コード例 #1
0
ファイル: RemoveBins.cpp プロジェクト: trnielsen/mantid
/** Retrieves the detector postion for a given spectrum
 *  @param index ::    The workspace index of the spectrum
 *  @param l1 ::       Returns the source-sample distance
 *  @param l2 ::       Returns the sample-detector distance
 *  @param twoTheta :: Returns the detector's scattering angle
 */
void RemoveBins::calculateDetectorPosition(const int& index, double& l1, double& l2, double& twoTheta)
{
  // Get a pointer to the instrument contained in the workspace
  Geometry::Instrument_const_sptr instrument = m_inputWorkspace->getInstrument();
  // Get the distance between the source and the sample (assume in metres)
  Geometry::IObjComponent_const_sptr sample = instrument->getSample();
  // Check for valid instrument
  if (sample == NULL)
  {
    throw Exception::InstrumentDefinitionError("Instrument not sufficiently defined: failed to get sample");
  }

  l1 = instrument->getSource()->getDistance(*sample);
  Geometry::IDetector_const_sptr det = m_inputWorkspace->getDetector(index);
  // Get the sample-detector distance for this detector (in metres)
  if ( ! det->isMonitor() )
  {
    l2 = det->getDistance(*sample);
    // The scattering angle for this detector (in radians).
    twoTheta = m_inputWorkspace->detectorTwoTheta(det);
  }
  else  // If this is a monitor then make l1+l2 = source-detector distance and twoTheta=0
  {
    l2 = det->getDistance(*(instrument->getSource()));
    l2 = l2 - l1;
    twoTheta = 0.0;
  }
  g_log.debug() << "Detector for index " << index << " has L1+L2=" << l1+l2 << " & 2theta= " << twoTheta << std::endl;
  return;
}
コード例 #2
0
ファイル: UnwrapMonitor.cpp プロジェクト: mkoennecke/mantid
/** Calculates the total flightpath for the given detector.
 *  This is L1+L2 normally, but is the source-detector distance for a monitor.
 *  @param spectrum ::  The workspace index
 *  @param L1 ::        The primary flightpath
 *  @param isMonitor :: Output: true is this detector is a monitor
 *  @return The flightpath (Ld) for the detector linked to spectrum
 *  @throw Kernel::Exception::InstrumentDefinitionError if the detector position
 * can't be obtained
 */
double UnwrapMonitor::calculateFlightpath(const int &spectrum, const double &L1,
                                          bool &isMonitor) const {
  double Ld = -1.0;
  try {
    // Get the detector object for this histogram
    Geometry::IDetector_const_sptr det = m_inputWS->getDetector(spectrum);
    // Get the sample-detector distance for this detector (or source-detector if
    // a monitor)
    // This is the total flightpath
    isMonitor = det->isMonitor();
    // Get the L2 distance if this detector is not a monitor
    if (!isMonitor) {
      double L2 = det->getDistance(*(m_inputWS->getInstrument()->getSample()));
      Ld = L1 + L2;
    }
    // If it is a monitor, then the flightpath is the distance to the source
    else {
      Ld = det->getDistance(*(m_inputWS->getInstrument()->getSource()));
    }
  } catch (Exception::NotFoundError &) {
    // If the detector information is missing, return a negative number
  }

  return Ld;
}
コード例 #3
0
void FindDetectorsPar::populate_values_from_file(
    const API::MatrixWorkspace_sptr &inputWS) {
  size_t nHist = inputWS->getNumberHistograms();

  if (this->current_ASCII_file.Type == PAR_type) {
    // in this case data in azimuthal width and polar width are in fact real
    // sizes in meters; have to transform it in into angular values
    for (size_t i = 0; i < nHist; i++) {
      azimuthalWidth[i] =
          atan2(azimuthalWidth[i], secondaryFlightpath[i]) * rad2deg;
      polarWidth[i] = atan2(polarWidth[i], secondaryFlightpath[i]) * rad2deg;
    }
    m_SizesAreLinear = false;
  } else {

    Geometry::IComponent_const_sptr sample =
        inputWS->getInstrument()->getSample();
    secondaryFlightpath.resize(nHist);
    // Loop over the spectra
    for (size_t i = 0; i < nHist; i++) {
      Geometry::IDetector_const_sptr spDet;
      try {
        spDet = inputWS->getDetector(i);
      } catch (Kernel::Exception::NotFoundError &) {
        continue;
      }
      // Check that we aren't writing a monitor...
      if (spDet->isMonitor())
        continue;
      /// this is the only value, which is not defined in phx file, so we
      /// calculate it
      secondaryFlightpath[i] = spDet->getDistance(*sample);
    }
  }
}
コード例 #4
0
/** method does preliminary calculations of the detectors positions to convert
results into k-dE space ;
and places the results into static cash to be used in subsequent calls to this
algorithm */
void PreprocessDetectorsToMD::processDetectorsPositions(
    const API::MatrixWorkspace_const_sptr &inputWS,
    DataObjects::TableWorkspace_sptr &targWS) {
  g_log.information()
      << "Preprocessing detector locations in a target reciprocal space\n";
  //
  Geometry::Instrument_const_sptr instrument = inputWS->getInstrument();
  // this->pBaseInstr                = instrument->baseInstrument();
  //
  Geometry::IComponent_const_sptr source = instrument->getSource();
  Geometry::IComponent_const_sptr sample = instrument->getSample();
  if ((!source) || (!sample)) {
    g_log.error() << " Instrument is not fully defined. Can not identify "
                     "source or sample\n";
    throw Kernel::Exception::InstrumentDefinitionError(
        "Instrument not sufficiently defined: failed to get source and/or "
        "sample");
  }

  // L1
  try {
    double L1 = source->getDistance(*sample);
    targWS->logs()->addProperty<double>("L1", L1, true);
    g_log.debug() << "Source-sample distance: " << L1 << std::endl;
  } catch (Kernel::Exception::NotFoundError &) {
    throw Kernel::Exception::InstrumentDefinitionError(
        "Unable to calculate source-sample distance for workspace",
        inputWS->getTitle());
  }
  // Instrument name
  std::string InstrName = instrument->getName();
  targWS->logs()->addProperty<std::string>(
      "InstrumentName", InstrName,
      true); // "The name which should unique identify current instrument");
  targWS->logs()->addProperty<bool>("FakeDetectors", false, true);

  // get access to the workspace memory
  auto &sp2detMap = targWS->getColVector<size_t>("spec2detMap");
  auto &detId = targWS->getColVector<int32_t>("DetectorID");
  auto &detIDMap = targWS->getColVector<size_t>("detIDMap");
  auto &L2 = targWS->getColVector<double>("L2");
  auto &TwoTheta = targWS->getColVector<double>("TwoTheta");
  auto &Azimuthal = targWS->getColVector<double>("Azimuthal");
  auto &detDir = targWS->getColVector<Kernel::V3D>("DetDirections");

  // Efixed; do we need one and does one exist?
  double Efi = targWS->getLogs()->getPropertyValueAsType<double>("Ei");
  float *pEfixedArray(nullptr);
  const Geometry::ParameterMap &pmap = inputWS->constInstrumentParameters();
  if (m_getEFixed)
    pEfixedArray = targWS->getColDataArray<float>("eFixed");

  // check if one needs to generate masked detectors column.
  int *pMasksArray(nullptr);
  if (m_getIsMasked)
    pMasksArray = targWS->getColDataArray<int>("detMask");

  //// progress message appearance
  size_t div = 100;
  size_t nHist = targWS->rowCount();
  Mantid::API::Progress theProgress(this, 0, 1, nHist);
  //// Loop over the spectra
  uint32_t liveDetectorsCount(0);
  for (size_t i = 0; i < nHist; i++) {
    sp2detMap[i] = std::numeric_limits<uint64_t>::quiet_NaN();
    detId[i] = std::numeric_limits<int32_t>::quiet_NaN();
    detIDMap[i] = std::numeric_limits<uint64_t>::quiet_NaN();
    L2[i] = std::numeric_limits<double>::quiet_NaN();
    TwoTheta[i] = std::numeric_limits<double>::quiet_NaN();
    Azimuthal[i] = std::numeric_limits<double>::quiet_NaN();
    //     detMask[i]  = true;

    // get detector or detector group which corresponds to the spectra i
    Geometry::IDetector_const_sptr spDet;
    try {
      spDet = inputWS->getDetector(i);
    } catch (Kernel::Exception::NotFoundError &) {
      continue;
    }

    // Check that we aren't dealing with monitor...
    if (spDet->isMonitor())
      continue;

    // if masked detectors state is not used, masked detectors just ignored;
    bool maskDetector = spDet->isMasked();
    if (m_getIsMasked)
      *(pMasksArray + liveDetectorsCount) = maskDetector ? 1 : 0;
    else if (maskDetector)
      continue;

    // calculate the requested values;
    sp2detMap[i] = liveDetectorsCount;
    detId[liveDetectorsCount] = int32_t(spDet->getID());
    detIDMap[liveDetectorsCount] = i;
    L2[liveDetectorsCount] = spDet->getDistance(*sample);

    double polar = inputWS->detectorTwoTheta(spDet);
    double azim = spDet->getPhi();
    TwoTheta[liveDetectorsCount] = polar;
    Azimuthal[liveDetectorsCount] = azim;

    double sPhi = sin(polar);
    double ez = cos(polar);
    double ex = sPhi * cos(azim);
    double ey = sPhi * sin(azim);

    detDir[liveDetectorsCount].setX(ex);
    detDir[liveDetectorsCount].setY(ey);
    detDir[liveDetectorsCount].setZ(ez);

    // double sinTheta=sin(0.5*polar);
    // this->SinThetaSq[liveDetectorsCount]  = sinTheta*sinTheta;

    // specific code which should work and makes sense
    // for indirect instrument but may be deployed on any code with Ei property
    // defined;
    if (pEfixedArray) {
      try {
        Geometry::Parameter_sptr par = pmap.getRecursive(spDet.get(), "eFixed");
        if (par)
          Efi = par->value<double>();
      } catch (std::runtime_error &) {
      }
      // set efixed for each existing detector
      *(pEfixedArray + liveDetectorsCount) = static_cast<float>(Efi);
    }

    liveDetectorsCount++;
    if (i % div == 0)
      theProgress.report(i, "Preprocessing detectors");
  }
  targWS->logs()->addProperty<uint32_t>("ActualDetectorsNum",
                                        liveDetectorsCount, true);

  theProgress.report();
  g_log.information() << "Finished preprocessing detector locations. Found: "
                      << liveDetectorsCount << " detectors out of: " << nHist
                      << " histograms\n";
}