::MatrixXd::Zero(FEATURE_SIZE, NO_OF_POSTAGS); //DELETE THIS LATER
	int no_of_iter = 0;
	for (int i = 0; i < NO_OF_EPOCH; i++) { 
		if (!pairs.is_open()) {
			std::cout << "Fail to open input file" << std::endl;
		} else {
			std::vector<std::string> temp;
			std::string line;
			while (getline(pairs, line)) {
				if (line.size() > 1) {
					no_of_iter++;
					temp = split(line, ' ');
					//initialise an array with the elements as the indices of: postag of the modifier, postag of the head, postag of before modifier, postag of after modifier, postag of before head, postag of after head
					int arr_temp[6] = {mapping[temp[0]], mapping[temp[1]], mapping[temp[2]], mapping[temp[3]], mapping[temp[4]], mapping[temp[5]]};
					if (no_of_iter % 10000 == 0) {
						std::cout << no_of_iter << std::endl;
					}
					//calculate the normalising constant
					double normalising_constant = 0.0;
					for (int iter2 = 0; iter2 < 5; iter2++) {
							tempCr += (Ci[iter2].matrix() * R.col(arr_temp[iter2+1]).matrix()); //prediction
					}
					for (int iter = 0; iter < Q.cols(); iter++) {
						double temp = exp((tempCr.transpose() * Q.col(iter).matrix()));//dot product
						temp_e(iter) = temp; 
						normalising_constant += temp; 
					} 					
					//calculate all the gradient changes for each of the Ci, from dCi[0] to dCi[4]
					//this operation is already efficient
					for (int j = 0; j < 5; j++) {
						for (int k = 0; k < Q.cols(); k++) {
							tempC += (temp_e(k) * (Q.col(k).matrix() * R.col(arr_temp[j+1]).transpose().matrix()));
						}
						//normalise
						tempC /= normalising_constant;
						dCi[j] += (Q.col(arr_temp[0]).matrix() * R.col(arr_temp[j+1]).transpose().matrix() - tempC);
						//reset the matrix tempC to prepare to calculate the next dCi[j]
						tempC.setZero();
					}
					
					//calculate dQ VERIFY
					for (int j = 0; j < 5; j++) {
						temp_Qw += (Ci[j].matrix() * R.col(arr_temp[j+1]).matrix());
					}
					for (int j = 0; j < Q.cols(); j++) {
						temp_Q_Model.col(j) += (temp_e(j) * temp_Qw);
					}
					temp_Q_Model /= normalising_constant;
					temp_Q_Data.col(arr_temp[0]) = temp_Qw;
					dQ += (temp_Q_Data - temp_Q_Model);
					temp_Qw.setZero();
					temp_Q_Model.setZero();
					temp_Q_Data.setZero();

					//calculate dR
					//calculate dR with respect to data
					for (int j = 0; j < 5; j++) {
						temp_R_Data.col(arr_temp[j+1]) += Ci[j].transpose().matrix() * Q.col(arr_temp[0]).matrix();
					}
					//calculate dR with respect to model
					for (int k = 0; k < Q.cols(); k++) {
						for (int j = 0; j < 5; j++) {
							temp_R_Model.col(arr_temp[j+1]) += (temp_e(k) * (Ci[j].transpose().matrix() * Q.col(k).matrix()));
						}
					}
					temp_R_Model /= normalising_constant;
					dR += (temp_R_Data - temp_R_Model);
					if (no_of_iter  % 1000 == 0) {
						curr_dR = temp_R_Data - temp_R_Model;
					}
					temp_R_Data.setZero();
					temp_R_Model.setZero();

					//calculate dbias
					//temp_dbias(arr_temp[0]) = 1.0;
					//dbias += (temp_dbias - temp_e.matrix() / normalising_constant);
					//temp_dbias(arr_temp[0]) = 0.0;

					tempCr.setZero();
					temp_e.setZero();

					if (no_of_iter % 1000 == 0) {
							Eigen::VectorXd temp = Eigen::VectorXd::Zero(FEATURE_SIZE);
							gradient_check_R <<  "current data point = " << no_of_iter <<std::endl;
								for (int j = 0; j < R.rows(); j++) {
									for (int k = 0; k < R.cols(); k++) {
										Eigen::ArrayXXd R_copy = R;
										double result_1 = 0.0;
										double result_2 = 0.0;
										double temp_double = 0.0;
										gradient_check_R << curr_dR(j, k) << " ";
										R_copy(j, k) += EPSILON;
										for (int iter2 = 0; iter2 < 5; iter2++) {
												temp += (Ci[iter2].matrix() * R_copy.col(arr_temp[iter2+1]).matrix());
										}
										result_1 += temp.transpose() * Q.col(arr_temp[0]).matrix();
										for (int l = 0; l < Q.cols(); l++) {
											temp_double += exp(temp.transpose() * Q.col(l).matrix());
										}
										result_1 -= log(temp_double);
										temp_double = 0.0;
										//calculate result_2
										R_copy(j, k) -= (2 * EPSILON);
										temp.setZero();
										for (int iter2 = 0; iter2 < 5; iter2++) {
												temp += (Ci[iter2].matrix() * R_copy.col(arr_temp[iter2 + 1]).matrix());	
										}
										result_2 += temp.transpose() * Q.col(arr_temp[0]).matrix();
										for (int l = 0; l < Q.cols(); l++) {
											temp_double += exp(temp.transpose() * Q.col(l).matrix());
										}
										result_2 -= log(temp_double);
										temp.setZero();
										gradient_check_R << (result_1 - result_2) / (2 * EPSILON) << std::endl;

									}
							}
							curr_dR.setZero();
				}

					//update the gradient if no_of_iter mod mini batch size == 0, reset the gradient matrix to 0

					if (no_of_iter % BATCH_SIZE == 0) {
						double curr_learning_rate = LEARNING_RATE / (1 + no_of_iter * LEARNING_DECAY);
						for (int j = 0; j < 5; j++) {
							Ci[j] = Ci[j].matrix() + curr_learning_rate * dCi[j];
							//reset the matrix dCi[j]
							dCi[j].setZero();
						}
						//word_bias_pair = word_bias_pair + curr_learning_rate * dbias.array();
						R = R.matrix() + curr_learning_rate * dR;
						Q = Q.matrix() + curr_learning_rate * dQ;
						dR.setZero();
						dQ.setZero();
						//dbias.setZero();
					} 
				} 
				temp.clear();
			}
			pairs.close();
		}
		parameters << "Epoch number: " << i+1 << std::endl;
		for (int j = 0; j < 5; j++) {
			parameters << "Matrix C" << j+1 << std::endl; 
			parameters << Ci[j] << std::endl;
			parameters << std::endl;
			parameters << "End of matrix C" << j+1 << std::endl;
		}
		parameters << "Matrix R" << std::endl;
		parameters << R << std::endl;
		parameters << "End of matrix R" << std::endl;
		parameters << "Matrix Q" << std::endl;
		parameters << Q << std::endl;
		parameters << "End of matrix Q" << std::endl;
		//parameters << "Bias vector" << std::endl;
		//parameters << word_bias_pair << std::endl;
		//parameters << "End of bias vector" << std::endl;
		pairs.open("real_pairs_medium.txt");
	} 
	pairs.close();
	parameters.close();
	return 0;
}
コード例 #25
0
ファイル: RegulatorGPC.cpp プロジェクト: pobieralnia/PSS
/**
 * Simulate
 * 
 * @param		double input
 * @return		double u - control signal
 */
double RegulatorGPC::simulate(double input)
{
	if(m_proces)
	{
		m_w = m_proces->simulate();
		const double y = input;

		m_e = m_w - y;
		m_history_Y.push_front(y);
		m_identify.add_sample(input, m_history_U.front());

		//std::deque<double> A,B;
		m_poly_A.clear();
		m_poly_B.clear();

		//A.push_back(-0.6);
		//B.push_back(0.4);

		m_identify.get_polynomial_a(m_poly_A);
		m_identify.get_polynomial_b(m_poly_B);

		// Return disruption
		if (m_initial_steps_left > 0)
		{
			const double u = m_w - y;
			m_history_U.push_front(u);
			m_initial_steps_left--;
			return u;
		}
    
		// Control algorithm
		// ------------------------------------------------------------------------------------------------------
	
		// 1. Calculating h initial conditions equal zero, delay = 0
		// http://platforma.polsl.pl/rau1/file.php/62/Cz_4_regulacja_predykcyjna.pdf
		// page 27
		Eigen::VectorXd h(m_H);
		{
			std::map<std::string, double> others;
			others["k"] = 0;
			others["stationary"] = 0;
			others["noise"] = 0;

			ARX ob;
			ob.set_parameters(m_poly_A,m_poly_B,others);
			for(int i=0; i<m_H; i++)
			{
				h[i] = ob.simulate(1.0);
			}
		}

		// 2. Calculating Q:
		// http://platforma.polsl.pl/rau1/file.php/62/Cz_4_regulacja_predykcyjna.pdf
		// page 28
		Eigen::MatrixXd Q;
		Q.setZero(m_H, m_L);
		for(int i=0; i<m_H; i++)
		{
			for(int j=0; j<m_L; j++)
			{
				if(i-j<0)
				{
					Q(i,j) = 0;
				}
				else
				{
					Q(i,j) = h[i-j];
				}
			}
		}

		// 3. Calculating w0
		// http://platforma.polsl.pl/rau1/file.php/62/Cz_4_regulacja_predykcyjna.pdf
		// page 8
		Eigen::VectorXd w0(m_H);
		w0[0] = (1-m_alpha)*m_w + m_alpha*y;
		for(int i=1; i<m_H; i++)
		{
			w0[i] = (1-m_alpha)*m_w + m_alpha*w0[i-1];
		}
		

		// 4. Calculating q
		// http://platforma.polsl.pl/rau1/file.php/62/Cz_4_regulacja_predykcyjna.pdf
		// page 20
		Eigen::VectorXd tmp;
		tmp.setZero(m_L);
		tmp[0] = 1;
		Eigen::MatrixXd mIdentity;
		mIdentity.setIdentity(m_L,m_L);
		Eigen::VectorXd q = (tmp.transpose()
							*((Q.transpose()*Q + m_ro*mIdentity).inverse())
							*Q.transpose()
							).transpose();

		// 5. Calculating y0
		// http://platforma.polsl.pl/rau1/file.php/62/Cz_4_regulacja_predykcyjna.pdf
		// page 31
		Eigen::VectorXd y0(m_H);
		{
			ARX ob;
			std::map<std::string, double> others;
			others["k"] = 0;
			others["stationary"] = 0;
			others["noise"] = 0;
			ob.set_parameters(m_poly_A,m_poly_B,others);
			ob.set_initial_state(m_history_U, m_history_Y);
			ob.simulate(m_history_U.front());
			for (int i=0; i<m_H; i++)
			{
				y0[i] = ob.simulate(m_history_U.front());
			}
		}

		// 6. Calculating final control
		// http://platforma.polsl.pl/rau1/file.php/62/Cz_4_regulacja_predykcyjna.pdf
		// page 35
		const double du = q.transpose() * (w0-y0);
		const double u = m_history_U.front() + du;

		m_history_U.push_front(u);
		return u;
	}
	else
		return 0.0;
}
コード例 #26
0
ファイル: predict.cpp プロジェクト: JonasWallin/LangLong
// [[Rcpp::export]]
List predictLong_cpp(Rcpp::List in_list)
{


  //**********************************
  //      basic parameter
  //**********************************

  int nSim       = Rcpp::as< int > (in_list["nSim"]);
  int nBurnin    = Rcpp::as< int > (in_list["nBurnin"] );
  int silent     = Rcpp::as< int > (in_list["silent"]);

  //**********************************
  //     setting up the main data
  //**********************************
  //if(silent == 0){
  //  Rcpp::Rcout << " Setup data\n";
  //}
  Rcpp::List obs_list  = Rcpp::as<Rcpp::List> (in_list["obs_list"]);
  int nindv = obs_list.length(); //count number of patients
  std::vector< Eigen::SparseMatrix<double,0,int> > As( nindv);
  std::vector< Eigen::SparseMatrix<double,0,int> > As_pred( nindv);
  std::vector< Eigen::VectorXd > Ys( nindv);
  std::vector< Eigen::MatrixXd > pred_ind(nindv);
  std::vector< Eigen::MatrixXd > obs_ind(nindv);
  std::vector< Eigen::MatrixXd > Bfixed_pred(nindv);
  std::vector< Eigen::MatrixXd > Brandom_pred(nindv);
  int count;
  count = 0;
  for( List::iterator it = obs_list.begin(); it != obs_list.end(); ++it ) {
    List obs_tmp = Rcpp::as<Rcpp::List>(*it);
    As[count]            = Rcpp::as<Eigen::SparseMatrix<double,0,int> >(obs_tmp["A"]);
    As_pred[count]       = Rcpp::as<Eigen::SparseMatrix<double,0,int> >(obs_tmp["Apred"]);
    pred_ind[count]      = Rcpp::as<Eigen::MatrixXd>(obs_tmp["pred_ind"]);
    obs_ind[count]       = Rcpp::as<Eigen::MatrixXd>(obs_tmp["obs_ind"]);
    Ys[count]            = Rcpp::as<Eigen::VectorXd>(obs_tmp["Y"]);
    Brandom_pred[count]  = Rcpp::as<Eigen::MatrixXd>(obs_tmp["Brandom_pred"]);
    Bfixed_pred[count]   = Rcpp::as<Eigen::MatrixXd>(obs_tmp["Bfixed_pred"]);
    count++;
  }



  //**********************************
  //operator setup
  //***********************************
  //if(silent == 0){
  //  Rcpp::Rcout << " Setup operator\n";
  //}
  Rcpp::List operator_list  = Rcpp::as<Rcpp::List> (in_list["operator_list"]);
  std::string type_operator = Rcpp::as<std::string>(operator_list["type"]);
  operator_list["nIter"] = 1;
  operatorMatrix* Kobj;
  //Kobj = new MaternMatrixOperator;
  operator_select(type_operator, &Kobj);
  Kobj->initFromList(operator_list, List::create(Rcpp::Named("use.chol") = 1));

  Eigen::VectorXd h = Rcpp::as<Eigen::VectorXd>( operator_list["h"]);

  //Prior solver
  cholesky_solver Qsolver;
  Qsolver.init( Kobj->d, 0, 0, 0);
  Qsolver.analyze( Kobj->Q);
  Qsolver.compute( Kobj->Q);

  //Create solvers for each patient
  std::vector<  cholesky_solver >  Solver( nindv);
  Eigen::SparseMatrix<double, 0, int> Q;

  count = 0;
  for( List::iterator it = obs_list.begin(); it != obs_list.end(); ++it ) {
    List obs_tmp = Rcpp::as<Rcpp::List>( *it);
    Solver[count].init(Kobj->d, 0, 0, 0);
    Q = Eigen::SparseMatrix<double,0,int>(Kobj->Q.transpose());
    Q = Q  * Kobj->Q;
    Q = Q + As[count].transpose()*As[count];
    Solver[count].analyze(Q);
    Solver[count].compute(Q);
    count++;
  }
  //**********************************
  // mixed effect setup
  //***********************************
  //if(silent == 0){
  //  Rcpp::Rcout << " Setup mixed effect\n";
  //}
  Rcpp::List mixedEffect_list  = Rcpp::as<Rcpp::List> (in_list["mixedEffect_list"]);
  std::string type_mixedEffect = Rcpp::as<std::string> (mixedEffect_list["noise"]);
  MixedEffect *mixobj;
  if(type_mixedEffect == "Normal")
    mixobj = new NormalMixedEffect;
  else
    mixobj   = new NIGMixedEffect;

  mixobj->initFromList(mixedEffect_list);

  //**********************************
  // measurement setup
  //***********************************
  //if(silent == 0){
  //  Rcpp::Rcout << " Setup noise\n";
  //}
  MeasurementError *errObj;
  Rcpp::List measurementError_list  = Rcpp::as<Rcpp::List> (in_list["measurementError_list"]);
  std::string type_MeasurementError= Rcpp::as <std::string> (measurementError_list["noise"]);
  if(type_MeasurementError == "Normal")
    errObj = new GaussianMeasurementError;
  else
    errObj = new NIGMeasurementError;

  errObj->initFromList(measurementError_list);





  //**********************************
  // stochastic processes setup
  //***********************************
  //if(silent == 0){
  //  Rcpp::Rcout << " Setup process\n";
  //}
  Rcpp::List processes_list   = Rcpp::as<Rcpp::List>  (in_list["processes_list"]);
  Rcpp::List V_list           = Rcpp::as<Rcpp::List>  (processes_list["V"]);

  std::string type_processes  = Rcpp::as<std::string> (processes_list["noise"]);


  Process *process;

  if (type_processes != "Normal"){
    process  = new GHProcess;
  }else{ process  = new GaussianProcess;}

  process->initFromList(processes_list, h);
  /*
  Simulation objects
  */
  std::mt19937 random_engine;
  std::normal_distribution<double> normal;
  std::default_random_engine gammagenerator;
  random_engine.seed(std::chrono::high_resolution_clock::now().time_since_epoch().count());
  gig rgig;
  rgig.seed(std::chrono::high_resolution_clock::now().time_since_epoch().count());
  Eigen::VectorXd  z;
  z.setZero(Kobj->d);

  Eigen::VectorXd b, Ysim;
  b.setZero(Kobj->d);

  std::vector<int> longInd;
  for (int i=0; i< nindv; i++) longInd.push_back(i);

  Eigen::SparseMatrix<double,0,int> K = Eigen::SparseMatrix<double,0,int>(Kobj->Q);
  K *= sqrt(Kobj->tau);

  std::vector< Eigen::MatrixXd > WVec(nindv);
  std::vector< Eigen::MatrixXd > XVec(nindv);

  for(int i = 0; i < nindv; i++ ) {
    if(silent == 0){
      Rcpp::Rcout << " Compute prediction for patient " << i << "\n";
    }

    XVec[i].resize(As_pred[i].rows(), nSim);
    WVec[i].resize(As_pred[i].rows(), nSim);
    Eigen::MatrixXd random_effect = mixobj->Br[i];
    Eigen::MatrixXd fixed_effect = mixobj->Bf[i];
    for(int ipred = 0; ipred < pred_ind[i].rows(); ipred++){
      //if(silent == 0){
      //  Rcpp::Rcout << " location = " << ipred << ": "<< obs_ind[i](ipred,0)<< " " << obs_ind[i](ipred,1) << "\n";
      //  Rcpp::Rcout << " A size = " <<  As[i].rows() << " " << As[i].cols() << "\n";
      //  Rcpp::Rcout << " Y size = " <<  Ys[i].size() << ", re = " << random_effect.rows() << ", fe = "<< fixed_effect.size() << "\n";
      //}
      //extract data to use for prediction:
      Eigen::SparseMatrix<double,0,int> A = As[i].middleRows(obs_ind[i](ipred,0),obs_ind[i](ipred,1));
      Eigen::VectorXd  Y = Ys[i].segment(obs_ind[i](ipred,0),obs_ind[i](ipred,1));
      mixobj->Br[i] = random_effect.middleRows(obs_ind[i](ipred,0),obs_ind[i](ipred,1));
      mixobj->Bf[i] = fixed_effect.middleRows(obs_ind[i](ipred,0),obs_ind[i](ipred,1));
      //Rcpp::Rcout  << "here1111\n";
      for(int ii = 0; ii < nSim + nBurnin; ii ++){
        //Rcpp::Rcout << "iter = " << ii << "\n";
        Eigen::VectorXd  res = Y;
        //***************************************
        //***************************************
        //   building the residuals and sampling
        //***************************************
        //***************************************

        // removing fixed effect from Y
        mixobj->remove_cov(i, res);
        res -= A * process->Xs[i];
        //***********************************
        // mixobj sampling
        //***********************************
        //Rcpp::Rcout << "here2\n";
        if(type_MeasurementError == "Normal")
          mixobj->sampleU( i, res, 2 * log(errObj->sigma));
        else
          //errObj->Vs[i] = errObj->Vs[i].head(ipred+1);
          mixobj->sampleU2( i,
                            res,
                            errObj->Vs[i].segment(obs_ind[i](ipred,0),obs_ind[i](ipred,1)).cwiseInverse(),
                            2 * log(errObj->sigma));

          mixobj->remove_inter(i, res);

        //***********************************
        // sampling processes
        //***********************************
        //Rcpp::Rcout << "here3\n";
        Eigen::SparseMatrix<double,0,int> Q = Eigen::SparseMatrix<double,0,int>(K.transpose());
        Eigen::VectorXd iV(process->Vs[i].size());
        iV.array() = process->Vs[i].array().inverse();
        Q =  Q * iV.asDiagonal();
        Q =  Q * K;

        for(int j =0; j < Kobj->d; j++)
          z[j] =  normal(random_engine);

        res += A * process->Xs[i];
        //Sample X|Y, V, sigma

        if(type_MeasurementError == "Normal")
          process->sample_X(i,
                            z,
                            res,
                            Q,
                            K,
                            A,
                            errObj->sigma,
                            Solver[i]);
        else
          process->sample_Xv2( i,
                               z,
                               res,
                               Q,
                               K,
                               A,
                               errObj->sigma,
                               Solver[i],
                               errObj->Vs[i].segment(obs_ind[i](ipred,0),obs_ind[i](ipred,1)).cwiseInverse());
        res -= A * process->Xs[i];

        //if(res.cwiseAbs().sum() > 1e16){
        //  throw("res outof bound\n");
        //}

        // sample V| X
        process->sample_V(i, rgig, K);

        //***********************************
        // random variance noise sampling
        //***********************************
        //Rcpp::Rcout << "here4\n";
        if(type_MeasurementError != "Normal"){
          errObj->sampleV(i, res,obs_ind[i](ipred,0)+obs_ind[i](ipred,1));
        }
        // save samples
        if(ii >= nBurnin){
          //if(silent == 0){
          //  Rcpp::Rcout << " save samples << " << i << ", " << ipred << ", " << ii << "\n";
          //}
          //Rcpp::Rcout << "here 1\n";
          Eigen::SparseMatrix<double,0,int> Ai = As_pred[i];
          Ai = Ai.middleRows(pred_ind[i](ipred,0),pred_ind[i](ipred,1));
          //Rcpp::Rcout << "here 2\n";
          Eigen::VectorXd random_effect = Bfixed_pred[i]*mixobj->beta_fixed;
          //Rcpp::Rcout << "here 3\n";
          random_effect += Brandom_pred[i]*(mixobj->U.col(i)+mixobj->beta_random);
          //Rcpp::Rcout << "here 4\n";
          Eigen::VectorXd random_effect_c = random_effect.segment(pred_ind[i](ipred,0),pred_ind[i](ipred,1));
          Eigen::VectorXd AX = Ai * process->Xs[i];
          //Rcpp::Rcout << "here 5\n";
          WVec[i].block(pred_ind[i](ipred,0), ii - nBurnin, pred_ind[i](ipred,1), 1) = AX;
          XVec[i].block(pred_ind[i](ipred,0), ii - nBurnin, pred_ind[i](ipred,1), 1) = random_effect_c + AX;
          //Rcpp::Rcout << "here 6\n";
        }
      }
    }
  }
  Rcpp::Rcout << "store results\n";
  // storing the results
  Rcpp::List out_list;
  out_list["XVec"] = XVec;
  out_list["WVec"] = WVec;
  return(out_list);
}